A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Oxygen Evolution Reaction (OER)
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Synthesis of ZIF-8
3.4. Extraction of Potato Peels and the Synthesis of Spinel CoFe2O4
3.5. Synthesis of CoFe2O4@ZIF-8
3.6. Electrochemical Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanan, M.W.; Surendranath, Y.; Nocera, D.G. Cobalt–Phosphate Oxygen-Evolving Compound. Chem. Soc. Rev. 2009, 38, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Papadantonakis, K.M.; Lewis, N.S. Principles and Implementations of Electrolysis Systems for Water Splitting. Mater. Horiz. 2016, 3, 169–173. [Google Scholar] [CrossRef][Green Version]
- Coridan, R.H.; Nielander, A.C.; Francis, S.A.; McDowell, M.T.; Dix, V.; Chatman, S.M.; Lewis, N.S. Methods for Comparing the Performance of Energy-Conversion Systems for Use in Solar Fuels and Solar Electricity Generation. Energy Environ. Sci. 2015, 8, 2886–2901. [Google Scholar] [CrossRef][Green Version]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catal. 2016, 6, 8069–8097. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y. Designing Transition-Metal-Boride-Based Electrocatalysts for Applications in Electrochemical Water Splitting. Nanoscale 2020, 12, 9327–9351. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects. J. Mater. Chem. A Mater. 2016, 4, 11973–12000. [Google Scholar] [CrossRef]
- Fang, M.; Dong, G.; Wei, R.; Ho, J.C. Hierarchical Nanostructures: Design for Sustainable Water Splitting. Adv. Energy Mater. 2017, 7, 1700559. [Google Scholar] [CrossRef][Green Version]
- Suryanto, B.H.R.; Wang, Y.; Hocking, R.K.; Adamson, W.; Zhao, C. Overall Electrochemical Splitting of Water at the Heterogeneous Interface of Nickel and Iron Oxide. Nat. Commun. 2019, 10, 5599. [Google Scholar] [CrossRef][Green Version]
- Hu, E.; Feng, Y.; Nai, J.; Zhao, D.; Hu, Y.; Lou, X.W. Construction of Hierarchical Ni-Co-P Hollow Nanobricks with Oriented Nanosheets for Efficient Overall Water Splitting. Energy Environ. Sci. 2018, 11, 872–880. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef]
- Panda, A.; Kim, H. Phosphorus Embedded Mo-MXene/CQDs Hybrid: A 2D/0D Architecture for Bifunctional Electrochemical Water Splitting. Nanoscale 2021, 13, 14795–14806. [Google Scholar] [CrossRef]
- Panda, A.; Arumugasamy, S.K.; Lee, J.; Son, Y.; Yun, K.; Venkateswarlu, S.; Yoon, M. Chemical-Free Sustainable Carbon Nano-Onion as a Dual-Mode Sensor Platform for Noxious Volatile Organic Compounds. Appl. Surf. Sci. 2021, 537, 147872. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Panda, A.; Kim, E.; Yoon, M. Biopolymer-Coated Magnetite Nanoparticles and Metal-Organic Framework Ternary Composites for Cooperative Pb(II) Adsorption. ACS Appl. Nano Mater. 2018, 1, 4198–4210. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Mahajan, H.; Panda, A.; Lee, J.; Govindaraju, S.; Yun, K.; Yoon, M. Fe3O4 Nano Assembly Embedded in 2D-Crumpled Porous Carbon Sheets for High Energy Density Supercapacitor. Chem. Eng. J. 2021, 420, 127584. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef][Green Version]
- Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 35390–35397. [Google Scholar] [CrossRef]
- Li, F.L.; Shao, Q.; Huang, X.; Lang, J.P. Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angew. Chem.—Int. Ed. 2018, 57, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, Y.; Dong, J.; He, C.T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nat. Energy 2016, 1, 16184. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal-Organic Framework Composites for Catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef][Green Version]
