Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data
Abstract
:1. Introduction
2. Results
2.1. Baseline Demographics and Cognitive Tests
2.2. Differences in Cortical Thickness in the Control and Experimental Groups at Baseline
2.3. Longitudinal Analysis: Cognitive Decline (MMSE and CASI)
2.4. Longitudinal Analysis: Cortical Thickness of Diagnostic Groups over Time
2.5. Longitudinal Analysis: Degenerative Pattern Differences between the Three Groups (Figure 3A)
2.6. Main and Time Effects of APOE ε4 on Cortical Thickness
2.7. Cortical–Cognitive Relationships in Aβ+ and Aβ− MCI Groups
3. Discussion
3.1. Major Findings
3.2. Cognitive Indicators of Amyloid Deposition as Revealed through Longitudinal Observation
3.3. Recapturing Neurodegeneration through MRI in Aβ+ MCI Group
3.4. Pathological Basis of Aβ− MCI and Possible Differential Diagnosis
3.5. Effect of APOE ε4 on Aβ+ or Aβ− MCI at Baseline or Longitudinal Cortical Degeneration
3.6. Cognitive–Cortical Thickness Relationship Indicates Different Cognitive Processes of Aβ+ and Aβ− Groups
3.7. Limitations
4. Materials and Methods
4.1. Group Stratification Criteria
4.2. Demographic Registration and Cognitive Assessment
4.3. APOE Genotyping
4.4. MR image Acquisition and Processing
4.5. Amyloid Image Acquisition and Processing
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, R.C. Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 2011, 364, 2227–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Okello, A.; Koivunen, J.; Edison, P.; Archer, H.A.; Turkheimer, F.E.; Nagren, K.; Bullock, R.; Walker, Z.; Kennedy, A.; Fox, N.C.; et al. Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology 2009, 73, 754–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolk, D.A.; Price, J.C.; Saxton, J.A.; Snitz, B.E.; James, J.A.; Lopez, O.L.; Aizenstein, H.J.; Cohen, A.D.; Weissfeld, L.A.; Mathis, C.A.; et al. Amyloid imaging in mild cognitive impairment subtypes. Ann. Neurol. 2009, 65, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698–712. [Google Scholar] [CrossRef]
- Carapelle, E.; Mundi, C.; Cassano, T.; Avolio, C. Interaction between Cognitive Reserve and Biomarkers in Alzheimer Disease. Int. J. Mol. Sci. 2020, 21, 6279. [Google Scholar] [CrossRef]
- Strope, T.A.; Birky, C.J.; Wilkins, H.M. The Role of Bioenergetics in Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 9212. [Google Scholar] [CrossRef] [PubMed]
- Vasic, V.; Barth, K.; Schmidt, M.H.H. Neurodegeneration and Neuro-Regeneration-Alzheimer’s Disease and Stem Cell Therapy. Int. J. Mol. Sci. 2019, 20, 4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, H.; Liu, T.; Jiang, J.; Tao, D.; Zhang, J.; Niu, H.; Zhu, W.; Wang, Y.; Cheng, J.; Kochan, N.A.; et al. Classifying MCI Subtypes in Community-Dwelling Elderly Using Cross-Sectional and Longitudinal MRI-Based Biomarkers. Front. Aging Neurosci. 2017, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ye, B.S.; Yoon, C.W.; Noh, Y.; Kim, G.H.; Cho, H.; Jeon, S.; Lee, J.M.; Kim, J.H.; Seong, J.K.; et al. Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type. Eur. J. Neurol. 2014, 21, 744–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, K.; Xu, H.; Guan, H.; Zhu, W.; Jiang, J.; Cui, Y.; Zhang, J.; Liu, T.; Wen, W. Identification of Early-Stage Alzheimer’s Disease Using Sulcal Morphology and Other Common Neuroimaging Indices. PLoS ONE 2017, 12, e0170875. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, M.; Stiles, W.R.; Choi, H.S. Neuroimaging Modalities in Alzheimer’s Disease: Diagnosis and Clinical Features. Int. J. Mol. Sci. 2022, 23, 6079. [Google Scholar] [CrossRef]
