Pros and Cons of In Vitro Methods for Circular RNA Preparation
Abstract
:1. Introduction
2. Chemical-Based Methods
3. Enzyme-Based Methods
4. Ribozyme-Based Methods
4.1. PIE (Group I Intron and Group II Intron Self-Splicing Systems)
4.2. Hairpin Ribozyme
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolgin, E. The Tangled History of mRNA Vaccines. Nature 2021, 597, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Chen, B.; Wong, J. Evolution of the Market for mRNA Technology. Nat. Rev. Drug Discov. 2021, 20, 735–736. [Google Scholar] [CrossRef] [PubMed]
- Kowalzik, F.; Schreiner, D.; Jensen, C.; Teschner, D.; Gehring, S.; Zepp, F. mRNA-Based Vaccines. Vaccines 2021, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-X.; Chen, L.-L. Circular RNAs: Characterization, Cellular Roles, and Applications. Cell 2022, 185, 2016–2034. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L. The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs. Nat. Rev. Mol. Cell Biol. 2020, 21, 475–490. [Google Scholar] [CrossRef]
- Cocquerelle, C.; Mascrez, B.; Hetuin, D.; Bailleul, B. Mis-Splicing Yields Circular RNA Molecules. FASEB J. 1993, 7, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Kim, E.; Kim, Y.K.; Lee, S.-J.V. Emerging Functions of Circular RNA in Aging. Trends Genet. 2021, 37, 819–829. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Cao, G.; Hua, J.; Shan, G.; Lin, W. Emerging Roles of Circular RNAs in Gastric Cancer Metastasis and Drug Resistance. J. Exp. Clin. Cancer Res. 2022, 41, 218. [Google Scholar] [CrossRef]
- Müller, S.; Appel, B. In Vitro Circularization of RNA. RNA Biol. 2017, 14, 1018–1027. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, Y. Circular RNA: Biosynthesis In Vitro. Front. Bioeng. Biotechnol. 2021, 9, 787881. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, P.T.; Taban, Q.; Dar, M.A.; Mir, S.; Haq, Z.U.; Zargar, S.M.; Shah, R.A.; Ahmad, S.M. Deep Insights in Circular RNAs: From Biogenesis to Therapeutics. Biol. Proced. Online 2020, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Fantoni, N.Z.; El-Sagheer, A.H.; Brown, T. A Hitchhiker’s Guide to Click-Chemistry with Nucleic Acids. Chem. Rev. 2021, 121, 7122–7154. [Google Scholar] [CrossRef]
- Nakamoto, K.; Abe, H. Chemical Synthesis of Circular RNAs with Phosphoramidate Linkages for Rolling-Circle Translation. Curr. Protoc. 2021, 1, e43. [Google Scholar] [CrossRef] [PubMed]
- Micura, R. Cyclic Oligoribonucleotides (RNA) by Solid-Phase Synthesis. Chemistry 1999, 5, 2077–2082. [Google Scholar] [CrossRef]
- Dolinnaya, N.G.; Sokolova, N.I.; Ashirbekova, D.T.; Shabarova, Z.A. The Use of BrCN for Assembling Modified DNA Duplexes and DNA-RNA Hybrids; Comparison with Water-Soluble Carbodiimide. Nucleic Acids Res. 1991, 19, 3067–3072. [Google Scholar] [CrossRef] [Green Version]
- Wesselhoeft, R.A.; Kowalski, P.S.; Anderson, D.G. Engineering Circular RNA for Potent and Stable Translation in Eukaryotic Cells. Nat. Commun. 2018, 9, 2629. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Saxena, M.; Rishi, N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjugate Chem. 2021, 32, 1455–1471. [Google Scholar] [CrossRef]