- Wang, C.; Liu, S.; Wang, D.; Chen, Q. Interface Engineering of Ru-Co3O4 Nanocomposites for Enhancing CO Oxidation. J. Mater. Chem. A Mater. 2018, 6, 11037–11043. [Google Scholar] [CrossRef]
- Gopi, S.; Panda, A.; Ramu, A.G.; Theerthagiri, J.; Kim, H.; Yun, K. Bifunctional Electrocatalysts for Water Splitting from a Bimetallic (V Doped-NixFey) Metal–Organic Framework MOF@Graphene Oxide Composite. Int. J. Hydrogen Energy 2021, 47, 42122–42135. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, e2006042. [Google Scholar] [CrossRef]
- Khalid, M.; Hassan, A.; Honorato, A.M.B.; Crespilho, F.N.; Varela, H. Nano-Flocks of a Bimetallic Organic Framework for Efficient Hydrogen Evolution Electrocatalysis. Chem. Commun. 2018, 54, 11048–11051. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, Y.P.; Wang, X.; Tian, J.W.; Huang, D.D.; Zhao, J.; Lan, Y.Q.; Li, D.S. Improved Conductivity of a New Co(Ii)-MOF by Assembled Acetylene Black for Efficient Hydrogen Evolution Reaction. CrystEngComm 2018, 20, 4804–4809. [Google Scholar] [CrossRef]
- Rui, K.; Zhao, G.; Lao, M.; Cui, P.; Zheng, X.; Zheng, X.; Zhu, J.; Huang, W.; Dou, S.X.; Sun, W. Direct Hybridization of Noble Metal Nanostructures on 2D Metal-Organic Framework Nanosheets to Catalyze Hydrogen Evolution. Nano Lett. 2019, 19, 8447–8453. [Google Scholar] [CrossRef]
- Cao, C.; Ma, D.D.; Xu, Q.; Wu, X.T.; Zhu, Q.L. Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Adv. Funct. Mater. 2019, 29, 1807418. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications. J. Mater. Chem. A Mater. 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Xie, W.; Gao, C.; Li, J. Sustainable Biodiesel Production from Low-Quantity Oils Utilizing H6PV3MoW8O40 Supported on Magnetic Fe3O4/ZIF-8 Composites. Renew Energy 2021, 168, 927–937. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.Z.; Zhang, H.; Shahab, A. A Comprehensive Review on the Adsorption of Heavy Metals by Zeolite Imidazole Framework (ZIF-8) Based Nanocomposite in Water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Paul, A.; Banga, I.K.; Muthukumar, S.; Prasad, S. Engineering the ZIF-8 Pore for Electrochemical Sensor Applications-A Mini Review. ACS Omega 2022, 7, 26993–27003. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review. Curr. Med. Chem. 2021, 28, 7023–7075. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef][Green Version]
- Chameh, B.; Moradi, M.; Hajati, S.; Hessari, F.A. Design and Construction of ZIF(8 and 67) Supported Fe3O4 Composite as Advanced Materials of High Performance Supercapacitor. Phys. E Low Dimens. Syst. Nanostruct. 2021, 126, 114442. [Google Scholar] [CrossRef]
- Meng, W.; Chen, W.; Zhao, L.; Huang, Y.; Zhu, M.; Huang, Y.; Fu, Y.; Geng, F.; Yu, J.; Chen, X.; et al. Porous Fe3O4/Carbon Composite Electrode Material Prepared from Metal-Organic Framework Template and Effect of Temperature on Its Capacitance. Nano Energy 2014, 8, 133–140. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Qiu, L.G.; Yuan, Y.P.; Zhu, Y.J.; Jiang, X.; Xiao, J.D. Magnetic Fe3O4@C/Cu and Fe3O4@CuO Core-Shell Composites Constructed from MOF-Based Materials and Their Photocatalytic Properties under Visible Light. Appl. Catal. B 2014, 144, 863–869. [Google Scholar] [CrossRef]
- Zhou, Q.; Xing, J.; Gao, Y.; Lv, X.; He, Y.; Guo, Z.; Li, Y. Ordered Assembly of NiCo2O4 Multiple Hierarchical Structures for High-Performance Pseudocapacitors. ACS Appl. Mater. Interfaces 2014, 6, 11394–11402. [Google Scholar] [CrossRef]