- Van Oostveen, W.M.; de Lange, E.C.M. Imaging Techniques in Alzheimer’s Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int. J. Mol. Sci. 2021, 22, 2110. [Google Scholar] [CrossRef]
- Doraiswamy, P.M.; Sperling, R.A.; Johnson, K.; Reiman, E.M.; Wong, T.Z.; Sabbagh, M.N.; Sadowsky, C.H.; Fleisher, A.S.; Carpenter, A.; Joshi, A.D.; et al. Florbetapir F 18 amyloid PET and 36-month cognitive decline: A prospective multicenter study. Mol. Psychiatry 2014, 19, 1044–1051. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Maruff, P.; Pietrzak, R.H.; Ames, D.; Ellis, K.A.; Harrington, K.; Lautenschlager, N.T.; Szoeke, C.; Martins, R.N.; Masters, C.L.; et al. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain 2014, 137, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Burnham, S.C.; Bourgeat, P.; Dore, V.; Savage, G.; Brown, B.; Laws, S.; Maruff, P.; Salvado, O.; Ames, D.; Martins, R.N.; et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: A longitudinal study. Lancet Neurol. 2016, 15, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tudorascu, D.L.; Lopez, O.L.; Cohen, A.D.; Mathis, C.A.; Aizenstein, H.J.; Price, J.C.; Kuller, L.H.; Kamboh, M.I.; DeKosky, S.T.; et al. Amyloid beta Deposition and Suspected Non-Alzheimer Pathophysiology and Cognitive Decline Patterns for 12 Years in Oldest Old Participants Without Dementia. JAMA Neurol. 2018, 75, 88–96. [Google Scholar] [CrossRef]
- Tosun, D.; Schuff, N.; Mathis, C.A.; Jagust, W.; Weiner, M.W.; Alzheimer’s Disease NeuroImaging Initiative. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment. Brain 2011, 134, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, N.; Insel, P.S.; Nosheny, R.; Tosun, D.; Trojanowski, J.Q.; Shaw, L.M.; Jack, C.R., Jr.; Donohue, M.C.; Weiner, M.W.; Alzheimer’s Disease Neuroimaging Initiative. Emerging beta-amyloid pathology and accelerated cortical atrophy. JAMA Neurol. 2014, 71, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Sepulcre, J.; Sabuncu, M.R.; Becker, A.; Sperling, R.; Johnson, K.A. In vivo characterization of the early states of the amyloid-beta network. Brain 2013, 136, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Chetelat, G.; Dickson, D.; Fagan, A.M.; Frisoni, G.B.; Jagust, W.; Mormino, E.C.; Petersen, R.C.; Sperling, R.A.; et al. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat. Rev. Neurol. 2016, 12, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroli, A.; Prestia, A.; Galluzzi, S.; Ferrari, C.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.; Wall, A.E.; et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression. Neurology 2015, 84, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Prestia, A.; Caroli, A.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.E.; Wall, A.E.; Carter, S.F.; Scholl, M.; et al. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 2013, 80, 1048–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, S.; Schreiber, F.; Lockhart, S.N.; Horng, A.; Bejanin, A.; Landau, S.M.; Jagust, W.J.; Alzheimer’s Disease Neuroimaging Initiative. Alzheimer Disease Signature Neurodegeneration and APOE Genotype in Mild Cognitive Impairment With Suspected Non-Alzheimer Disease Pathophysiology. JAMA Neurol. 2017, 74, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besser, L.M.; Crary, J.F.; Mock, C.; Kukull, W.A. Comparison of symptomatic and asymptomatic persons with primary age-related tauopathy. Neurology 2017, 89, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.T.; Smith, C.D.; Abner, E.L.; Wilfred, B.J.; Wang, W.X.; Neltner, J.H.; Baker, M.; Fardo, D.W.; Kryscio, R.J.; Scheff, S.W.; et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 2013, 126, 161–177. [Google Scholar] [CrossRef]
- Sepe-Monti, M.; De Carolis, A.; Bomboi, G.; Castri, P.; Giubilei, F. MRI evidence of bilateral hippocampal sclerosis in amnestic mild cognitive impairment. Eur. J. Neurol. 2006, 13, 1031–1032. [Google Scholar] [CrossRef]
- Yu, L.; Boyle, P.A.; Dawe, R.J.; Bennett, D.A.; Arfanakis, K.; Schneider, J.A. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology 2020, 94, e142–e152. [Google Scholar] [CrossRef]
- Riku, Y.; Seilhean, D.; Duyckaerts, C.; Boluda, S.; Iguchi, Y.; Ishigaki, S.; Iwasaki, Y.; Yoshida, M.; Sobue, G.; Katsuno, M. Pathway from TDP-43-Related Pathology to Neuronal Dysfunction in Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Int. J. Mol. Sci. 2021, 22, 3843. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Jack, C.R., Jr.; Parisi, J.E.; Senjem, M.L.; Knopman, D.S.; Boeve, B.F.; Rademakers, R.; Baker, M.; Petersen, R.C.; Dickson, D.W.; et al. Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? Neurology 2010, 75, 2212–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jicha, G.A.; Nelson, P.T. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. CONTINUUM Lifelong Learn. Neurol. 2019, 25, 208–233. [Google Scholar] [CrossRef] [PubMed]
- Wurm, R.; Klotz, S.; Rahimi, J.; Katzenschlager, R.; Lindeck-Pozza, E.; Regelsberger, G.; Danics, K.; Kapas, I.; Biro, Z.A.; Stogmann, E.; et al. Argyrophilic grain disease in individuals younger than 75 years: Clinical variability in an under-recognized limbic tauopathy. Eur. J. Neurol. 2020, 27, 1856–1866. [Google Scholar] [CrossRef]
- Fjell, A.M.; McEvoy, L.; Holland, D.; Dale, A.M.; Walhovd, K.B.; Alzheimer’s Disease Neuroimaging Initiative. Brain changes in older adults at very low risk for Alzheimer’s disease. J. Neurosci. 2013, 33, 8237–8242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, J.W.; Young, A.L.; Oxtoby, N.P.; Smith, R.; Ossenkoppele, R.; Strandberg, O.T.; La Joie, R.; Aksman, L.M.; Grothe, M.J.; Iturria-Medina, Y.; et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 2021, 27, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef]
- Hall, J.R.; Wiechmann, A.R.; Johnson, L.A.; Edwards, M.; Barber, R.C.; Cunningham, R.; Singh, M.; O’Bryant, S.E. The impact of APOE status on relationship of biomarkers of vascular risk and systemic inflammation to neuropsychiatric symptoms in Alzheimer’s disease. J. Alzheimers Dis. 2014, 40, 887–896. [Google Scholar] [CrossRef]
- McCorkindale, A.N.; Mundell, H.D.; Guennewig, B.; Sutherland, G.T. Vascular Dysfunction Is Central to Alzheimer’s Disease Pathogenesis in APOE e4 Carriers. Int. J. Mol. Sci. 2022, 23, 7106. [Google Scholar] [CrossRef]
