Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy
Abstract
:1. Introduction
2. KCNA1 Gene Structure and Function
3. Previous Genotype–Phenotype Correlations
4. New Epilepsy- or Seizure-Related Variants
4.1. Variants in the Pore Domain
4.2. Variants Not in the Pore Domain
4.2.1. Gain-of-Function Mutations That Alter Voltage-Sensing
4.2.2. Mutations Hypothesized to Alter Open-State Stability
4.3. A Frameshift Variant Affecting Both Voltage-Sensing and Pore Domains
4.4. Evidence for the Possible Influence of Genetics Modifiers
4.4.1. Findings in Patients
4.4.2. Findings in Mouse Models
4.5. Potential Association between Epilepsy Variants and Respiratory Dysfunction
4.5.1. Findings in Patients
4.5.2. Findings in Mouse Models
5. New Non-Epilepsy Related Variants
5.1. Episodic Ataxia Type 1 (EA1) Mutations
5.2. Myokymia Mutations
5.3. Emerging Phenotypes Revealed by New Variants
5.3.1. Musculoskeletal Abnormalities
5.3.2. Nystagmus
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Browne, D.L.; Gancher, S.T.; Nutt, J.G.; Brunt, E.R.P.; Smith, E.A.; Kramer, P.; Litt, M. Episodic Ataxia/Myokymia Syndrome Is Associated with Point Mutations in the Human Potassium Channel Gene, KCNA1. Nat. Genet. 1994, 8, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Paulhus, K.; Ammerman, L.; Glasscock, E. Clinical Spectrum of KCNA1 Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int. J. Mol. Sci. 2020, 21, 2802. [Google Scholar] [CrossRef]
- Sainio, M.T.; Aaltio, J.; Hyttinen, V.; Kortelainen, M.; Ojanen, S.; Paetau, A.; Tienari, P.; Ylikallio, E.; Auranen, M.; Tyynismaa, H. Effectiveness of Clinical Exome Sequencing in Adult Patients with Difficult-to-Diagnose Neurological Disorders. Acta Neurol. Scand. 2022, 145, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Set, K.K.; Ghosh, D.; Huq, A.H.M.; Luat, A.F. Episodic Ataxia Type 1 (K-Channelopathy) Manifesting as Paroxysmal Nonkinesogenic Dyskinesia: Expanding the Phenotype. Mov. Disord. Clin. Pract. 2017, 4, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Manville, R.W.; Sidlow, R.; Abbott, G.W. Case Report: A Novel Loss-of-Function Pathogenic Variant in the KCNA1 Cytoplasmic N-Terminus Causing Carbamazepine-Responsive Type 1 Episodic Ataxia. Front. Neurol. 2022, 13, 1760. [Google Scholar] [CrossRef]
- Tomlinson, S.E.; Rajakulendran, S.; Tan, S.V.; Graves, T.D.; Bamiou, D.-E.; Labrum, R.W.; Burke, D.; Sue, C.M.; Giunti, P.; Schorge, S.; et al. Clinical, Genetic, Neurophysiological and Functional Study of New Mutations in Episodic Ataxia Type 1. Mov. Disord. 2013, 84, 1107–1112. [Google Scholar] [CrossRef]
- Coutelier, M.; Coarelli, G.; Monin, M.-L.; Konop, J.; Davoine, C.-S.; Tesson, C.; Valter, R.; Anheim, M.; Behin, A.; Castelnovo, G.; et al. A Panel Study on Patients with Dominant Cerebellar Ataxia Highlights the Frequency of Channelopathies. Brain 2017, 140, 1579–1594. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Deenadayalu, A.; Paramanandam, V. Interictal Headache, Pseudodystonia, and Persistent Ataxia in Episodic Ataxia Type 1 Due to a Novel KCNA1 Gene Mutation. Mov. Disord. Clin. Pract. 2022, 9, 272–274. [Google Scholar] [CrossRef]
- Brunt, E.R.P.; Van Weerden, T.W. Familial Paroxysmal Kinesigenic Ataxia and Continuous Myokymia. Brain 1990, 113, 1361–1382. [Google Scholar] [CrossRef]
- Scheffer, H.; Mol, G.J.J.; Van Der Vlies, P.; Stulp, R.P.; Verlind, E.; Mantel, G.; Averyanov, Y.N.; Hofstra, R.M.W.; Buys, C.H.C.M. Three Novel KCNA1 Mutations in Episodic Ataxia Type I Families. Hum. Genet. 1998, 102, 464–466. [Google Scholar] [CrossRef]
- Imbrici, P.; D’Adamo, M.C.; Kullmann, D.M.; Pessia, M. Episodic Ataxia Type 1 Mutations in the KCNA1 Gene Impair the Fast Inactivation Properties of the Human Potassium Channels Kv1.4-1.1/Kvβ1.1 and Kv1.4-1.1/Kvβ1.2. Eur. J. Neurosci. 2006, 24, 3073–3083. [Google Scholar] [CrossRef]
- Van Dyke, D.; Griggs, R.; Murphy, M.; Goldstein, M. Hereditary Myokymia and Periodic Ataxia. J Neurol Sci 1975, 25, 109–118. [Google Scholar] [CrossRef]
- D’adamo, M.C.; Gallenmüller, C.; Servettini, I.; Hartl, E.; Tucker, S.J.; Arning, L.; Biskup, S.; Grottesi, A.; Guglielmi, L.; Imbrici, P.; et al. Novel Phenotype Associated with a Mutation in the KCNA1(Kv1.1) Gene. Front. Physiol. 2015, 5, 525. [Google Scholar] [CrossRef] [PubMed]