- Cai, D.; Wang, D.; Liu, B.; Wang, Y.; Liu, Y.; Wang, L.; Li, H.; Huang, H.; Li, Q.; Wang, T. Comparison of the Electrochemical Performance of Nimoo4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2013, 5, 12905–12910. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. A Reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode. J. Power Sources 2013, 226, 65–70. [Google Scholar] [CrossRef][Green Version]
- Yu, W.; Jiang, X.; Ding, S.; Li, B.Q. Preparation and Electrochemical Characteristics of Porous Hollow Spheres of NiO Nanosheets as Electrodes of Supercapacitors. J. Power Sources 2014, 256, 440–448. [Google Scholar] [CrossRef][Green Version]
- Yang, J.; Lian, L.; Ruan, H.; Xie, F.; Wei, M. Nanostructured Porous MnO2 on Ni Foam Substrate with a High Mass Loading via a CV Electrodeposition Route for Supercapacitor Application. Electrochim. Acta 2014, 136, 189–194. [Google Scholar] [CrossRef]
- Tan, J.B.; Sahoo, P.; Wang, J.W.; Hu, Y.W.; Zhang, Z.M.; Lu, T.B. Highly Efficient Oxygen Evolution Electrocatalysts Prepared by Using Reduction-Engraved Ferrites on Graphene Oxide. Inorg. Chem. Front. 2018, 5, 310–318. [Google Scholar] [CrossRef]
- Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile Synthesis of Electrospun MFe2O4 (M = Co, Ni, Cu, Mn) Spinel Nanofibers with Excellent Electrocatalytic Properties for Oxygen Evolution and Hydrogen Peroxide Reduction. Nanoscale 2015, 7, 8920–8930. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Lv, M.; Chai, P.; Liu, Y.; Meng, J. Preparation of Ferrite MFe2O4 (M = Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties. J. Phys. Chem. B 2008, 112, 11292–11297. [Google Scholar] [CrossRef]
- Cui, L.; Qu, F.; Liu, J.; Du, G.; Asiri, A.M.; Sun, X. Interconnected Network of Core–Shell CoP@CoBiPi for Efficient Water Oxidation Electrocatalysis under Near Neutral Conditions. ChemSusChem 2017, 10, 1370–1374. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Ma, T.Y.; Jaroniec, M.; Qiao, S.Z. Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. Angew. Chem.—Int. Ed. 2017, 56, 1324–1328. [Google Scholar] [CrossRef]
- Hu, H.; Guan, B.; Xia, B.; Lou, X.W. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. J. Am. Chem. Soc. 2015, 137, 5590–5595. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Li, F.; Li, W.; Yang, H.; Zhang, X.; Liu, Y.; Ma, J. A Facile Preparation of CoFe2O4 Nanoparticles on Polyaniline-Functionalised Carbon Nanotubes as Enhanced Catalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A Mater. 2016, 4, 4472–4478. [Google Scholar] [CrossRef]
- Kargar, A.; Yavuz, S.; Kim, T.K.; Liu, C.H.; Kuru, C.; Rustomji, C.S.; Jin, S.; Bandaru, P.R. Solution-Processed CoFe2O4 Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7, 17851–17856. [Google Scholar] [CrossRef]
- Lu, X.F.; Gu, L.F.; Wang, J.W.; Wu, J.X.; Liao, P.Q.; Li, G.R. Bimetal-Organic Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1604437. [Google Scholar] [CrossRef]
- Shanmugavani, A.; Kalpana, D.; Selvan, R.K. Electrochemical Properties of CoFe2O4 Nanoparticles as Negative and Co(OH)2 and Co2Fe(CN)6 as Positive Electrodes for Supercapacitors. Available online: https://reader.elsevier.com/reader/sd/pii/S0025540815002664?token=F9FC8EBC3DB2D9B8F6097010A2361E59DAEE1F164F815537E592D646AE6C02130E77D64EECC7AAB7A8CDE5809A2B6EE5&originRegion=us-east-1&originCreation=20210831033308 (accessed on 31 August 2021).