- Ba, M.; Ng, K.P.; Gao, X.; Kong, M.; Guan, L.; Yu, L.; Alzheimer’s Disease Neuroimaging Initiative. The combination of apolipoprotein E4, age and Alzheimer’s Disease Assessment Scale—Cognitive Subscale improves the prediction of amyloid positron emission tomography status in clinically diagnosed mild cognitive impairment. Eur. J. Neurol. 2019, 26, 733-e53. [Google Scholar] [CrossRef]
- Coria, F.; Rubio, I.; Bayon, C.; Cuadrado, N.; Santaengracia, N.; Rodriguez-Artalejo, F. Apolipoprotein E allelic variants predict dementia in elderly patients with memory impairment. Eur. J. Neurol. 1995, 2, 191–193. [Google Scholar] [CrossRef]
- Wolk, D.A. Amyloid imaging in atypical presentations of Alzheimer’s disease. Curr. Neurol. Neurosci. Rep. 2013, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Koenigs, M.; Acheson, D.J.; Barbey, A.K.; Solomon, J.; Postle, B.R.; Grafman, J. Areas of left perisylvian cortex mediate auditory-verbal short-term memory. Neuropsychologia 2011, 49, 3612–3619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peer, M.; Salomon, R.; Goldberg, I.; Blanke, O.; Arzy, S. Brain system for mental orientation in space, time, and person. Proc. Natl. Acad. Sci. USA 2015, 112, 11072–11077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, B.; Guo, T.; Provost, K.; Korman, D.; Ward, T.J.; Landau, S.M.; Jagust, W.J.; Alzheimer’s Disease Neuroimaging Initiative. Abnormal tau in amyloid PET negative individuals. Neurobiol. Aging 2022, 109, 125–134. [Google Scholar] [CrossRef]
- Chang, C.C.; Kramer, J.H.; Lin, K.N.; Chang, W.N.; Wang, Y.L.; Huang, C.W.; Lin, Y.T.; Chen, C.; Wang, P.N. Validating the Chinese version of the Verbal Learning Test for screening Alzheimer’s disease. J. Int. Neuropsychol. Soc. 2010, 16, 244–251. [Google Scholar] [CrossRef] [Green Version]
- First, M.B.; France, A.; Pincus, H.A. DSM-IV-TR Guidebook; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2004. [Google Scholar]
- Lin, K.N.; Wang, P.N.; Liu, H.C.; Teng, E.L. Cognitive Abilities Screening Instrument, Chinese Version 2.0 (CASI C-2.0): Administration and clinical application. Acta. Neurol. Taiwan. 2012, 21, 180–189. [Google Scholar]
- Tang, Y.; An, D.; Xiao, Y.; Niu, R.; Tong, X.; Liu, W.; Zhao, L.; Gong, Q.; Zhou, D. Cortical thinning in epilepsy patients with postictal generalized electroencephalography suppression. Eur. J. Neurol. 2019, 26, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Schmansky, N.J.; Rosas, H.D.; Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 2012, 61, 1402–1418. [Google Scholar] [CrossRef] [Green Version]
- Greve, D.N.; Fischl, B. False positive rates in surface-based anatomical analysis. Neuroimage 2018, 171, 6–14. [Google Scholar] [CrossRef]
Cognitive Unimpaired Controls n = 64 | Mild Cognitive Impairment Due to Alzheimer’s Disease n = 121 | ||
---|---|---|---|
Name in the manuscript | Controls | Aβ− MCI | Aβ+ MCI |
Amyloid classification | Amyloid Negative | Amyloid Negative, n = 54 | Amyloid Positive, n = 67 |
Education (years) | 8.5 (5.4) | 9.3 (3.8) | 8.3 (4.5) |
Onset Age (year-old) | N.A | 67.1 (7.4) | 67.2 (7.3) |
Age at enrollment (year-old) | 68 (6.5) | 69.2 (7.6) | 68.9 (7.1) |
Gender (female/male) | 40/24 | 30/24 | 40/27 |
