Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Acidic Ionic Liquids Synthesized by a Two-Step Process
2.3. Acidity Determination of [Trps][Anions]
2.4. Calculation Method of Catalyze Esterification Reaction Products
2.5. Application of the New Tropine-Based FILs to Catalyze Esterification Reaction
2.6. Statistical Analysis
2.7. Recovery and Reusing Performance of [Trps][OTs]
2.8. Synthesis of Different Ester Compounds Catalyzed by [Trps][OTs]
3. Results and Discussions
3.1. Preparation of Trps and [Trps][Anions]
3.2. Structural Identification and Spectral Analysis of Trps and [Trps][Anions]
3.3. Hammett Acidity Analysis of [Trps][Anions]
3.4. Effect of Ionic Liquids on the Reaction
3.5. Effects of Temperature, Reaction Time, Molar Ratio of Alcohol and Acid Anhydride and Amount of Ionic Liquid on Reaction
3.6. RSM Optimization
× 10−3)X3X4 − 11.64X12 − 13.16X22 − 6.09X32 + 0.48X42,
3.7. Recovery and Reusing Performance of [Trps][OTs]
3.8. Synthesis of Different Ester Compounds Catalyzed by [Trps][OTs]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Silva Pereira, C. ILs: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. [Google Scholar] [CrossRef] [PubMed]
- Amde, M.; Liu, J.; Pang, L. Environmental Application, Fate, Effects, and Concerns of ILs: A Review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Loussala, H.M.; Han, S.; Ji, X.; Li, C.; Sun, M. Recent advances of ILs in sample preparation. TrAC Trends Anal. Chem. 2020, 125, 115833. [Google Scholar] [CrossRef]
- Chen, B.; Ding, T.; Deng, X.; Wang, X.; Zhang, D.; Ma, S.; Zhang, Y.; Ni, B.; Gao, G. Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions. Chin. J. Catal. 2021, 42, 297–309. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Reddy, M.S.; Niranjan, N.; Prasad, A.R. Lewis Acidic Chloroaluminate ILs: Novel Reaction Media for the Synthesis of 4-Chloropyrans. Eur. J. Org. Chem. 2003, 9, 1779–1783. [Google Scholar] [CrossRef]
- Xie, W.; Wang, H. Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Brönsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils. Fuel 2021, 283, 118893. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Su, M.; Liu, W.; Li, X.; Liu, F. Developing Brønsted–Lewis acids bifunctionalized ILs based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. J. Ind. Eng. Chem. 2020, 92, 200–209. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Idris, A.; Chandrasekaram, K.; Alias, Y. Efficiency of bronsted acidic ILs in the dissolution and depolymerization of lignin from rice husk into high value-added products. Ind. Crops Prod. 2020, 157, 112885. [Google Scholar] [CrossRef]
- Kore, R.; Scurto, A.M.; Shiflett, M.B. Review of Isobutane Alkylation Technology Using Ionic Liquid-Based Catalysts—Where Do We Stand? Ind. Eng. Chem. Res. 2020, 59, 15811–15838. [Google Scholar] [CrossRef]
- Rad-Moghadam, K.; Azimi, S.C.; Abbaspour-Gilandeh, E. Synthesis of novel pyrano[3,2-c]quinoline-2,5-diones using an acidic ionic liquid catalyst. Tetrahedron Lett. 2013, 54, 4633–4636. [Google Scholar] [CrossRef]
- Shuangjun, C.; Weihe, S.; Haidong, C.; Hao, Z.; Zhenwei, Z.; Chaonan, F. Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ILs. J. Therm. Anal. Calorim. 2021, 143, 3489–3497. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, S.; Zeng, L.; Cai, C.; Li, F.; Tan, Z. Two birds with one stone: Porous poly(ILs) membrane with high efficiency for the separation of amino acids mixture and its antibacterial properties. J. Colloid Interface Sci. 2021, 584, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Musarurwa, H.; Tavengwa, N.T. Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta 2021, 223, 121507. [Google Scholar] [CrossRef] [PubMed]
- Sappidi, P.; Bara, J.E.; Turner, C.H. Molecular-level behavior of imidazolium-based ionic liquid mixtures. Chem. Eng. Sci. 2021, 229, 116073. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Huang, Y.; Li, M.; Lin, X.; Qiu, T. Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ILs. Energy 2020, 211, 118631. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, N.; Xie, H.; Zhao, Z.; Zong, Z.; Wei, X. Catalytic hydroconversion of extraction residues from two Chinese lignites to arenes. Fuel 2021, 284, 118910. [Google Scholar] [CrossRef]