- Graves, T.D.; Cha, Y.-H.; Hahn, A.F.; Barohn, R.; Salajegheh, M.K.; Griggs, R.C.; Bundy, B.N.; Jen, J.C.; Baloh, R.W.; Hanna, M.G. Episodic Ataxia Type 1: Clinical Characterization, Quality of Life and Genotype-Phenotype Correlation. Brain 2014, 137, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Comu, S.; Giuliani, M.; Narayanan, V. Episodic Ataxia and A New Mutation of Myokymia Syndrome: Potassium Channel Gene Kvl. 1. Ann. Neurol. 1996, 40, 684–687. [Google Scholar] [CrossRef]
- Chen, H.; Von Hehn, C.; Kaczmarek, L.K.; Ment, L.R.; Pober, B.R.; Hisama, F.M. Functional Analysis of a Novel Potassium Channel (KCNA1) Mutation in Hereditary Myokymia. Neurogenetics 2007, 8, 131–135. [Google Scholar] [CrossRef]
- Brownstein, C.A.; Beggs, A.H.; Rodan, L.; Shi, J.; Towne, M.C.; Pelletier, R.; Cao, S.; Rosenberg, P.A.; Urion, D.K.; Picker, J.; et al. Clinical Heterogeneity Associated with KCNA1 Mutations Include Cataplexy and Nonataxic Presentations. Neurogenetics 2016, 17, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Zuberi, S.M.; Eunson, L.H.; Spauschus, A.; De Silva, R.; Tolmie, J.; Wood, N.W.; Mcwilliam, R.C.; Stephenson, J.P.B.; Kullmann, D.M.; Hanna, M.G. A Novel Mutation in the Human Voltage-Gated Potassium Channel Gene (Kv1.1) Associates with Episodic Ataxia Type 1 and Sometimes with Partial Epilepsy. Brain 1999, 122, 817–825. [Google Scholar] [CrossRef]
- Eunson, L.H.; Rea, R.; Zuberi, S.M.; Youroukos, S.; Panayiotopoulos, C.P.; Liguori, R.; Avoni, P.; Mcwilliam, R.C.; Stephenson, J.B.P.; Hanna, M.G.; et al. Clinical, Genetic, and Expression Studies of Mutations in the Potassium Channel Gene KCNA1 Reveal New Phenotypic Variability. Ann. Neurol. 2000, 48, 647–656. [Google Scholar] [CrossRef]
- Na, J.-H.; Shin, S.; Yang, D.; Kim, B.; Kim, H.D.; Kim, S.; Lee, J.-S.; Choi, J.-R.; Lee, S.-T.; Kang, H.-C. Targeted Gene Panel Sequencing in Early Infantile Onset Developmental and Epileptic Encephalopathy. Brain Dev. 2020, 42, 438–448. [Google Scholar] [CrossRef]
- Shin, I.J.; Sohn, S.Y.; Kim, S.Y.; Joo, I.S. A Novel KCNA1 Variant Manifesting as Persistent Limb Myokymia Without Episodic Ataxia. J. Clin. Neurol. 2022, 18, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Mestre, T.A.; Manole, A.; Macdonald, H.; Riazi, S.; Kraeva, N.; Hanna, M.G.; Lang, A.E.; Männikkö, R.; Yoon, G. A Novel KCNA1 Mutation in a Family with Episodic Ataxia and Malignant Hyperthermia. Neurogenetics 2016, 17, 245–249. [Google Scholar] [CrossRef]
- Shook, S.J.; Mamsa, H.; Jen, J.C.; Baloh, R.W.; Zhou, L. Novel Mutation in KCNA1 Causes Episodic Ataxia with Paroxysmal Dyspnea. Muscle Nerve 2008, 37, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Zima, L.; Ceulemans, S.; Reiner, G.; Galosi, S.; Chen, D.; Sahagian, M.; Haas, R.H.; Hyland, K.; Friedman, J. Paroxysmal Motor Disorders: Expanding Phenotypes Lead to Coalescing Genotypes. Ann. Clin. Transl. Neurol. 2018, 5, 996–1010. [Google Scholar] [CrossRef]
- Glaudemans, B.; Van Der Wijst, J.; Scola, R.H.; Lorenzoni, P.J.; Heister, A.; Van Der Kemp, A.W.; Knoers, N.V.; Hoenderop, J.G.; Bindels, R.J. A Missense Mutation in the Kv1.1 Voltage-Gated Potassium Channel-Encoding Gene KCNA1 Is Linked to Human Autosomal Dominant Hypomagnesemia. J. Clin. Invest. 2009, 119, 936–942. [Google Scholar] [CrossRef]
- Van Der Wijst, J.; Glaudemans, B.; Venselaar, H.; Nair, A.V.; Forst, A.-L.; Hoenderop, J.G.J.; Bindels, R.J.M. Functional Analysis of the Kv1.1 N255D Mutation Associated with Autosomal Dominant Hypomagnesemia. J. Biol. Chem. 2010, 285, 171–178. [Google Scholar] [CrossRef]
- Yin, X.-M.; Lin, J.-H.; Cao, L.; Zhang, T.-M.; Zeng, S.; Zhang, K.-L.; Tian, W.-T.; Hu, Z.-M.; Li, N.; Wang, J.-L.; et al. Familial Paroxysmal Kinesigenic Dyskinesia Is Associated with Mutations in the KCNA1 Gene. Hum. Mol. Genet. 2018, 27, 625–637. [Google Scholar] [CrossRef]
- Miceli, F.; Guerrini, R.; Nappi, M.; Soldovieri, M.V.; Cellini, E.; Gurnett, C.A.; Parmeggiani, L.; Mei, D.; Taglialatela, M. Distinct Epilepsy Phenotypes and Response to Drugs in KCNA1 Gain- and Loss-of Function Variants. Epilepsia 2022, 63, e7–e14. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Yuan, H.; Wang, Q.; Ye, W.; Yao, R.; Xu, W.; Liu, Y. Two Novel KCNA1 Variants Identified in Two Unrelated Chinese Families Affected by Episodic Ataxia Type 1 and Neurodevelopmental Disorders. Mol. Genet. Genomic. Med. 2020, 8, e1434. [Google Scholar] [CrossRef]
