Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cohort
4.2. Blood Samples and DNA Isolation
4.3. Determination of the FCN2 Gene Polymorphisms
4.4. Determination of Ficolin-2 Concentration in Cord Sera
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hummelshoj, T.; Munthe-Fog, L.; Madsen, H.O.; Fujita, T.; Matsushita, M.; Garred, P. Polymorphisms in the FCN2 gene determine serum variation and function of Ficolin-2. Hum. Mol. Genet. 2005, 14, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Cedzynski, M.; Nuytinck, L.; Atkinson, A.P.M.; Swierzko, A.S.; Zeman, K.; Szemraj, J.; Szala, A.; Turner, M.L.; Kilpatrick, D.C. Extremes of l-ficolin concentration in children with recurrent infections are associated with single nucleotide polymorphisms in the FCN2 gene. Clin. Exp. Immunol. 2007, 150, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, D.C.; Swierzko, A.S.; Matsushita, M.; Domzalska-Popadiuk, I.; Borkowska-Klos, M.; Szczapa, J.; Cedzynski, M. The relationship between FCN2 genotypes and serum ficolin-2 (L-ficolin) protein concentrations from a large cohort of neonates. Hum. Immunol. 2013, 74, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Świerzko, A.S.; Jarych, D.; Gajek, G.; Chojnacka, K.; Kobiela, P.; Kufelnicka-Babout, M.; Michalski, M.; Sobczuk, K.; Szala-Poździej, A.; Matsushita, M.; et al. Polymorphisms of the FCN2 Gene 3′UTR Region and Their Clinical Associations in Preterm Newborns. Front. Immunol. 2021, 12, 741140. [Google Scholar] [CrossRef] [PubMed]
- Thiel, S.; Gadjeva, M. Humoral Pattern Recognition Molecules: Mannan-Binding Lectin and Ficolins. Adv. Exp. Med. Biol. 2009, 653, 58–73. [Google Scholar] [CrossRef]
- Endo, Y.; Matsushita, M.; Fujita, T. New Insights into the Role of Ficolins in the Lectin Pathway of Innate Immunity. Int. Rev. Cell. Mol. Biol. 2015, 316, 49–110. [Google Scholar] [CrossRef]
- Świerzko, A.S.; Cedzyński, M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front. Immunol. 2020, 11, 585243. [Google Scholar] [CrossRef]
- Statistics Poland. Demographic Yearbook of Poland, 2021; Statistics Poland: Warsaw, Poland, 2022. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/demographic-yearbook-of-poland-2021,3,15.html (accessed on 4 July 2022).
- Heron, M. Deaths: Leading causes for 2019. Natl. Vital Stat. Rep. 2021, 70, 1–114. [Google Scholar]
- Van de Pol, C.; Allegaert, K. Growth patterns and body composition in former extremely low birth weight (ELBW) neonates until adulthood: A systematic review. Eur. J. Pediatr. 2020, 179, 757–771. [Google Scholar] [CrossRef]
- Dehlin, M.; Jacobsson, L.T.H. Association between perinatal factors and future risk for gout—A nested case-control study. Arthritis Res. Ther. 2022, 24, 60. [Google Scholar] [CrossRef]
- Kuula, J.; Martola, J.; Hakkarainen, A.; Räikkönen, K.; Savolainen, S.; Salli, E.; Hovi, P.; Björkqvist, J.; Kajantie, E.; Lundbom, N. Brain Volumes and Abnormalities in Adults Born Preterm at Very Low Birth Weight. J. Pediatr. 2022, 246, 48–55.e7. [Google Scholar] [CrossRef] [PubMed]
- Halli, S.S.; Biradar, R.A.; Prasad, J.B. Low Birth Weight, the Differentiating Risk Factor for Stunting among Preschool Children in India. Int. J. Environ. Res. Public Health 2022, 19, 3751. [Google Scholar] [CrossRef] [PubMed]