- Gallego-Villada, L.A.; Alarcón, E.A.; Palermo, V.; Vázquez, P.G.; Romanelli, G.P. Kinetics for the biodiesel production from lauric acid over Keggin heteropolyacid loaded in silica framework. J. Ind. Eng. Chem. 2020, 92, 109–119. [Google Scholar] [CrossRef]
- Calik, P.; Özcelik, I.S.; Calik, G.; Özdamar, T.H. Enzyme-ion exchanger interactions in serine alkaline protease separation: Theory, equilibria and kinetics. Biochem. Eng. J. 2002, 12, 193–204. [Google Scholar] [CrossRef]
- Nearchou, A.; Castaing, R.; Raithby, P.R.; Sartbaeva, A. Zeolites fit for a crown: Studying organic-framework host-guest interactions through thermogravimetric techniques. Microporous Mesoporous Mater. 2020, 308, 110479. [Google Scholar] [CrossRef]
- Leng, Y.; Wang, J.; Zhu, D.; Ren, X.; Ge, H.; Shen, L. Heteropolyanion-Based ILs: Reaction-Induced Self-Separation Catalysts for Esterification. Angew. Chem. Int. Ed. 2009, 48, 168–171. [Google Scholar] [CrossRef]
- Dai, Q.; Yang, Z.; Li, J.; Cao, Y.; Tang, H.; Wei, X. Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil. Renew. Energy 2021, 163, 1588–1594. [Google Scholar] [CrossRef]
- Khajone, V.B.; Bhagat, P.R. Brønsted acid functionalized phthalocyanine on perylene diimide framework knotted with ionic liquid: An efficient photo-catalyst for production of biofuel component octyl levulinate at ambient conditions under visible light irradiation. Fuel 2020, 279, 118390. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, J.; Wang, Y.; Dai, L. The Synthesis of Salicylate Prompted by Brønsted Acidic ILs. J. Chil. Chem. Soc. 2009, 54, 40–42. [Google Scholar] [CrossRef]
- Lee, L.; Yang, H. Combination of a Dual-Site Phase-Transfer Catalyst and an Ionic Liquid for the Synthesis of Benzyl Salicylate. Ind. Eng. Chem. Res. 2014, 53, 12257–12263. [Google Scholar] [CrossRef]
- Yang, H.; Hung, Y.; Tu, C. Synthesis of butyl salicylate by phase-transfer catalysis with dual-site phase-transfer catalyst and ionic liquid in tri-liquid system. J. Taiwan Inst. Chem. Eng. 2014, 45, 1421–1427. [Google Scholar] [CrossRef]
- Shi, H.; Zhu, W.; Li, H.; Liu, H.; Zhang, M.; Yan, Y.; Wang, Z. Microwave-accelerated esterification of salicylic acid using Brönsted acidic ILs as catalysts. Catal. Commun. 2010, 11, 588–591. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Yao, S.; Song, H. Aqueous solubilization and extraction of curcumin enhanced by imidazolium, quaternary ammonium, and tropine ILs, and insight of ILs-curcumin interaction. J. Mol. Liq. 2020, 317, 113906. [Google Scholar] [CrossRef]
- Li, F.; Lin, M.; Yao, S.; Wang, X.; Zhu, M.; Song, H. Tropine-Based Ionic Liquid Gel for Adsorption of Protein Ovalbumin: High Capacity, Selectivity and Biocompatibility. ChemistrySelect 2020, 5, 10168–10175. [Google Scholar] [CrossRef]
- Huang, R.; Wang, J.; Xie, W.; Chen, D.; Huang, Z.; Wei, D.; Ma, S.; Yuan, A. Synthesis of Aspirin Catalyzed by Aluminum Dihydrogen Tripolyphosphate/Loaded Sulfur Diatomite. Chin. J. Synth. Chem. 2015, 23, 176–178. [Google Scholar]
- Thomazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts, S.; Gilbert, B. Determination of an Acidic Scale in Room Temperature ILs. J. Am. Chem. Soc. 2003, 125, 5264–5265. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, S.; Yang, J. Synthesis of a novel multi-SO3H functionalized strong Brønsted acidic ionic liquid and its catalytic activities for acetalization. Chin. Sci. Bull. 2009, 54, 3958–3964. [Google Scholar] [CrossRef]
- Yi, X.; Miao, D. Determination of Free Salicylic Acid in Aspirin Dipyridamole Tablets by HPLC. Jiangsu Pharm. Clin. Res. 2004, 3, 25–27. [Google Scholar]