- Zhu, J.; Alsaber, R.; Zhao, J.; Ribeiro-Hurley, E.; Thornhill, W.B. Characterization of the Kv1.1 I262T and S342I Mutations Associated with Episodic Ataxia 1 with Distinct Phenotypes. Arch. Biochem. Biophys. 2012, 524, 99–105. [Google Scholar] [CrossRef]
- Klein, A.; Boltshauser, E.; Jen, J.; Baloh, R. Episodic Ataxia Type 1 with Distal Weakness: A Novel Manifestation of a Potassium Channelopathy. Neuropediatrics 2004, 35, 147–149. [Google Scholar] [CrossRef]
- Lassche, S.; Lainez, S.; Bloem, B.R.; van de Warrenburg, B.P.C.; Hofmeijer, J.; Lemmink, H.H.; Hoenderop, J.G.J.; Bindels, R.J.M.; Drost, G. A Novel KCNA1 Mutation Causing Episodic Ataxia Type I. Muscle Nerve 2014, 50, 289–291. [Google Scholar] [CrossRef]
- Lee, G.B.; Kim, G.Y.; Jeong, I.H.; Kim, N.; Kim, J.W. A Novel KCNA1 Mutation in an Episodic Ataxia Type 1 Patient with Asterixis and Falls. J. Clin. Neurol. 2021, 17, 333. [Google Scholar] [CrossRef]
- Imbrici, P.; Accogli, A.; Blunck, R.; Altamura, C.; Iacomino, M.; D’Adamo, M.C.; Allegri, A.; Pedemonte, M.; Brolatti, N.; Vari, S.; et al. Musculoskeletal Features without Ataxia Associated with a Novel de Novo Mutation in KCNA1 Impairing the Voltage Sensitivity of Kv1.1 Channel. Biomedicines 2021, 9, 75. [Google Scholar] [CrossRef]
- Imbrici, P.; Altamura, C.; Gualandi, F.; Mangiatordi, G.F.; Neri, M.; De Maria, G.; Ferlini, A.; Padovani, A.; D’Adamo, M.C.; Nicolotti, O.; et al. A Novel KCNA1 Mutation in a Patient with Paroxysmal Ataxia, Myokymia, Painful Contractures and Metabolic Dysfunctions. Mol. Cell. Neurosci. 2017, 83, 6–12. [Google Scholar] [CrossRef]
- Mahale, R.R.; Jayanth, S.; Dutta, D.; Manu, S.; Padmanabha, H.; Mailankody, P. Cervical Dystonia with Cerebellar Ataxia in KCNA1 Mutation: A Phenotypic Expansion. Ann. Indian. Acad. Neurol. 2022, 25, 942–944. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Takacs, D.S.; Hedrich, U.B.S.; Coorg, R.; Masters, L.; Glinton, K.E.; Dai, H.; Cokley, J.A.; Riviello, J.J.; Lerche, H.; et al. KCNA1 Gain-of-function Epileptic Encephalopathy Treated with 4-aminopyridine. Ann. Clin. Transl. Neurol. 2023, 10, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Rajakulendran, S.; Tan, S.V.; Matthews, E.; Tomlinson, S.E.; Labrum, R.; Sud, R.; Kullmann, D.M.; Schorge, S.; Hanna, M.G. A Patient with Episodic Ataxia and Paramyotonia Congenita Due to Mutations in KCNA1 and SCNA4. Neurology 2009, 73, 993–995. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Bove, C.; Silvestri, G.; Mantuano, E.; Modoni, A.; Veneziano, L.; Macchioni, L.; Hunter, T.; Hunter, G.; Pessia, M.; et al. A Channelopathy Mutation in the Voltage-Sensor Discloses Contributions of a Conserved Phenylalanine to Gating Properties of Kv1.1 Channels and Ataxia. Sci. Rep. 2017, 7, 4583. [Google Scholar] [CrossRef] [PubMed]
- Poujois, A.; Antoine, J.-C.; Combes, A.; Laurian Touraine, R. Chronic Neuromyotonia as a Phenotypic Variation Associated with a New Mutation in the KCNA1 Gene. J. Neurol. 2006, 253, 957–959. [Google Scholar] [CrossRef] [PubMed]
- Graves, T.D.; Rajakulendran, S.; Zuberi, S.M.; Morris, F.H.R.; Schorge, F.S.; Hanna, M.G.; Kullmann, F.D.M. Nongenetic Factors Influence Severity of Episodic Ataxia Type 1 in Monozygotic Twins. Neurology 2010, 75, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Karalok, Z.S.; Megaro, A.; Cenciarini, M.; Guven, A.; Hasan, S.M.; Taskin, B.D.; Imbrici, P.; Ceylaner, S.; Pessia, M.; D’Adamo, M.C. Identification of a New de Novo Mutation Underlying Regressive Episodic Ataxia Type I. Front. Neurol. 2018, 9, 587. [Google Scholar] [CrossRef] [PubMed]
- Zerr, P.; Adelman, J.P.; Maylie, J. Characterization of Three Episodic Ataxia Mutations in the Human Kv1.1 Potassium Channel. FEBS J. 1998, 431, 461–464. [Google Scholar] [CrossRef]
- Tristán-Clavijo, E.; Scholl, F.G.; Macaya, A.; Iglesias, G.; Rojas, A.M.; Lucas, M.; Castellano, A.; Martinez-Mir, A. Dominant-Negative Mutation p.Arg324Thr in KCNA1 Impairs Kv1.1 Channel Function in Episodic Ataxia. Mov. Disord. 2016, 31, 1743–1748. [Google Scholar] [CrossRef]
- Jan Lubbers, W.; Brunt, E.R.P.; Scheffer, H.; Litt, M.; Stulp, R.; Browne, D.L.; van Weerden, T.W. Hereditary Myokymia and Paroxysmal Ataxia Linked to Chromosome 12 Is Responsive to Acetazolamide. J. Neurol. Neurosurg. Psychiatry 1995, 59, 400–405. [Google Scholar] [CrossRef]