- Sandboge, S.; Kuula, J.; Björkqvist, J.; Hovi, P.; Mäkitie, O.; Kajantie, E. Bone mineral density in very low birthweight adults—A sibling study. Paediatr. Peérinat. Epidemiol. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Swierzko, A.S.; Atkinson, A.P.; Cedzynski, M.; MacDonald, S.L.; Szala, A.; Domzalska-Popadiuk, I.; Borkowska-Klos, M.; Jopek, A.; Szczapa, J.; Matsushita, M.; et al. Two factors of the lectin pathway of complement, l-ficolin and mannan-binding lectin, and their associations with prematurity, low birthweight and infections in a large cohort of Polish neonates. Mol. Immunol. 2009, 46, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Tiensuu, H.; Haapalainen, A.M.; Karjalainen, M.K.; Pasanen, A.; Huusko, J.M.; Marttila, R.; Ojaniemi, M.; Muglia, L.J.; Hallman, M.; Ramet, M. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet. 2019, 15, e1008107. [Google Scholar] [CrossRef]
- Rappoport, N.; Toung, J.; Hadley, D.; Wong, R.J.; Fujioka, K.; Reuter, J.; Abbott, C.W.; Oh, S.; Hu, D.; Eng, C.; et al. A genome-wide association study identifies only two ancestry specific variants associated with spontaneous preterm birth. Sci. Rep. 2018, 8, 226. [Google Scholar] [CrossRef]
- Huusko, J.M.; Karjalainen, M.K.; Graham, B.E.; Zhang, G.; Farrow, E.G.; Miller, N.A.; Jacobsson, B.; Eidem, H.R.; Murray, J.C.; Bedell, B.; et al. Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet. 2018, 14, e1007394. [Google Scholar] [CrossRef]
- Modi, B.P.; Teves, M.E.; Pearson, L.N.; Parikh, H.I.; Haymond-Thornburg, H.; Tucker, J.L.; Chaemsaithong, P.; Gomez-Lopez, N.; York, T.P.; Romero, R.; et al. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol. Genet. Genom. Med. 2017, 5, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Frakking, F.N.J.; Brouwer, N.; Zweers, D.; Merkus, M.P.; Kuijpers, T.W.; Offringa, M.; Dolman, K.M. High prevalence of mannose-binding lectin (MBL) deficiency in premature neonates. Clin. Exp. Immunol. 2006, 145, 5–12. [Google Scholar] [CrossRef]
- Bodamer, O.A.; Mitterer, G.; Maurer, W.; Pollak, A.; Mueller, M.W.; Schmidt, W.M. Evidence for an association between mannose-binding lectin 2 (MBL2) gene polymorphisms and pre-term birth. Genet. Med. 2006, 8, 518–524. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.V.C.; Javorski, N.; Brandão, L.A.C.; Lima, M.D.C.; Crovella, S.; Eickmann, S.H. Influence of MBL2 and NOS3 polymorphisms on spontaneous preterm birth in North East Brazil: Genetics and preterm birth. J. Matern. Neonatal Med. 2018, 33, 127–135. [Google Scholar] [CrossRef]
- Liu, X.; Cui, Y. A Genome-wide Association Analysis in Four Populations Reveals Strong Genetic Heterogeneity for Birth Weight. Curr. Genom. 2016, 17, 416–426. [Google Scholar] [CrossRef]
- Horikoshi, M.; Yaghootkar, H.; Mook-Kanamori, D.O.; Sovio, U.; Taal, H.R.; Hennig, B.J.; Bradfield, J.P.; Pourcain, B.S.; Evans, D.M.; Charoen, P.; et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat. Genet. 2012, 45, 76–82. [Google Scholar] [CrossRef]
- Thompson, W.D.; Beaumont, R.N.; Kuang, A.; Warrington, N.M.; Ji, Y.; Tyrrell, J.; Wood, A.R.; Scholtens, D.M.; Knight, B.A.; Evans, D.M.; et al. Fetal alleles predisposing to metabolically favorable adiposity are associated with higher birth weight. Hum. Mol. Genet. 2021, 31, 1762–1775. [Google Scholar] [CrossRef]
