A Bacillus licheniformis Glycoside Hydrolase 43 Protein Is Recognized as a MAMP
Abstract
:1. Introduction
2. Results
2.1. Purification, Characterization, and Identification of H1AD43
2.2. H1AD43 Localizes to the Cell Membrane and the Nucleus
2.3. H1AD43 Induces a Burst of ROS
2.4. H1AD43 Promotes Callose Accumulation in N. benthamiana Leaves
2.5. H1AD43 Induces the Upregulation of Defense Genes
2.6. H1AD43 Induces the Resistance of Tobacco to Phytophthora Capsici and TMV
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extraction and Purification
4.3. H1AD43 Mass Spectrometry Analysis, Gene Cloning, and Expression
4.4. H1AD43 Localization
4.5. Measurement of ROS Burst
4.6. Detection of Callose
4.7. Analysis of the H1AD43 Protein Properties
4.8. Gene Expression Analysis of N. benthamiana Treated with H1AD43
4.9. Detection of H1AD43-Induced Disease Resistance in N. benthamiana Leaves
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trdá, L.; Boutrot, F.; Claverie, J.; Brulé, D.; Dorey, S.; Poinssot, B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: Pattern recognition receptors in the frontline. Front Plant Sci. 2015, 6, 219. [Google Scholar] [CrossRef] [PubMed]
- Saijo, Y.; Loo, E.P.; Yasuda, S. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 2018, 93, 592–613. [Google Scholar] [CrossRef]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef] [PubMed]
- Barghahn, S.; Arnal, G.; Jain, N.; Petutschnig, E.; Brumer, H.; Lipka, V. Mixed Linkage β-1,3/1,4-Glucan Oligosaccharides Induce Defense Responses in Hordeum vulgare and Arabidopsis thaliana. Front Plant Sci. 2021, 12, 682439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, J.-M. Plant immunity triggered by microbial molecular signatures. Mol. Plant. 2010, 3, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Chinchilla, D.; Bauer, Z.; Regenass, M.; Boller, T.; Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell. 2006, 18, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Kunze, G.; Zipfel, C.; Robatzek, S.; Niehaus, K.; Boller, T.; Felix, G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell. 2004, 16, 3496–3507. [Google Scholar] [CrossRef] [Green Version]
- Nürnberger, T.; Nennstiel, D.; Jabs, T.; Sacks, W.R.; Hahlbrock, K.; Scheel, D. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 1994, 78, 449–460. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, J.-P.; Fu, Z.-C.; Shi, W.-J.; Ninkuu, V.; Li, G.-Y.; Yang, X.-F.; Zeng, H.-M. FoEG1, a secreted glycoside hydrolase family 12 protein from Fusarium oxysporum, triggers cell death and modulates plant immunity. Mol. Plant Pathol. 2021, 22, 522–538. [Google Scholar] [CrossRef]
- Felix, G.; Boller, T. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 2003, 278, 6201–6208. [Google Scholar] [CrossRef]
- Erbs, G.; Newman, M.A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol. Plant Pathol. 2012, 13, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Ramonell, K.; Berrocal-Lobo, M.; Koh, S.; Wan, J.; Edwards, H.; Stacey, G.; Somerville, S. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol. 2005, 138, 1027–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumoff, D.G. Hierarchical classification of glycoside hydrolases. Biochemistry 2011, 76, 622–635. [Google Scholar] [CrossRef]
- Miedes, E.; Vanholme, R.; Boerjan, W.; Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 2014, 5, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Dong, Y.; Qiu, D. The Botrytis cinerea Xylanase BcXyl1 Modulates Plant Immunity. Front Microbiol. 2018, 9, 2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef]