- Jorge, A.; Melancia, D.; Figueiredo, C.; Galego, O.; Oliveira, J.; Martins, A.I.; Lemos, J. Downbeat Nystagmus in Episodic Ataxia Type 1 Associated with a Novel KCNA1 Mutation. Mov. Disord. 2022, 37, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wijst, J.; Konrad, M.; Verkaart, S.A.J.; Tkaczyk, M.; Latta, F.; Altmüller, J.; Thiele, H.; Beck, B.; Schlingmann, K.P.; De Baaij, J.H.F. A de Novo KCNA1 Mutation in a Patient with Tetany and Hypomagnesemia. Nephron 2018, 139, 359–366. [Google Scholar] [CrossRef]
- Knight, M.A.; Storey, E.; Mckinlay Gardner, R.J.; Hand, P.; Forrest, S.M. Identification of a Novel Missense Mutation L329I in the Episodic Ataxia Type 1 Gene KCNA1—A Challenging Problem. Hum. Mutat. 2000, 16, 157. [Google Scholar] [CrossRef]
- Trujillano, D.; Bertoli-Avella, A.M.; Kumar Kandaswamy, K.; Weiss, M.E.; Köster, J.; Marais, A.; Paknia, O.; Schröder, R.; Garcia-Aznar, J.M.; Werber, M.; et al. Clinical Exome Sequencing: Results from 2819 Samples Reflecting 1000 Families. Eur. J. Hum. Genet. 2017, 25, 176–182. [Google Scholar] [CrossRef]
- Lee, H.; Wang, H.; Jen, J.C.; Sabatti, C.; Baloh, R.W.; Nelson, S.F. A Novel Mutation in KCNA1 Causes Episodic Ataxia without Myokymia. Hum. Mutat. 2004, 24, 536. [Google Scholar] [CrossRef]
- Verdura, E.; Fons, C.; Schlüter, A.; Ruiz, M.; Fourcade, S.; Casasnovas, C.; Castellano, A.; Pujol, A. Complete Loss of KCNA1 Activity Causes Neonatal Epileptic Encephalopathy and Dyskinesia. J. Med. Genet. 2019, 57, 132–137. [Google Scholar] [CrossRef]
- Kegele, J.; Krüger, J.; Koko, M.; Lange, L.; Marco Hernandez, A.V.; Martinez, F.; Münchau, A.; Lerche, H.; Lauxmann, S. Genetics of Paroxysmal Dyskinesia: Novel Variants Corroborate the Role of KCNA1 in Paroxysmal Dyskinesia and Highlight the Diverse Phenotypic Spectrum of KCNA1- and SLC2A1-Related Disorders. Front. Neurol. 2021, 12, 1036. [Google Scholar] [CrossRef]
- Klassen, T.L.; Bomben, V.C.; Patel, A.; Drabek, J.; Chen, T.T.; Gu, W.; Zhang, F.; Chapman, K.; Lupski, J.R.; Noebels, J.L.; et al. High-Resolution Molecular Genomic Autopsy Reveals Complex Sudden Unexpected Death in Epilepsy Risk Profile. Epilepsia 2014, 55, e6-12. [Google Scholar] [CrossRef] [PubMed]
- Dinoi, G.; Morin, M.; Conte, E.; Mor Shaked, H.; Coppola, M.A.; D’Adamo, M.C.; Elpeleg, O.; Liantonio, A.; Hartmann, I.; De Luca, A.; et al. Clinical and Functional Study of a De Novo Variant in the PVP Motif of Kv1.1 Channel Associated with Epilepsy, Developmental Delay and Ataxia. Int. J. Mol. Sci. 2022, 23, 8079. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.; Golumbek, P.; Cellini, E.; Doccini, V.; Guerrini, R.; Wallgren-Pettersson, C.; Thuresson, A.C.; Gurnett, C.A. De Novo KCNA1 Variants in the PVP Motif Cause Infantile Epileptic Encephalopathy and Cognitive Impairment Similar to Recurrent KCNA2 Variants. Am. J. Med. Genet. 2018, 176, 1748–1752. [Google Scholar] [CrossRef]
- Tacik, P.; Guthrie, K.J.; Strongosky, A.J.; Broderick, D.F.; Riegert-Johnson, D.L.; Tang, S.; El-Khechen, D.; Parker, A.S.; Ross, O.A.; Wszolek, Z.K. Whole-Exome Sequencing as a Diagnostic Tool in a Family with Episodic Ataxia Type 1. Mayo Clin. Proc. 2015, 90, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Parrini, E.; Marini, C.; Mei, D.; Galuppi, A.; Cellini, E.; Pucatti, D.; Chiti, L.; Rutigliano, D.; Bianchini, C.; Virdò, S.; et al. Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. Hum. Mutat. 2017, 38, 216–225. [Google Scholar] [CrossRef]
- Demos, M.K.; Macri, V.; Farrell, K.; Nelson, T.N.; Chapman, K.; Accili, E.; Armstrong, L. A Novel KCNA1 Mutation Associated with Global Delay and Persistent Cerebellar Dysfunction. Mov. Disord. 2009, 24, 778–782. [Google Scholar] [CrossRef]
- Imbrici, P.; Gualandi, F.; D’Adamo, M.C.; Masieri, M.T.; Cudia, P.; De Grandis, D.; Mannucci, R.; Nicoletti, I.; Tucker, S.J.; Ferlini, A.; et al. A Novel KCNA1 Mutation Identified in an Italian Family Affected by Episodic Ataxia Type 1. Neuroscience 2008, 157, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-D.; Choi, J.-H. Episodic Ataxias: Clinical and Genetic Features. J. Mov. Disord. 2016, 9, 129–135. [Google Scholar] [CrossRef]