- Nakamoto, K.; Abe, N.; Tsuji, G.; Kimura, Y.; Tomoike, F.; Shimizu, Y.; Abe, H. Chemically Synthesized Circular RNAs with Phosphoramidate Linkages Enable Rolling Circle Translation. Chem. Commun. 2020, 56, 6217–6220. [Google Scholar] [CrossRef]
- Fedorova, O.A.; Gottikh, M.B.; Oretskaya, T.S.; Shabarova, Z.A. Cyanogen Bromide-Induced Chemical Ligation: Mechanism and Optimization of the Reaction Conditions. Nucleosides Nucleotides Nucleic Acids 1996, 15, 1137–1147. [Google Scholar] [CrossRef]
- Petkovic, S.; Müller, S. RNA Circularization Strategies In Vivo and In Vitro. Nucleic Acids Res. 2015, 43, 2454–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.; Wilhelmsson, L.M.; Brown, T. Template-Directed Oligonucleotide Strand Ligation, Covalent Intramolecular DNA Circularization and Catenation Using Click Chemistry. J. Am. Chem. Soc. 2007, 129, 6859–6864. [Google Scholar] [CrossRef] [PubMed]
- Dolinnaya, N.G.; Blumenfeld, M.; Merenkova, I.N.; Oretskaya, T.S.; Krynetskaya, N.F.; Ivanovskaya, M.G.; Vasseur, M.; Shabarova, Z.A. Oligonucleotide Circularization by Template-Directed Chemical Ligation. Nucleic Acids Res. 1993, 21, 5403–5407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.J. Joining RNA Molecules with T4 DNA Ligase. Methods Mol. Biol. 1999, 118, 11–19. [Google Scholar]
- Chen, C.Y.; Sarnow, P. Initiation of Protein Synthesis by the Eukaryotic Translational Apparatus on Circular RNAs. Science 1995, 268, 415–417. [Google Scholar] [CrossRef]
- Beaudry, D.; Perreault, J.P. An Efficient Strategy for the Synthesis of Circular RNA Molecules. Nucleic Acids Res. 1995, 23, 3064–3066. [Google Scholar] [CrossRef] [Green Version]
- Petkovic, S.; Müller, S. RNA Self-Processing: Formation of Cyclic Species and Concatemers from a Small Engineered RNA. FEBS Lett. 2013, 587, 2435–2440. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.K.; Wang, L.K.; Lima, C.D.; Shuman, S. Structure and Mechanism of RNA Ligase. Structure 2004, 12, 327–339. [Google Scholar] [CrossRef]
- Liu, C.-X.; Guo, S.-K.; Nan, F.; Xu, Y.-F.; Yang, L.; Chen, L.-L. RNA Circles with Minimized Immunogenicity as Potent PKR Inhibitors. Mol. Cell 2022, 82, 420–434. [Google Scholar] [CrossRef]
- Karikó, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the Optimal mRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-Modified, Protein-Encoding mRNA. Nucleic Acids Res. 2011, 39, e142. [Google Scholar] [CrossRef] [Green Version]
- Puttaraju, M.; Been, M.D. Group I Permuted Intron-Exon (PIE) Sequences Self-Splice to Produce Circular Exons. Nucleic Acid Res. 1992, 20, 5357–5364. [Google Scholar] [CrossRef] [PubMed]
- Lohman, G.J.S.; Tabor, S.; Nichols, N.M. DNA Ligases. Curr. Protoc. Mol. Biol. 2011, 94, 3.14.1–3.14.7. [Google Scholar] [CrossRef]
- Uhlenbeck, O.C.; Gumport, R.I. T4 RNA Ligase. Enzyme 1982, 15, 31–58. [Google Scholar]
- Breuer, J.; Rossbach, O. Production and Purification of Artificial Circular RNA Sponges for Application in Molecular Biology and Medicine. Methods Protoc. 2020, 3, 42. [Google Scholar] [CrossRef]
- Nandakumar, J.; Shuman, S. How an RNA Ligase Discriminates RNA versus DNA Damage. Mol. Cell 2004, 16, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Ares, M., Jr. Synthesis of Circular RNA in Bacteria and Yeast Using RNA Cyclase Ribozymes Derived from a Group I Intron of Phage T4. Proc. National. Acad. Sci. USA 1994, 91, 3117–3121. [Google Scholar] [CrossRef] [Green Version]