- Kilpatrick, D.C.; Fujita, T.; Matsushita, M. P35, an opsonic lectin of the ficolin family, in human blood from neonates, normal adults, and recurrent miscarriage patients. Immunol. Lett. 1999, 67, 109–112. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Mattmann, M.; Thiel, S.; Boillat, C.; Otth, M.; Nelle, M.; Wagner, B.; Jensenius, J.C.; Aebi, C.; Christoph, A. Differential Role of the Lectin Pathway of Complement Activation in Susceptibility to Neonatal Sepsis. Clin. Infect. Dis. 2010, 51, 153–162. [Google Scholar] [CrossRef]
- Sallenbach, S.; Thiel, S.; Aebi, C.; Otth, M.; Bigler, S.; Jensenius, J.C.; Schlapbach, L.; Ammann, R.A. Serum concentrations of lectin-pathway components in healthy neonates, children and adults: Mannan-binding lectin (MBL), M-, L-, and H-ficolin, and MBL-associated serine protease-2 (MASP-2). Pediatr. Allergy Immunol. 2011, 22, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Liosi, S.; Gourgiotis, D.; Boutsikou, M.; Baka, S.; Marmarinos, A.; Hassiakos, D.; Malamitsi-Puchner, A. The potential role of the lectin pathway of complement in the host defence of full-term intrauterine growth restricted neonates at birth. J. Matern. Neonatal Med. 2012, 25, 531–534. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Adderson, E.E.; Rubens, C.E.; Bohnsack, J.F.; Min, J.G.; Matsushita, M.; Fujita, T.; Okuwaki, Y.; Takahashi, S. L-Ficolin/Mannose-Binding Lectin-Associated Serine Protease Complexes Bind to Group B Streptococci Primarily through N-Acetylneuraminic Acid of Capsular Polysaccharide and Activate the Complement Pathway. Infect. Immun. 2008, 76, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Fujieda, M.; Aoyagi, Y.; Matsubara, K.; Takeuchi, Y.; Fujimaki, W.; Matsushita, M.; Bohnsack, J.F.; Takahashi, S. L-Ficolin and Capsular Polysaccharide-Specific IgG in Cord Serum Contribute Synergistically to Opsonophagocytic Killing of Serotype III and V Group B Streptococci. Infect. Immun. 2012, 80, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Brady, A.M.; Calix, J.J.; Yu, J.; Geno, K.A.; Cutter, G.R.; Nahm, M.H. Low Invasiveness of Pneumococcal Serotype 11A Is Linked to Ficolin-2 Recognition of O-acetylated Capsule Epitopes and Lectin Complement Pathway Activation. J. Infect. Dis. 2014, 210, 1155–1165. [Google Scholar] [CrossRef]
- Sørensen, C.A.; Rosbjerg, A.; Jensen, B.H.; Krogfelt, K.A.; Garred, P. The Lectin Complement Pathway Is Involved in Protection Against Enteroaggregative Escherichia coli Infection. Front. Immunol. 2018, 9, 1153. [Google Scholar] [CrossRef] [PubMed]
- Świerzko, A.S.; Szala-Poździej, A.; Kilpatrick, D.C.; Sobociński, M.; Chojnacka, K.; Sokołowska, A.; Michalski, M.; Mazerant, K.; Jensenius, J.C.; Matsushita, M.; et al. Components of the lectin pathway of complement activation in paediatric patients of intensive care units. Immunobiology 2016, 221, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, D.C.; Świerzko, A.S.; Sobociński, M.; Krajewski, W.; Chojnacka, K.; Szczapa, J.; Cedzyński, M. Can ficolin-2 (L-ficolin) insufficiency be established by a single serum protein measurement? Int. J. Immunogenet. 2015, 42, 453–456. [Google Scholar] [CrossRef]
- Metzger, M.-L.; Michelfelder, I.; Goldacker, S.; Melkaoui, K.; Litzman, J.; Guzman, D.; Grimbacher, B.; Salzer, U. Low ficolin-2 levels in common variable immunodeficiency patients with bronchiectasis. Clin. Exp. Immunol. 2015, 179, 256–264. [Google Scholar] [CrossRef]