- D’Adamo, M.C.; Hasan, S.; Guglielmi, L.; Servettini, I.; Cenciarini, M.; Catacuzzeno, L.; Franciolini, F. New Insights into the Pathogenesis and Therapeutics of Episodic Ataxia Type 1. Front. Cell. Neurosci. 2015, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Logette, E.; Marani, M.; Herzog, M.; Tache, V.; Scantamburlo, E.; Buchillier, V.; Markram, H. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front. Cell. Neurosci. 2019, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.E.S.; Muniz, Z.M.; Sewing, S.; Lichtinghagen, R.; Parcej, D.N.; Pongs, O.; Dolly, J.O. Antibodies Specific for Distinct Kv Subunits Unveil a Hetero-Oligomeric Basis for Subtypes of α-Dendrotoxin-Sensitive K+ Channels in Bovine Brain. Biochemistry 1994, 33, 1617–1623. [Google Scholar] [CrossRef]
- Wang, H.; Kunkel, D.D.; Martin, T.M.; Schwartzkroin, P.A.; Tempel, B.L. Heteromultimeric K+ Channels in Terminal and Juxtaparanodal Regions of Neurons. Nature 1993, 365, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Parcej, D.N.; Scott, V.E.; Dolly, J.O. Oligomeric Properties of Alpha-Dendrotoxin-Sensitive Potassium Ion Channels Purified from Bovine Brain. Biochemistry 1992, 31, 11084–11088. [Google Scholar] [CrossRef] [PubMed]
- Pongs, O.; Schwarz, J.R. Ancillary Subunits Associated With Voltage-Dependent K Channels. Physiol. Rev. 2010, 90, 755–796. [Google Scholar] [CrossRef]
- Coleman, S.K.; Newcombe, J.; Pryke, J.; Oliver Dolly, J. Subunit Composition of Kv1 Channels in Human CNS. J. Neurochem. 1999, 73, 849–858. [Google Scholar] [CrossRef]
- Jan, L.Y.; Jan, Y.N. Voltage-Gated Potassium Channels and the Diversity of Electrical Signalling. J. Physiol. 2012, 590, 2591–2599. [Google Scholar] [CrossRef]
- Miceli, F.; Soldovieri, M.V.; Ambrosino, P.; De Maria, M.; Manocchio, L.; Medoro, A.; Taglialatela, M. Molecular Pathophysiology and Pharmacology of the Voltage-Sensing Module of Neuronal Ion Channels. Front. Cell. Neurosci. 2015, 9, 259. [Google Scholar] [CrossRef]
- Bezanilla, F. The Voltage Sensor in Voltage-Dependent Ion Channels. Physiol. Rev. 2000, 80, 555–592. [Google Scholar] [CrossRef]
- Bhuyan, R.; Seal, A. Conformational Dynamics of Shaker-Type Kv1.1 Ion Channel in Open, Closed, and Two Mutated States. J. Membr. Biol. 2015, 248, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Lin, J.-C. A Set of Homology Models of Pore Loop Domain of Six Eukaryotic Voltage-Gated Potassium Channels Kv1.1-Kv1.6. Proteins Struct. Funct. Genet. 2004, 55, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Rea, R.; Spauschus, A.; Eunson, L.H.; Hanna, M.G.; Kullman, D.M. Variable K+ Channel Subunit Dysfunction in Inherited Mutations of KCNA1. J. Physiol. 2002, 538, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Burg, E.D.; Platoshyn, O.; Tsigelny, I.F.; Lozano-Ruiz, B.; Rana, B.K.; Yuan, J.X.-J. Tetramerization Domain Mutations in KCNA5 Affect Channel Kinetics and Cause Abnormal Trafficking Patterns. Am. J. Physiol. Cell Physiol. 2010, 298, C496–C509. [Google Scholar] [CrossRef]
- Bezanilla, F. How Membrane Proteins Sense Voltage. Nat. Rev. Mol. Cell Biol. 2008, 9, 323–332. [Google Scholar] [CrossRef]
- Howell, K.B.; Harvey, A.S.; Archer, J.S. Epileptic Encephalopathy: Use and Misuse of a Clinically and Conceptually Important Concept. Epilepsia 2016, 57, 343–347. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Ni, F.; Ma, J. Structure of the Full-Length Shaker Potassium Channel Kv1.2 by Normal-Mode-Based X-Ray Crystallographic Refinement. Proc. Natl. Acad. Sci. USA 2010, 107, 11352–11357. [Google Scholar] [CrossRef]
- Syrbe, S.; Hedrich, U.B.S.; Riesch, E.; Djémié, T.; Müller, S.; Møller, R.S.; Maher, B.; Hernandez-Hernandez, L.; Synofzik, M.; Caglayan, H.S.; et al. De Novo Loss- or Gain-of-Function Mutations in KCNA2 Cause Epileptic Encephalopathy. Nat. Genet. 2015, 47, 393–399. [Google Scholar] [CrossRef]
- Masnada, S.; Hedrich, U.B.S.; Gardella, E.; Schubert, J.; Kaiwar, C.; Klee, E.W.; Lanpher, B.C.; Gavrilova, R.H.; Synofzik, M.; Bast, T.; et al. Clinical Spectrum and Genotype–Phenotype Associations of KCNA2-Related Encephalopathies. Brain 2017, 140, 2337–2354. [Google Scholar] [CrossRef]
- Hedrich, U.B.S.; Lauxmann, S.; Wolff, M.; Synofzik, M.; Bast, T.; Binelli, A.; Serratosa, J.M.; Martínez-Ulloa, P.; Allen, N.M.; King, M.D.; et al. 4-Aminopyridine Is a Promising Treatment Option for Patients with Gain-of-Function KCNA2 -Encephalopathy. Sci. Transl. Med. 2021, 13, eaaz4957. [Google Scholar] [CrossRef]
- Miceli, F.; Soldovieri, M.V.; Ambrosino, P.; De Maria, M.; Migliore, M.; Migliore, R.; Taglialatela, M. Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of K v 7.2 and K v 7.3 Potassium Channel Subunits. J. Neurosci. 2015, 35, 3782–3793. [Google Scholar] [CrossRef] [PubMed]