Hypertension, n (%) | 30 (46.9) | 22 (40.7) | 29 (43.3) |
Diabetes Mellitus, n (%) | 28 (43.8) | 18 (33.3) | 14 (20.9) |
Hyperlipidemia, n (%) | 20 (31.3) | 12 (22.2) | 20 (29.9) |
Apolipoprotein E4, n (%) | 10 (15.6) | 7 (13) | 35 (52) |
Baseline mini-mental state examination | 26.8 (3.1) | 24.5 (2.9) * | 22.9 (4.2) *,+ |
Baseline CASI_Total | 88.5 (9.2) | 80.6 (9.8) * | 75.3 (14.6) * |
Mental manipulation (10) | 8.1 (2.4) | 7.4 (2.5) | 7.4 (2.7) |
Attention (8) | 7.2 (0.9) | 7.1 (1.0) | 6.8 (1.2) |
Orientation (18) | 17.5 (1.3) | 15.8 (2.7) * | 14.2 (4.3) * |
Long-term memory (10) | 9.7 (1.3) | 9.7 (0.7) | 9.3 (1.6) |
Short-term memory (12) | 10.2 (2.2) | 7.4 (3.0) * | 5.3 (3.3) *,+ |
Abstract thinking (12) | 10 (1.8) | 8.9 (2) | 8.9 (2.3) |
Drawing (10) | 9.4 (1.2) | 9.1 (1.5) | 9.1 (1.8) |
Verbal fluency (10) | 7.2 (2.3) | 5.9 (2.3) * | 5.8 (2.6) * |
Language (10) | 9.5 (1.2) | 9.3 (1.2) | 8.9 (1.6) |
CVLT total scores | |||
CVLT_T1 (9) | 4.07 (1.77) | 3.64 (1.11) | 3.27 (1.39) * |
CVLT_T2 (9) | 5.59 (1.55) | 5.11 (1.26) | 4.80 (1.70) |
CVLT_T3 (9) | 6.41 (1.47) | 5.77 (1.45) | 5.36 (1.77) * |
CVLT_T4 (9) | 7.04 (1.26) | 6.17 (1.39) | 5.66 (1.74) * |
30 s (9) | 6.74 (1.68) | 5.11 (2.12) * | 4.15 (2.33) * |
10 min (9) | 6.04 (2.03) | 3.85 (2.76) * | 2.63 (2.80) * |
Cue recall (9) | 6.22 (2.12) | 4.15 (2.66) * | 2.61 (2.82) * |
Cue correct (9) | 8.11 (1.48) | 7.64 (1.88) | 6.78 (2.76) * |
Main Effect | Group–Time Interaction | |||||
---|---|---|---|---|---|---|
Aβ+ | Aβ− | Others | Aβ+ | Aβ− | ||
General | Mini-mental state examination | + | + | + | − | |
CASI | + | + | Edu | + | − | |
Memory | Short-term memory | + | + | + | − | |
California Verbal Learning Test, 10-min recall | + | − | + | − | ||
California Verbal Learning Test, cue-correct | + | − | + | + | ||
CASI Executive | Verbal fluency | − | − | Edu | + | − |
Abstract thinking | − | + | Edu | + | − | |
Mental manipulation | − | − | Edu | + | − | |
Attention | − | − | Edu | + | − | |
CASI Non-Executive | Orientation | + | + | Edu × Aβ− | + | + |
Language | − | − | Edu | + | − | |
Drawing | − | − | Edu | + | − | |
Long-term memory | + | + | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-I.; Hsu, S.-W.; Kao, Z.-K.; Lee, C.-C.; Huang, S.-H.; Lin, C.-H.; Liu, M.-N.; Chang, C.-C. Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data. Int. J. Mol. Sci. 2022, 23, 14635. https://doi.org/10.3390/ijms232314635
Chang H-I, Hsu S-W, Kao Z-K, Lee C-C, Huang S-H, Lin C-H, Liu M-N, Chang C-C. Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data. International Journal of Molecular Sciences. 2022; 23(23):14635. https://doi.org/10.3390/ijms232314635
Chicago/Turabian StyleChang, Hsin-I, Shih-Wei Hsu, Zih-Kai Kao, Chen-Chang Lee, Shu-Hua Huang, Ching-Heng Lin, Mu-N Liu, and Chiung-Chih Chang. 2022. "Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data" International Journal of Molecular Sciences 23, no. 23: 14635. https://doi.org/10.3390/ijms232314635
APA StyleChang, H.-I., Hsu, S.-W., Kao, Z.-K., Lee, C.-C., Huang, S.-H., Lin, C.-H., Liu, M.-N., & Chang, C.-C. (2022). Impact of Amyloid Pathology in Mild Cognitive Impairment Subjects: The Longitudinal Cognition and Surface Morphometry Data. International Journal of Molecular Sciences, 23(23), 14635. https://doi.org/10.3390/ijms232314635