- Szala, A.; Swierzko, A.S.; Cedzynski, M. Cost-effective procedures for genotyping of human FCN2 gene single nucleotide polymorphisms. Immunogenetics 2013, 65, 439–446. [Google Scholar] [CrossRef][Green Version]
- Swierzko, A.S.; Michalski, M.; Sokołowska, A.; Nowicki, M.; Szala-Poździej, A.; Eppa, Ł.; Mitrus, I.; Szmigielska-Kapłon, A.; Sobczyk-Kruszelnicka, M.; Michalak, K.; et al. Associations of Ficolins With Hematological Malignancies in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantations. Front. Immunol. 2020, 10, 3097. [Google Scholar] [CrossRef]
Polymorphism | Genotype | N | % | MAF |
---|---|---|---|---|
rs3124952 −986 A > G | A/A | 165 | 32.9 | 0.386 |
A/G | 265 | 52.9 | ||
G/G | 61 | 12.2 | ||
rs3124953 −602 G > A | G/G | 314 | 62.7 | 0.204 |
G/A | 170 | 33.9 | ||
A/A | 17 | 3.4 | ||
rs7865453 −64 A > C | A/A | 390 | 77.8 | 0.115 |
A/C | 107 | 21.4 | ||
C/C | 4 | 0.8 | ||
rs17514136 −4 A > G | A/A | 204 | 40.7 | 0.347 |
A/G | 243 | 48.5 | ||
G/G | 51 | 10.2 |
Polymorphism | Genotype | Gestational Age (Weeks) | Birthweight (g) | ||
---|---|---|---|---|---|
<33 | ≥33 | ≤1500 | >1500 | ||
N (%) | N (%) | N (%) | N (%) | ||
rs3124952 −986 A > G | A/A | 32 (30.5) | 143 (36.1) | 7 (12.7) 2 | 168 (37.9) |
A/G | 61 (58.1) | 204 (51.5) | 39 (70.9) | 223 (50.3) | |
G/G | 12 (11.4) | 49 (12.4) | 9 (16.4) | 52 (11.7) | |
rs3124953 −602 G > A | G/G | 69 (65.7) | 245 (61.9) | 35 (63.6) | 276 (62.3) |
G/A | 32 (30.5) | 138 (34.8) | 20 (36.4) | 150 (33.9) | |
A/A | 4 (5.8) | 13 (3.3) | 0 (0) | 17 (3.8) | |
rs7865453 −64 A > C | A/A | 83 (79) | 307 (77.5) | 36 (65.5) 3 | 352 (79.5) |
A/C | 22 (21) | 85 (21.5) | 18 (32.7) | 88 (19.9) | |
C/C | 0 (0) | 4 (1) | 1 (1.8) | 3 (0.7) | |
rs17514136 −4 A > G | A/A | 38 (36.2) | 166 (41.9) | 26 (47.3) | 177 (40) |
A/G | 62 (59) | 184 (46.5) | 29 (52.7) | 215 (48.5) | |
G/G | 5 (4.8) 1 | 46 (11.6) | 0 (0) 4 | 51 (11.5) |
Haplotype | N | Frequency |
---|---|---|
AGAG | 307 | 0.306 |
GGAA | 244 | 0.244 |
AAAA | 192 | 0.192 |
AGAA | 99 | 0.099 |
GGCA | 98 | 0.098 |
GGAG | 41 | 0.041 |
AGCA | 6 | 0.006 |
AACA | 5 | 0.005 |
GACA | 4 | 0.004 |
GAAA | 4 | 0.004 |
AGCG | 2 | 0.002 |
Haplotype | Gestational Age (Weeks) | Birthweight (g) | ||||||
---|---|---|---|---|---|---|---|---|
<33 | ≥33 | ≤1500 | >1500 | |||||
N | Frequency 1 | N | Frequency 1 | N | Frequency 1 | N | Frequency 1 | |
AGAG | 65 | 0.31 | 242 | 0.306 | 24 2 | 0.218 | 281 | 0.317 |
GGAA | 57 | 0.271 | 187 | 0.236 | 35 | 0.318 | 207 | 0.234 |
AAAA | 38 | 0.181 | 154 | 0.194 | 18 | 0.164 | 174 | 0.196 |
AGAA | 20 | 0.095 | 79 | 0.1 | 7 | 0.064 | 91 | 0.103 |
GGCA | 19 | 0.09 | 79 | 0.1 | 18 3 | 0.164 | 79 | 0.089 |
Diplotype | N | % | Ficolin-2 Concentration (ng/mL) | ||
---|---|---|---|---|---|
Median | Range (n) | ||||
1 | AGAG/GGAA | 94 | 18.8 | 1761 | 237–5068 (80) |
2 | AGAG/AAAA | 60 | 12 | 2748 | 481–5235 (56) |
3 | AAAA/GGAA | 46 | 9.2 | 2327 | 803–5166 (39) |
4 | AGAG/AGAG | 41 | 8.2 | 1950 | 632–5299 (38) |
5 | AGAG/GGCA | 33 | 6.6 | 1415 | 430–4081 (30) |
6 | AAAA/GGCA | 29 | 5.8 | 1900 | 504–5644 (27) |
7 | GGAA/GGAA | 28 | 5.6 | 1743 | 153–4772 (27) |
8 | AGAA/GGAA | 27 | 5.4 | 2192 | 372–5408 (25) |