- Mansur, A.R.; Song, N.; Jang, H.W.; Lim, T.; Yoo, M.; Nam, T.G. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Zhou, X.S.; Liu, J.B.; Luo, W.F.; Zhang, Y.W.; Song, H. Novel Brønsted-acidic ILs based on benzothiazolium cations as catalysts for esterification reactions. J. Serb. Chem. Soc. 2011, 76, 1607–1615. [Google Scholar] [CrossRef]
- Wang, L.; Guo, W.; Wang, J.; Zhao, C.; Chen, L.; Zhang, W. Synthesis of morpholine acidic ionic liquid and application for esterification reaction. Spec. Petrochem. 2015, 32, 5–9. [Google Scholar]
- Liu, C.P.; Liu, G.; Wen, Q.W.; Sun, L.; Hu, Y.C. Synthesis and applications in esterification of silica-immobilized imidazolium acidic ionic liquid. Fine Chem. 2009, 26, 213–217. [Google Scholar]
- Zhu, H.P.; Yang, F.; Tang, J.; He, M.Y. Brønsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate: A green catalyst and recyclable medium for esterification. Green Chem. 2003, 5, 38–39. [Google Scholar] [CrossRef]
- He, A.; Dong, B.; Feng, X.T.; Yao, S. Recovery of benzothiazoliumILs from the coexisting glucose by ion-exchange resins. J. Mol. Liq. 2017, 227, 178–183. [Google Scholar] [CrossRef]
- Nie, L.R.; Song, H.; Yohannes, A.; Liang, S.W.; Yao, S. Extraction in cholinium-based magnetic ionic liquid aqueous two-phase system for the determination of berberine hydrochloride in Rhizoma coptidis. RSC Adv. 2018, 8, 25201–25209. [Google Scholar] [CrossRef] [Green Version]
Source | Sum of Squares | d f | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 5113.06 | 14 | 365.22 | 1.45 × 106 | <0.0001 | significant |
X1 | 517.45 | 1 | 517.45 | 2.05 × 106 | <0.0001 | |
X2 | 1481.63 | 1 | 1481.63 | 5.88 × 106 | <0.0001 | |
X3 | 990.99 | 1 | 990.99 | 3.93 × 106 | <0.0001 | |
X4 | 248.34 | 1 | 248.34 | 9.85 × 105 | <0.0001 | |
X1X2 | 1.00 × 10−4 | 1 | 1.00 × 10−4 | 0.40 | 0.5389 | |
X1X3 | 2.50 × 10−5 | 1 | 2.50 × 10−5 | 0.10 | 0.7574 | |
X1X4 | 2.25 × 10−4 | 1 | 2.25 × 10−4 | 0.89 | 0.3607 | |
X2X3 | 0.00 | 1 | 0.000 | 0.00 | 1.0000 | |
X2X4 | 0.00 | 1 | 0.000 | 0.00 | 1.0000 | |
X3X4 | 1.00 × 10−4 | 1 | 1.00 × 10−4 | 0.40 | 0.5389 | |
X12 | 878.68 | 1 | 878.68 | 3.49 × 106 | <0.0001 | |
X22 | 1123.17 | 1 | 1123.17 | 4.46 × 106 | <0.0001 | |
X32 | 240.38 | 1 | 240.38 | 9.54 × 105 | <0.0001 | |
X42 | 1.49 | 1 | 1.49 | 5927.88 | <0.0001 | |
Lack of Fit | 6.08 × 10−4 | 10 | 6.08 × 10−5 | 0.083 | 0.9992 | not significant |
Pure Error | 2.92 × 10−3 | 4 | 7.30 × 10−4 | |||
Cor Total | 5113.06 | 28 |
No. | Component (A) | Component (B) | C (Target Product) | Reaction Time/min | Conversion/% |
---|---|---|---|---|---|
1 | p-hydroxybenzoic acid | Acetic anhydride | p-acetoxybenzoic acid | 4.469 | 95.13 |
2 | m-hydroxybenzoic acid | Acetic anhydride | m-acetoxybenzoic acid | 4.448 | 88.57 |
3 | Acetylsalicylic acid | Acetaminophen | Benorilate | 7.893 | 84.22 |
4 | Salicylic acid | Methanol | Methyl salicylate | 5.653 | 97.35 |
5 | Salicylic acid | Alcohol | Ethyl salicylate | 7.424 | 97.54 |
6 | Salicylic acid | Propyl alcohol | Propyl salicylate | 14.699 | 98.13 |
8 | Salicylic acid | Butyl alcohol | Butyl salicylate | 14.709 | 96.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, H.; Zhang, Y.; Zong, C.; Hou, Z.; Song, H.; Chen, Y.; Liu, X.; Xu, T.; Luo, Y. Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification. Int. J. Mol. Sci. 2022, 23, 12877. https://doi.org/10.3390/ijms232112877
Ni H, Zhang Y, Zong C, Hou Z, Song H, Chen Y, Liu X, Xu T, Luo Y. Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification. International Journal of Molecular Sciences. 2022; 23(21):12877. https://doi.org/10.3390/ijms232112877
Chicago/Turabian StyleNi, Hongfei, Yiwei Zhang, Chuhong Zong, Zhengbo Hou, Hang Song, Yong Chen, Xuesong Liu, Tengfei Xu, and Yingjie Luo. 2022. "Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification" International Journal of Molecular Sciences 23, no. 21: 12877. https://doi.org/10.3390/ijms232112877
APA StyleNi, H., Zhang, Y., Zong, C., Hou, Z., Song, H., Chen, Y., Liu, X., Xu, T., & Luo, Y. (2022). Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification. International Journal of Molecular Sciences, 23(21), 12877. https://doi.org/10.3390/ijms232112877