- Obi, P.; Chen, G. The Design and Synthesis of Circular RNAs. Methods 2021, 196, 85–103. [Google Scholar] [CrossRef]
- Wesselhoeft, R.A.; Kowalski, P.S.; Parker-Hale, F.C.; Huang, Y.; Bisaria, N.; Anderson, D.G. RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration In Vivo. Mol. Cell 2019, 74, 508–520. [Google Scholar] [CrossRef]
- Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Kariko, K. Incorporation of Pseudouridine into mRNA Enhances Translation by Diminishing PKR Activation. Nucleic Acids Res. 2010, 38, 5884–5892. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.G.; Chen, R.; Ahmad, S.; Verma, R.; Kasturi, S.; Amaya, L.; Broughton, J.P.; Kim, J.; Cadena, C.; Pulendran, B.; et al. N6-Methyladenosine Modification Controls Circular RNA Immunity. Mol. Cell 2019, 76, 96–109. [Google Scholar] [CrossRef]
- Chen, Y.G.; Kim, M.V.; Chen, X.; Batista, P.J.; Aoyama, S.; Wilusz, J.E.; Iwasaki, A.; Chang, H.Y. Sensing Self and Foreign Circular RNAs by Intron Identity. Mol. Cell 2017, 67, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svitkin, Y.V.; Cheng, Y.M.; Chakraborty, T.; Presnyak, V.; Jonh, M.; Sonenberg, N. N1-Methyl Pseudouridine in mRNA Enhances Translation through eIF2α-Dependent and Independent Mechanisms by Increasing Ribosome Density. Nucleic Acids Res. 2017, 45, 6023–6036. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.-L.; Wang, Y.; et al. Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, S.K.; Belk, J.A.; Amaya, L.; Li, Z.; Cardenas, A.; Abe, B.T.; Chen, C.-K.; Wender, P.A.; Chang, H.Y. Engineering Circular RNA for Enhanced Protein Production. Nat. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Qu, L.; Yi, Z.; Shen, Y.; Lin, L.; Chen, F.; Xu, Y.; Wu, Z.; Tang, H.; Zhang, X.; Tian, F.; et al. Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants. Cell 2022, 185, 1728–1744. [Google Scholar] [CrossRef] [PubMed]
- Seephetdee, C.; Bhukhai, K.; Buasri, N.; Leekukkanaveera, P.; Lerdwattanasombat, P.; Manopwisedjaroen, S.; Phueakphud, N.; Kuhaudomlarp, S.; Olmedillas, E.; Saphire, E.O.; et al. A Circular mRNA Vaccine Prototype Producing VFLIP-X Spike Confers a Broad Neutralization of SARS-CoV-2 Variants by Mouse Sera. Antiviral Res. 2022, 204, 105370. [Google Scholar] [CrossRef]
- Yi, Z.; Qu, L.; Tang, H.; Liu, Z.; Liu, Y.; Tian, F.; Wang, C.; Zhang, X.; Feng, Z.; Yu, Y.; et al. Engineered Circular ADAR-Recruiting RNAs Increase the Efficiency and Fidelity of RNA Editing In Vitro and In Vivo. Nat. Biotechnol. 2022, 40, 946–955. [Google Scholar] [CrossRef]
- Diegelman, A.; Kool, E.T. Generation of Circular RNAs and Trans-Cleaving Catalytic RNAs by Rolling Transcription of Circular DNA Oligonucleotide Encoding Hairpin Ribozymes. Nucleic Acids Res. 1998, 26, 3235–3241. [Google Scholar] [CrossRef] [Green Version]
- Branch, A.; Robertson, A. A Replication Cycle for Viroids and Other Small Infectious RNA’s. Science 1984, 223, 450–455. [Google Scholar] [CrossRef]