- Millichap, J.J.; Miceli, F.; De Maria, M.; Keator, C.; Joshi, N.; Tran, B.; Soldovieri, M.V.; Ambrosino, P.; Shashi, V.; Mikati, M.A.; et al. Infantile Spasms and Encephalopathy without Preceding Neonatal Seizures Caused by KCNQ2 R198Q, a Gain-of-Function Variant. Epilepsia 2017, 58, e10–e15. [Google Scholar] [CrossRef]
- Sands, T.T.; Miceli, F.; Lesca, G.; Beck, A.E.; Sadleir, L.G.; Arrington, D.K.; Schönewolf-Greulich, B.; Moutton, S.; Lauritano, A.; Nappi, P.; et al. Autism and Developmental Disability Caused by KCNQ3 Gain-of-function Variants. Ann. Neurol. 2019, 86, 181–192. [Google Scholar] [CrossRef]
- Niday, Z.; Tzingounis, A.V. Potassium Channel Gain of Function in Epilepsy: An Unresolved Paradox. Neuroscientist 2018, 24, 368–380. [Google Scholar] [CrossRef]
- Pavone, P.; Polizzi, A.; Marino, S.D.; Corsello, G.; Falsaperla, R.; Marino, S.; Ruggieri, M. West Syndrome: A Comprehensive Review. Neurol. Sci. 2020, 41, 3547–3562. [Google Scholar] [CrossRef]
- Tao, X.; Lee, A.; Limapichat, W.; Dougherty, D.A.; Mackinnon, R. A Gating Charge Transfer Center in Voltage Sensors. Science 2010, 328, 67–73. [Google Scholar] [CrossRef]
- Lacroix, J.J.; Bezanilla, F. Control of a Final Gating Charge Transition by a Hydrophobic Residue in the S2 Segment of a K þ Channel Voltage Sensor. Proc. Natl. Acad. Sci. USA 2011, 108, 6444–6449. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger, C.S.; Liin, S.I.; Elinder, F.; Lindahl, E. The Conserved Phenylalanine in the K+ Channel Voltage-Sensor Domain Creates a Barrier with Unidirectional Effects. Biophys. J. 2013, 104, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Persson, A.-S.; Klement, G.; Almgren, M.; Sahlholm, K.; Nilsson, J.; Petersson, S.; Århem, P.; Schalling, M.; Lavebratt, C. A Truncated Kv1.1 Protein in the Brain of the Megencephaly Mouse: Expression and Interaction. BMC Neurosci. 2005, 6, 65. [Google Scholar] [CrossRef]
- Petersson, S.; Persson, A.-S.; Johansen, J.E.; Ingvar, M.; Nilsson, J.; Ran Klement, G.È.; Rhem, P.A.Ê.; Schalling, M.; Lavebratt, C. Truncation of the Shaker-like Voltage-Gated Potassium Channel, Kv1.1, Causes Megencephaly. Eur. J. Neurosci. 2003, 18, 3231–3240. [Google Scholar] [CrossRef]
- Diez, M.; Schweinhardt, P.; Petersson, S.; Wang, F.-H.; Lavebratt, C.; Schalling, M.; Èkfelt, T.H.; Spenger, C. MRI and in Situ Hybridization Reveal Early Disturbances in Brain Size and Gene Expression in the Megencephalic (Mceph/Mceph) Mouse. Eur. J. Neurosci. 2003, 18, 3218–3230. [Google Scholar] [CrossRef]
- Rae Donahue, L.; Cook, S.A.; Johnson, K.R.; Bronson, R.T.; Davissen, M.T. Megencephaly: A New Mouse Mutation on Chromosome 6 That Causes Hypertrophy of the Brain. Mamm. Genome 1996, 7, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Brocke, K.S. The Human Intronless Melanocortin 4-Receptor Gene Is NMD Insensitive. Hum. Mol. Genet. 2002, 11, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Glasscock, E.; Qian, J.; Yoo, J.W.; Noebels, J.L. Masking Epilepsy by Combining Two Epilepsy Genes. Nat. Neurosci. 2007, 10, 1554–1558. [Google Scholar] [CrossRef]
- Holth, J.K.; Bomben, V.C.; Reed, J.G.; Inoue, T.; Younkin, L.; Younkin, S.G.; Pautler, R.G.; Botas, J.; Noebels, J.L. Tau Loss Attenuates Neuronal Network Hyperexcitability in Mouse and Drosophila Genetic Models of Epilepsy. J. Neurosci. 2013, 33, 1651–1659. [Google Scholar] [CrossRef]
- Foley, J.; Burnham, V.; Tedoldi, M.; Danial, N.N.; Yellen, G. BAD Knockout Provides Metabolic Seizure Resistance in a Genetic Model of Epilepsy with Sudden Unexplained Death in Epilepsy. Epilepsia 2018, 59, e1–e4. [Google Scholar] [CrossRef]
- Mishra, V.; Karumuri, B.K.; Gautier, N.M.; Liu, R.; Hutson, T.N.; Vanhoof-Villalba, S.L.; Vlachos, I.; Iasemidis, L.; Glasscock, E. Scn2a Deletion Improves Survival and Brain-Heart Dynamics in the Kcna1-Null Mouse Model of Sudden Unexpected Death in Epilepsy (SUDEP). Hum. Mol. Genet. 2017, 26, 2091–2103. [Google Scholar] [CrossRef]
- Hill, S.F.; Ziobro, J.M.; Jafar-Nejad, P.; Rigo, F.; Meisler, M.H. Genetic Interaction between Scn8a and Potassium Channel Genes Kcna1 and Kcnq2. Epilepsia 2022, 63, e125–e131. [Google Scholar] [CrossRef]
- Aloi, M.S.; Thompson, S.J.; Quartapella, N.; Noebels, J.L. Loss of Functional System X-c Uncouples Aberrant Postnatal Neurogenesis from Epileptogenesis in the Hippocampus of Kcna1-KO Mice. Cell Rep. 2022, 41, 111696. [Google Scholar] [CrossRef]