9 | AGAA/AGAG | 24 | 4.8 | 1785 | 479–4426 (22) |
10 | AAAA/GGAG | 21 | 4.2 | 2159 | 407–4199 (19) |
11 | GGAA/GGCA | 17 | 3.4 | 1098 | 242–2157 (16) |
12 | AGAA/AGAA | 16 | 3.2 | 2165 | 853–5481 (16) |
13 | AAAA/AAAA | 15 | 3 | 2323 | 690–4038 (15) |
14 | AGAA/GGCA | 8 | 1.6 | 1479 | 480–3063 (8) |
15 | GGAG/GGAG | 6 | 1.2 | 2134 | 706–4165 (5) |
16 | AGAA/AAAA | 4 | 0.8 | 3240 | 1455–4954 (4) |
17 | AGAA/AGCA | 4 | 0.8 | 2562 | 1737–2733 (3) |
18 | AGAG/AACA | 4 | 0.8 | 2495 | 1698–2919 (4) |
19 | AGAG/GACA | 4 | 0.8 | 1105 | 652–1563 (4) |
20 | GGCA/GGCA | 4 | 0.8 | 681 | 331–947 (3) |
21 | AGAG/GGAG | 3 | 0.6 | 2120 | 1387–4756 (3) |
22 | GGAA/GGAG | 3 | 0.6 | 1745 | 312–2195 (3) |
23 | AGAG/AGCG | 2 | 0.4 | 2002 | 520–3483 (2) |
24 | GGAG/GGCA | 2 | 0.4 | 907 | 387–1426 (2) |
25 | AAAA/AACA | 1 | 0.2 | 2210 | 2210 (1) |
26 | AGAG/AGCA | 1 | 0.2 | 2221 | 2221 (1) |
27 | AGCA/AAAA | 1 | 0.2 | 239 | 239 (1) |
28 | GAAA/GAAA | 1 | 0.2 | 3531 | 3531 (1) |
29 | GGAA/GAAA | 1 | 0.2 | 2194 | 2194 (1) |
30 | GGCA/GAAA | 1 | 0.2 | 937 | 937 (1) |
Diplotype | Gestational Age (Weeks) | Birthweight (g) | |||||||
---|---|---|---|---|---|---|---|---|---|
<33 | ≥33 | ≤1500 | >1500 | ||||||
N | % 1 | N | % 1 | N | % 1 | N | % 1 | ||
1 | AGAG/GGAA | 28 2 | 26.7 | 66 | 16.7 | 16 3 | 29.1 | 77 | 17.4 |
2 | AGAG/AAAA | 11 | 10.5 | 49 | 12.4 | 3 | 5.5 | 57 | 12.9 |
3 | AAAA/GGAA | 9 | 8.6 | 37 | 9.3 | 7 | 12.7 | 39 | 8.8 |
4 | AGAG/AGAG | 5 | 4.8 | 36 | 9.1 | 0 | 0 4 | 41 | 9.3 |
5 | AGAG/GGCA | 6 | 5.7 | 27 | 6.8 | 3 | 5.5 | 30 | 6.8 |
6 | AAAA/GGCA | 5 | 4.8 | 24 | 6.1 | 5 | 9.1 | 24 | 5.4 |
7 | AGAA/GGAA | 7 | 6.7 | 20 | 5.1 | 2 | 3.6 | 25 | 5.6 |
8 | GGAA/GGAA | 4 | 3.8 | 24 | 6.1 | 3 | 5.5 | 25 | 5.6 |
9 | AGAA/AGAG | 9 | 8.6 | 15 | 3.8 | 1 | 1.8 | 22 | 5 |
10 | AAAA/GGAG | 4 | 3.8 | 17 | 4.3 | 2 | 3.6 | 19 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szala-Poździej, A.; Świerzko, A.S.; Gajek, G.; Kufelnicka-Babout, M.; Chojnacka, K.; Kobiela, P.; Jarych, D.; Sobczuk, K.; Mazela, J.; Domżalska-Popadiuk, I.; et al. Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates. Int. J. Mol. Sci. 2022, 23, 15336. https://doi.org/10.3390/ijms232315336
Szala-Poździej A, Świerzko AS, Gajek G, Kufelnicka-Babout M, Chojnacka K, Kobiela P, Jarych D, Sobczuk K, Mazela J, Domżalska-Popadiuk I, et al. Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates. International Journal of Molecular Sciences. 2022; 23(23):15336. https://doi.org/10.3390/ijms232315336
Chicago/Turabian StyleSzala-Poździej, Agnieszka, Anna S. Świerzko, Gabriela Gajek, Maja Kufelnicka-Babout, Karolina Chojnacka, Paulina Kobiela, Dariusz Jarych, Katarzyna Sobczuk, Jan Mazela, Iwona Domżalska-Popadiuk, and et al. 2022. "Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates" International Journal of Molecular Sciences 23, no. 23: 15336. https://doi.org/10.3390/ijms232315336
APA StyleSzala-Poździej, A., Świerzko, A. S., Gajek, G., Kufelnicka-Babout, M., Chojnacka, K., Kobiela, P., Jarych, D., Sobczuk, K., Mazela, J., Domżalska-Popadiuk, I., Kalinka, J., Sekine, H., Matsushita, M., & Cedzyński, M. (2022). Association of the FCN2 Gene Promoter Region Polymorphisms with Very Low Birthweight in Preterm Neonates. International Journal of Molecular Sciences, 23(23), 15336. https://doi.org/10.3390/ijms232315336