- Ma, Z.-C.; Song, T.-Q.; Zhu, L.; Ye, W.-W.; Wang, Y.; Shao, Y.-Y.; Dong, S.-M.; Zhang, Z.-G.; Dou, D.-L.; Zheng, X.-B.; et al. A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. Plant Cell 2015, 27, 2057–2072. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.-Y.; Wang, N.; Pi, L.; Li, L.; Duan, W.-W.; Wang, X.-D.; Dou, D.-L. Nicotiana benthamiana LRR-RLP NbEIX2 mediates the perception of an EIX-like protein from Verticillium dahliae. J. Integr. Plant Biol. 2021, 63, 949–960. [Google Scholar] [CrossRef]
- Frías, M.; González, M.; González, C.; Brito, N. A 25-Residue Peptide From Botrytis cinerea Xylanase BcXyn11A Elicits Plant Defenses. Front Plant Sci. 2019, 10, 474. [Google Scholar] [CrossRef]
- Furman-Matarasso, N.; Cohen, E.; Du, Q.; Chejanovsky, N.; Hanania, U.; Avni, A. A point mutation in the ethylene-inducing xylanase elicitor inhibits the beta-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol. 1999, 121, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.S.; Amby, D.B.; Hegelund, J.N.; Fimognari, L.; Großkinsky, D.K.; Westergaard, J.C.; Müller, R.; Moelbak, L.; Liu, F.; Roitsch, T. Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Front Plant Sci. 2020, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.L.; Thonart, P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.-B.; Liu, M.-J.; Guo, L.-H.; Yang, X.-F.; Qiu, D.-W. A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco. Int. J. Biol. Sci. 2016, 12, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-Q.; Ynag, X.-F.; Guo, L.-H.; Zeng, H.-M.; Qiu, D.-W. PeBL1, a novel protein elicitor from Brevibacillus laterosporus strain A60, activates defense responses and systemic resistance in Nicotiana benthamiana. Appl. Environ. Microbiol. 2015, 81, 2706–2716. [Google Scholar] [CrossRef] [Green Version]
- Pitsili, E.; Phukan, U.J.; Coll, N.S. Cell Death in Plant Immunity. Cold Spring Harb. Perspect. Biol. 2020, 12, a036483. [Google Scholar] [CrossRef]
- Nie, J.-J.; Yin, Z.-Y.; Li, Z.-P.; Wu, Y.-X.; Huang, L.-L. A small cysteine-rich protein from two kingdoms of microbes is recognized as a novel pathogen-associated molecular pattern. New Phytol. 2019, 222, 995–1011. [Google Scholar] [CrossRef]
- Waszczak, C.; Carmody, M.; Kangasjärvi, J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018, 69, 209–236. [Google Scholar] [CrossRef] [Green Version]
- Mhamdi, A.; Van Breusegem, F. Reactive oxygen species in plant development. Development 2018, 145, dev164376. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Huai, B.; Lu, Y.; Cai, K.; Guo, J.; Zhu, X.; Kang, Z.; Guo, J. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. New Phytol. 2020, 225, 880–895. [Google Scholar] [CrossRef]
- Apostolakos, P.; Giannoutsou, E.; Galatis, B. Callose: A multifunctional (1, 3)-β-DD-glucan involved in morphogenesis and function of angiosperm stomata. J. Biol. Res. 2021, 28, 17. [Google Scholar] [CrossRef]
- Naumann, M.; Somerville, S.; Voigt, C. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signal Behav. 2013, 8, e24408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, X.; Gomila, J.; Takken, F.L.W. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Mol Plant Pathol. 2017, 18, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- An, C.; Mou, Z. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 2011, 53, 412–428. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Tian, S.-R.; Lv, X.; Pu, Y.-D.; Peng, H.-R.; Fan, G.-J.; Ma, X.-Z.; Ma, L.-S.; Sun, X.-C. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. Mol. Plant Pathol. 2022, 23, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 2009, 12, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, S.T.; Coaker, G.; Day, B.; Staskawicz, B.J. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 2006, 124, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Kadota, Y.; Shirasu, K.; Zipfel, C. Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant Cell Physiol. 2015, 56, 1472–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavaliev, R.; Ueki, S.; Epel, B.L.; Citovsky, V. Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma 2011, 248, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-J.; Fang, Q.; Zhang, Z.-G.; Wang, Y.-C.; Zheng, X.-B. The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. J. Exp. Bot. 2009, 60, 3109–3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Huang, J.-M.; Lu, X.-M.; Zhou, C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. Front Plant Sci. 2022, 13, 952397. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, R.-J.; You, M.P.; Barbetti, M.J.; Chen, Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Bao, T.-T.; Zheng, L.; Kgosi, V.T.; Liu, H.-X. Cell wall integrity in Magnaporthe oryzae is weakened by proteins secreted by Bacillus licheniformis BL06. Biol. Control 2021, 157, 104582. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, C.-J.; Zhao, Q.; Jiang, L.-W. Using Fluorescent Protein Fusions to Study Protein Subcellular Localization and Dynamics in Plant Cells. Methods Mol. Biol. 2016, 1474, 113–123. [Google Scholar]
- Xu, K.-D.; Huang, X.-H.; Wu, M.-M.; Wang, Y.; Chang, Y.-X.; Liu, K.; Zhang, J.; Zhang, Y.; Zhang, F.-L.; Yi, L.-M.; et al. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE 2014, 9, e83556. [Google Scholar] [CrossRef]
- Thordal-Christensen, H.; Zhang, Z.-G.; Wei, Y.-D.; Collinge, D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 1997, 11, 1187–1194. [Google Scholar] [CrossRef]
- Mason, K.N.; Ekanayake, G.; Heese, A. Staining and automated image quantification of callose in Arabidopsis cotyledons and leaves. Methods Cell Biol. 2020, 160, 181–199. [Google Scholar]
- Yi, Z.-W.; Cai, Z.-W.; Zeng, B.; Zeng, R.-Y.; Zhang, G.-Y. Identification and Characterization of a Novel Thermostable and Salt-Tolerant β-1,3 Xylanase from Flammeovirga pacifica Strain WPAGA1. Biomolecules 2020, 10, 1287. [Google Scholar] [CrossRef]
- Franco-Orozco, B.; Berepiki, A.; Ruiz, O.; Gamble, L.; Griffe, L.L.; Wang, S.; Birch, P.; Kanyuka, K.; Avrova, A. A new proteinaceous pathogen-associated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. New Phytol. 2017, 214, 1657–1672. [Google Scholar] [CrossRef]
Gene Name | Forward Primer | Reverse Primer |
---|---|---|
NbPR1 | ATGGTCAATACGGCGAAAAC | CCTAGCACATCCAACACGAA |
NbPR2 | CAACCCGCCCAAAGATAGTA | TCCAAAAGGGCATCAAAAAG |
NbPAL | GTTATGCTCTTAGAACGTCGCCC | CCGTGTAATGCCTTGTTTCTTGA |
NbICS | TCATCACTCGTGAAATGGTCG | GAGGCTGGGAGTTAACCAAGT |
NbPTI5 | CCTCCAAGTTTGAGCTCGGATAGT | CCAAGAAATTCTCCATGCACTCTGTC |
NbCYP71D | AAGGTCCACCGCACCATGTCCTTAGAG | AAGAATTCCTTGCCCCTTGAGTACTTGC |
NbRBOHA | CGTGCTTGATAAAGAAACACTGA | CCCACCCAACCAAAATACGC |
NbEF1α | AGCTTTACCTCCCAAGTCATC | AGAACGCCTGTCAATCTTGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Zhao, Y.; Mo, Z.; Liu, H. A Bacillus licheniformis Glycoside Hydrolase 43 Protein Is Recognized as a MAMP. Int. J. Mol. Sci. 2022, 23, 14435. https://doi.org/10.3390/ijms232214435
Yuan Z, Zhao Y, Mo Z, Liu H. A Bacillus licheniformis Glycoside Hydrolase 43 Protein Is Recognized as a MAMP. International Journal of Molecular Sciences. 2022; 23(22):14435. https://doi.org/10.3390/ijms232214435
Chicago/Turabian StyleYuan, Zhixiang, Ying Zhao, Zhitong Mo, and Hongxia Liu. 2022. "A Bacillus licheniformis Glycoside Hydrolase 43 Protein Is Recognized as a MAMP" International Journal of Molecular Sciences 23, no. 22: 14435. https://doi.org/10.3390/ijms232214435