- Feldstein, P.A.; Bruening, G. Catalytically Active Geometry in the Reversible Circularization of ‘Mini-Monomer’ RNAs Derived from the Complementary Strand of Tobacco Ringspot Virus Satellite RNA. Nucleic Acids Res. 1993, 21, 1991–1998. [Google Scholar] [CrossRef] [Green Version]
- Petkovic, S.; Badelt, S.; Block, S.; Flamm, C.; Delcea, M.; Hofacker, I.; Müller, S. Sequence-Controlled RNA Self-Processing: Computational Design, Biochemical Analysis, and Visualization by AFM. RNA 2015, 21, 1249–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullard, D.R.; Bowater, R.P. Direct Comparison of Nick-Joining Activity of the Nucleic Acid Ligases from Bacteriophage T4. Biochem. J. 2006, 398, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.M. Precipitation of Nucleic Acids. Methods Enzymol. 1987, 152, 41–48. [Google Scholar] [PubMed]
- Edelmann, F.T.; Niedner, A.; Niessing, D. Production of Pure and Functional RNA for In Vitro Reconstitution Experiments. Methods 2014, 65, 333–341. [Google Scholar] [CrossRef]
- Price, S.R.; Ito, N.; Oubridge, C.; Avis, J.M.; Nagai, K. Crystallization of RNA-Protein Complexes. I. Methods for the Large-Scale Preparation of RNA Suitable for Crystallographic Studies. J. Mol. Biol. 1995, 249, 398–408. [Google Scholar] [CrossRef]
- Wang, L.; Ruffner, D.E. Oligoribonucleotide Circularization by ‘Template-Mediated’ Ligation with T4 RNA Ligase: Synthesis of Circular Hammerhead Ribozymes. Nucleic Acids Res. 1998, 26, 2502–2504. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Hur, S. Immunogenicity of In Vitro-Transcribed RNA. Acc. Chem. Res. 2021, 54, 4012–4023. [Google Scholar] [CrossRef]
- Sokolova, N.I.; Ashirbekova, D.T.; Dolinnaya, N.G.; Shabarova, Z.A. Chemical Reactions within DNA Duplexes Cyanogen Bromide as an Effective Oligodeoxyribonucleotide Coupling Agent. FEBS Lett. 1988, 232, 153–155. [Google Scholar] [CrossRef]
- Rezaian, M.A. Synthesis of Infectious Viroids and Other Circular RNAs. Curr. Issues Molec. Biol. 1999, 1, 13–20. [Google Scholar]
Method | Pros | Cons |
---|---|---|
Chemical-based ligation | • Various chemical reactions | • Toxicity concerns |
• Uses DNA splint | ||
• No intronic scar | • Multiple steps • Unnatural bond | |
Enzyme-based ligation | • No intronic scar (however, the first 2~3 nucleotides are guanosine by T7, SP6, T3 RNA polymerase) | • Uses DNA or RNA splint • Ligases from T4 bacteriophage [52] require 5′-monophosphate |
• Large GOI | • Multiple steps • Ligation efficiency | |
Ribozyme-based ligation | • Relatively simple • Large GOI | • Intronic scar by group I intron PIE • Larger transcript including ribozyme |
• Reactions in vitro & in vivo | • RNA contaminants after reaction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.H.; Kim, S.; Lee, S.-W. Pros and Cons of In Vitro Methods for Circular RNA Preparation. Int. J. Mol. Sci. 2022, 23, 13247. https://doi.org/10.3390/ijms232113247
Lee KH, Kim S, Lee S-W. Pros and Cons of In Vitro Methods for Circular RNA Preparation. International Journal of Molecular Sciences. 2022; 23(21):13247. https://doi.org/10.3390/ijms232113247
Chicago/Turabian StyleLee, Kyung Hyun, Seongcheol Kim, and Seong-Wook Lee. 2022. "Pros and Cons of In Vitro Methods for Circular RNA Preparation" International Journal of Molecular Sciences 23, no. 21: 13247. https://doi.org/10.3390/ijms232113247