- Ryvlin, P.; Nashef, L.; Lhatoo, S.D.; Bateman, L.M.; Bird, J.; Bleasel, A.; Boon, P.; Crespel, A.; Dworetzky, B.A.; Høgenhaven, H.; et al. Incidence and Mechanisms of Cardiorespiratory Arrests in Epilepsy Monitoring Units (MORTEMUS): A Retrospective Study. Lancet Neurol. 2013, 12, 966–977. [Google Scholar] [CrossRef]
- Harden, C.; Tomson, T.; Gloss, D.; Buchhalter, J.; Cross, J.H.; Donner, E.; French, J.A.; Gil-Nagel, A.; Hesdorffer, D.C.; Smithson, W.H.; et al. Practice Guideline Summary: Sudden Unexpected Death in Epilepsy Incidence Rates and Risk Factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsy Curr. 2016, 17, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Thurman, D.J.; Hesdorffer, D.C.; French, J.A. Sudden Unexpected Death in Epilepsy: Assessing the Public Health Burden. Epilepsia 2014, 55, 1479–1485. [Google Scholar] [CrossRef]
- Smart, S.L.; Lopantsev, V.; Zhang, C.L.; Robbins, C.A.; Wang, H.; Chiu, S.Y.; Schwartzkroin, P.A.; Messing, A.; Tempel, B.L. Deletion of the K(v)1.1 Potassium Channel Causes Epilepsy in Mice. Neuron 1998, 20, 809–819. [Google Scholar] [CrossRef]
- Dhaibar, H.; Gautier, N.M.; Chernyshev, O.Y.; Dominic, P.; Glasscock, E. Cardiorespiratory Profiling Reveals Primary Breathing Dysfunction in Kcna1-Null Mice: Implications for Sudden Unexpected Death in Epilepsy. Neurobiol. Dis. 2019, 127, 502–511. [Google Scholar] [CrossRef]
- Glasscock, E.; Yoo, J.W.; Chen, T.T.; Klassen, T.L.; Noebels, J.L. Kv1.1 Potassium Channel Deficiency Reveals Brain-Driven Cardiac Dysfunction as a Candidate Mechanism for Sudden Unexplained Death in Epilepsy. J. Neurosci. 2010, 30, 5167–5175. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.M.; Jou, C.J.; Tatalovic, M.; Kaufman, E.S.; Kline, D.D.; Kunze, D.L. The Kv1.1 Null Mouse, a Model of Sudden Unexpected Death in Epilepsy (SUDEP). Epilepsia 2014, 55, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Simeone, K.A.; Matthews, S.A.; Rho, J.M.; Simeone, T.A. Ketogenic Diet Treatment Increases Longevity in Kcna1-Null Mice, a Model of Sudden Unexpected Death in Epilepsy. Epilepsia 2016, 57, e178–e182. [Google Scholar] [CrossRef]
- Simeone, K.A.; Hallgren, J.; Bockman, C.S.; Aggarwal, A.; Kansal, V.; Netzel, L.; Iyer, S.H.; Matthews, S.A.; Deodhar, M.; Oldenburg, P.J.; et al. Respiratory Dysfunction Progresses with Age in Kcna1-Null Mice, a Model of Sudden Unexpected Death in Epilepsy. Epilepsia 2018, 59, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Hutson, T.N.; Rezaei, F.; Gautier, N.M.; Indumathy, J.; Glasscock, E.; Iasemidis, L. Directed Connectivity Analysis of the Neuro-Cardio- and Respiratory Systems Reveals Novel Biomarkers of Susceptibility to SUDEP. IEEE Open J. Eng. Med. Biol. 2020, 1, 301–311. [Google Scholar] [CrossRef]
- Dhaibar, H.A.; Hamilton, K.A.; Glasscock, E. Kv1.1 Subunits Localize to Cardiorespiratory Brain Networks in Mice Where Their Absence Induces Astrogliosis and Microgliosis. Mol. Cell. Neurosci. 2021, 113, 103615. [Google Scholar] [CrossRef] [PubMed]
- Kates, M.M.; Beal, C.J. Nystagmus. JAMA 2021, 325, 798. [Google Scholar] [CrossRef] [PubMed]
- Silverå Ejneby, M.; Wallner, B.; Elinder, F. Coupling Stabilizers Open K V 1-Type Potassium Channels. Proc. Natl. Acad. Sci. 2020, 117, 27016–27021. [Google Scholar] [CrossRef] [PubMed]
- Manville, R.W.; Abbott, G.W. Isoform-Selective KCNA1 Potassium Channel Openers Built from Glycine. J. Pharmacol. Exp. Ther. 2020, 373, 391–401. [Google Scholar] [CrossRef] [PubMed]
Mutation | Protein Domain | Clinical Diagnoses | Other Clinical Observations | Reference |
---|---|---|---|---|
E49Q | N Terminus | MSk | [3] | |
R86Q | N Terminus | MSk | [4] | |
L155P | N Terminus | EA1 | [5] | |
R167M | S1 | EA1 + Myokymia + MSk | [6] | |
A170S | S1 | EA1 | [7] | |
V174A | S1 | EA1 + Myokymia | [8] | |
V174F | S1 | EA1 + Myokymia | [1,9] | |
I176R | S1 | EA1 | [10] | |
I177N | S1 | EA1 | [11] | |
F184C | S1 | EA1 + Seizures + Nystagmus + MSk + Myokymia | [12] | |
C185W | S1 | EA1 + Hyperthermia + Myokymia | Sleep a | [6,13,14] |
T226A | S2 | EA1 | [10] | |
T226M | S2 | EA1 + Myokymia | [15] | |
T226K | S2 | Myokymia + MSk | [16] | |
T226R | S2 | EA1 + Epilepsy + Myokymia + MSk | Respiratory b, Sleep c, DD | [17,18] |
R239S | S2 | EA1 + Myokymia | [1] | |
A242P | S2 | Myokymia + Seizures | [6,19] | |
A242S | S2 | EA1 + Myokymia + EE | DD | [20] |