- Ortiz-Quiñonez, J.L.; Pal, U. Borohydride-Assisted Surface Activation of Co3O4/CoFe2O4 Composite and Its Catalytic Activity for 4-Nitrophenol Reduction. ACS Omega 2019, 4, 10129–10139. [Google Scholar] [CrossRef][Green Version]
- Kubisztal, J.; Kubisztal, M. Synthesis and Characterisation of Cobalt Ferrite Coatings for Oxygen Evolution Reaction. Catalysts 2022, 12, 21. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Silva, T.R.; Santos, J.R.; Silva, V.D.; Raimundo, R.A.; Morales, M.A.; Macedo, D.A. Structure, magnetic behavior and OER activity of CoFe2O4 powders obtained using agar-agar from red seaweed (Rhodophyta). Mater. Chem. Phys. 2019, 237, 121847. [Google Scholar] [CrossRef]
- Silva, V.D.; Ferreira, L.S.; Simões, T.A.; Medeiros, E.S.; Macedo, D.A. 1D hollow MFe2O4 (M = Cu, Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. J. Colloid Interface Sci. 2019, 540, 59–65. [Google Scholar] [CrossRef]
- Sagu, J.S.; Mehta, D.; Wijayantha, K.U. Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochem. Commun. 2018, 87, 1–4. [Google Scholar] [CrossRef][Green Version]
- Mahala, C.; Sharma, M.D.; Basu, M. 2D nanostructures of CoFe2O4 and NiFe2O4: Efficient oxygen evolution catalyst. Electrochim. Acta 2018, 273, 462–473. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wang, T.; Li, Z.; Yang, G.; Bian, H.; Li, J.; Gao, D. Durable oxygen evolution reaction of one dimensional spinel CoFe2O4 nanofibers fabricated by electrospinning. RSC Adv. 2018, 8, 5338–5343. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, T.; Li, P.; Yao, N.; Kong, T.; Cheng, G.; Chen, S.; Luo, W. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater. 2019, 31, 1806672. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, M.; Li, J.; Jiao, F.; Lin, Y.; Gong, Y. A highly efficient electrochemical oxygen evolution reaction catalyst constructed from a S-treated two-dimensional Prussian blue analogue. Dalton Trans. 2020, 49, 14290–14296. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Xie, Y.; Dou, Y.; Zhou, J.; Zhou, A.; Wei, X.; Li, J.R. Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 41595–41601. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, T.; Zhao, X.; Jiang, W.J.; Pan, H.; Gao, D.; Xu, C. Expediting in-situ electrochemical activation of two-dimensional metal–organic frameworks for enhanced OER intrinsic activity by iron incorporation. ACS Catal. 2019, 9, 7356–7364. [Google Scholar] [CrossRef]
- Gao, Z.; Yu, Z.W.; Liu, F.Q.; Yang, C.; Yuan, Y.H.; Yu, Y.; Luo, F. Stable Iron Hydroxide Nanosheets@ Cobalt-Metal–Organic–Framework Heterostructure for Efficient Electrocatalytic Oxygen Evolution. ChemSusChem 2019, 12, 4623–4628. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, C.; Sun, Y.; Zhang, G.; Shen, X.; Zou, F.; Zhang, H.; Wu, Z.; Wegener, E.C.; Taubert, C.J.; et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 2018, 12, 158–167. [Google Scholar] [CrossRef]
Catalyst | OER | ||
---|---|---|---|
ECSA (cm2) | Overpotential at −10 mA cm−2 (mV) | Tafel (mV dec−1) | |
CPE | 0.95 | 151.1 | 403 |
CoFe2O4 | 35 | 370 | 283 |
ZIF-8 | 85 | 310 | 120 |
CoFe2O4@ZIF-8 | 260 | 105 | 43 |
Catalyst | b (mVdec−1) | Overpotential at 10 mA cm−2 (η10 (mV)) | Reference |
---|---|---|---|
CoFe2O4 (powders) | 45 | 295 | [57] |
CoFe2O4 (powders) | 126 | 435 | [58] |
CoFe2O4 (hollow nanofibers) | 95 | 414 | [59] |
CoFe2O4 (thin films) | 54 | 490 | [60] |
CoFe2O4 (nanoparticles) | 73 | 387 | [53] |
CoFe2O4 (nanoplates) | 61 | 360 | [61] |
CoFe2O4 (nanofibers) | 107 | 340 | [62] |
Co3S4/EC–MOF | 120 | 226 | [63] |
S–CoFe–PBA/CFP | 35.2 | 235 | [64] |
FeMOFs-SO3 | 36.2 | 218 | [65] |
CoFe–MOF–OH | 310 | [66] | |
Fe (OH)3@CoMOF-74 | 292 | [67] | |
Fe–Co–P Hollow Sphere | 33 | 252 | [68] |
ZIF@CoFe2O4 | 43 | 105 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, A.; Cho, H.-K.; Kim, H. A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. Int. J. Mol. Sci. 2023, 24, 9585. https://doi.org/10.3390/ijms24119585
Panda A, Cho H-K, Kim H. A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. International Journal of Molecular Sciences. 2023; 24(11):9585. https://doi.org/10.3390/ijms24119585
Chicago/Turabian StylePanda, Atanu, Hang-Kyu Cho, and Hansang Kim. 2023. "A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution" International Journal of Molecular Sciences 24, no. 11: 9585. https://doi.org/10.3390/ijms24119585
APA StylePanda, A., Cho, H.-K., & Kim, H. (2023). A Green Synthesis of CoFe2O4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. International Journal of Molecular Sciences, 24(11), 9585. https://doi.org/10.3390/ijms24119585