A242T | S2 | Myokymia | [21] | |
P244H | S2–S3 IL | Myokymia + MSk | [19] | |
F249C | S2–S3 IL | EA1 + Myokymia + Hyperthermia | [22] | |
F249I | S2–S3 IL | EA1 + Myokymia | [1] | |
FF > F250 | S2–S3 IL | EA1 + Myokymia | Respiratory d | [23,24] |
N255D | S3 | Hypomagnesemia | [25,26] | |
N255K | S3 | PKD | [27] | |
A261T | S3 | EA1 + Myokymia + Seizures | [28,29] | |
I262T | S3 | EA1 | [30,31] | |
I262M | S3 | EA1 + Myokymia | Mild ID | [32] |
P264LfsTer10 | S3 | EA1 + EE + MSk | [33] | |
T268K | S3 | Myokymia + MSk | [34] | |
E283K | S3–S4 EL | EA1 + Myokymia | [35] | |
R295C | S4 | Nystagmus | [36] | |
L296F | S4 | Epilepsy | Respiratory e | [37] |
V299I | S4 | EA1 + PMC + Myokymia | [38] | |
F303V | S4 | EA1 + Myokymia + Nystagmus | [39] | |
L305F | S4 | EA1 + Myokymia + MSk | [40] | |
R307C | S4 | EA1 | [41] | |
G311D | S4–S5 IL | EA1 + Myokymia | [42] | |
G311S | S4–S5 IL | EA1 | [43] | |
I314T | S4–S5 IL | EA1 + Myokymia | [17] | |
L319R | S4–S5 IL | PKD + Seizures | [27] | |
R324T | S5 | EA1 + Epilepsy + Myokymia | [44] | |
E325D | S5 | EA1 + Myokymia | [45] | |
E325Q | S5 | EA1 + Nystagmus | [46] | |
L328V | S5 | Hypomagnesemia | [47] | |
L329I | S5 | EA1 | [48] | |
G336E | S5 | EA1 + Myokymia + Seizures | [49] | |
S342I | S5 | EA1 + Seizures | [30,50] | |
V368L | S5–S6 pore loop | EE | Severe ID | [51] |
G376S | S5–S6 pore loop | EA1 + Myokymia + Seizures | Moderate ID, DD | [29] |
A395S | S6 | EA1 | * | |
G396R | S6 | Myokymia + Epilepsy | Respiratory f, ADHD, Mild ID | [52] |
G396V | S6 | PKD | [52] | |
CNV # | PVP-S6 | Epilepsy | Respiratory g, Global DD | [53] |
P403A | S6 (PVP) | Epilepsy | DD, ID | [54] |
P403S | S6 (PVP) | EA1 + Epilepsy + Myokymia + MSk | Respiratory h, DD, Moderate ID | [55] |
V404I | S6 (PVP) | EA1 + Myokymia | Mild ID | [10,19,56] |
P405S | S6 (PVP) | EE | DD, Macrocephaly i | [55] |
P405L | S6 (PVP) | EE | PDD j | [55,57] |
I407M | S6 | EA1 + Myokymia | [6] | |
V408A | S6 | EA1 + Myokymia | [1] | |
V408L | S6 | EA1 + Seizures | Global DD | [58] |
F414C | S6 | EA1 | [59] | |
F414S | S6 | EA1 + Epilepsy | [14] | |
R417stop | C Terminus | EA1 | [19] |
Protein | No. | Disease or Symptom | |||||
---|---|---|---|---|---|---|---|
Domain | Mutations | EA1 | Myokymia | Epilepsy | MSk | Respiration | Nystagmus |
N | 3 | 33% | 0% | 0% | 67% | 0% | 0% |
S1 | 8 | 100% | 63% | 13% | 25% | 0% | 13% |
S1–S2 | 0 | 0% | 0% | 0% | 0% | 0% | 0% |
S2 | 8 | 63% | 88% | 38% | 25% | 13% | 0% |
S2–S3 | 4 | 75% | 100% | 0% | 25% | 25% | 0% |
S3 | 7 | 57% | 43% | 29% | 29% | 0% | 0% |
S3–S4 | 1 | 100% | 100% | 0% | 0% | 0% | 0% |
S4 | 6 | 67% | 50% | 17% | 17% | 17% | 33% |
S4–S5 | 4 | 75% | 50% | 25% | 0% | 0% | 0% |
S5 | 7 | 86% | 43% | 43% | 0% | 0% | 14% |
S5–S6 | 2 | 50% | 50% | 100% | 0% | 0% | 0% |
S6 | 14 | 57% | 36% | 57% | 7% | 21% | 0% |
C | 1 | 100% | 0% | 0% | 0% | 0% | 0% |
Total | 65 | 69% | 52% | 32% | 17% | 9% | 6% |
Gene | Gene Function | Mutation Type | Impact on Kcna1 Knockout Mouse Model | Ref. |
---|---|---|---|---|
Cacna1a | Calcium channel | Missense (tottering allele) | Reduced seizure frequency, increased survival | [94] |
Mapt | MT associated protein | Gene knockout | Reduced seizure frequency, increased survival | [95] |
Bad | Apoptosis | Gene knockout | Reduced seizure frequency, increased survival | [96] |
Scn2a | Sodium channel | Gene knockout | Reduced seizure frequency, increased survival, improved brain-heart dynamics | [97] |
Slc7a11 | Glutamate antiporter | Gene knockout | Restored normocephalic brain | [99] |
Scn8a | Sodium channel | ASO knockdown | Improved survival | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulhus, K.; Glasscock, E. Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. Int. J. Mol. Sci. 2023, 24, 8826. https://doi.org/10.3390/ijms24108826
Paulhus K, Glasscock E. Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. International Journal of Molecular Sciences. 2023; 24(10):8826. https://doi.org/10.3390/ijms24108826
Chicago/Turabian StylePaulhus, Kelsey, and Edward Glasscock. 2023. "Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy" International Journal of Molecular Sciences 24, no. 10: 8826. https://doi.org/10.3390/ijms24108826
APA StylePaulhus, K., & Glasscock, E. (2023). Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. International Journal of Molecular Sciences, 24(10), 8826. https://doi.org/10.3390/ijms24108826