Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model
Abstract
:1. Introduction
2. Results
2.1. Dynamics of Hypercholesterolemia-Induced HDL Dysfunction
2.2. Impact of Diet and Rosuvastatin on HDL Function
2.2.1. HDL Cholesterol Efflux Capacity
2.2.2. HDL Antioxidant Index
2.2.3. Formation of Conjugated Dienes
2.3. Liver HMG-CoA Reductase Activity
2.4. Impact of Diet and Rosuvastatin on HDL Particle Number
2.5. Impact of Diet and Rosuvastatin on HDL Apolipoprotein Content
2.6. Animal Follow-Up
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Lipoprotein Particle Isolation
4.3. Assessment of HDL Functionality
4.3.1. HDL Cholesterol Efflux Capacity
4.3.2. HDL Antioxidant Index
4.3.3. Accumulation of Conjugated Dienes in LDL Particles (Lipid Oxidation)
4.4. HDL Particle Number by NMR
4.5. HDL Content of Apolipoproteins
4.6. HMG-CoA Reductase Activity
4.7. Follow-Up of Biochemical and Hematological Parameters
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keene, D.; Price, C.; Shun-Shin, M.J.; Francis, D.P. Effect on Cardiovascular Risk of High Density Lipoprotein Targeted Drug Treatments Niacin, Fibrates, and CETP Inhibitors: Meta-Analysis of Randomised Controlled Trials Including 117,411 Patients. BMJ 2014, 349, g4379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Hólm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL Cholesterol and Risk of Myocardial Infarction: A Mendelian Randomisation Study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme High High-Density Lipoprotein Cholesterol Is Paradoxically Associated with High Mortality in Men and Women: Two Prospective Cohort Studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, G.-C.; Huang, S.-Q.; Peng, Y.; Wan, L.; Wu, Y.-Q.-L.; Hu, T.-Y.; Hu, J.-J.; Hao, F.-B. HDL-C Is Associated with Mortality from All Causes, Cardiovascular Disease and Cancer in a J-Shaped Dose-Response Fashion: A Pooled Analysis of 37 Prospective Cohort Studies. Eur. J. Prev. Cardiol. 2020, 27, 1187–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronsein, G.E.; Heinecke, J.W. Time to Ditch HDL-C as a Measure of HDL Function? Curr. Opin. Lipidol. 2017, 28, 414–418. [Google Scholar] [CrossRef]
- Schoch, L.; Badimon, L.; Vilahur, G. Unraveling the Complexity of HDL Remodeling: On the Hunt to Restore HDL Quality. Biomedicines 2021, 9, 805. [Google Scholar] [CrossRef] [PubMed]
- Ben-Aicha, S.; Badimon, L.; Vilahur, G. Advances in HDL: Much More than Lipid Transporters. Int. J. Mol. Sci. 2020, 21, 732. [Google Scholar] [CrossRef] [Green Version]
- Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle Subclasses and Molecular Components. Handb. Exp. Pharm. 2015, 224, 3–51. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R.; Grunfeld, C. Effect of Inflammation on HDL Structure and Function. Curr. Opin. Lipidol. 2016, 27, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.A.K. Dysfunctional HDL in Diabetes Mellitus and Its Role in the Pathogenesis of Cardiovascular Disease. Mol. Cell Biochem. 2018, 440, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Denimal, D.; Monier, S.; Brindisi, M.-C.; Petit, J.-M.; Bouillet, B.; Nguyen, A.; Demizieux, L.; Simoneau, I.; Pais de Barros, J.-P.; Vergès, B.; et al. Impairment of the Ability of HDL From Patients with Metabolic Syndrome but Without Diabetes Mellitus to Activate ENOS: Correction by S1P Enrichment. Arter. Thromb. Vasc. Biol. 2017, 37, 804–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesse, B.; Rovas, A.; Buscher, K.; Kusche-Vihrog, K.; Brand, M.; di Marco, G.S.; Kielstein, J.T.; Pavenstädt, H.; Linke, W.A.; Nofer, J.-R.; et al. Symmetric Dimethylarginine in Dysfunctional High-Density Lipoprotein Mediates Endothelial Glycocalyx Breakdown in Chronic Kidney Disease. Kidney Int. 2020, 97, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Ben-Aicha, S.; Casaní, L.; Muñoz-García, N.; Joan-Babot, O.; Peña, E.; Aržanauskaitė, M.; Gutierrez, M.; Mendieta, G.; Padró, T.; Badimon, L.; et al. HDL (High-Density Lipoprotein) Remodeling and Magnetic Resonance Imaging-Assessed Atherosclerotic Plaque Burden: Study in a Preclinical Experimental Model. Arter. Thromb. Vasc. Biol. 2020, 40, 2481–2493. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Gutiérrez, M.; Casaní, L.; Cubedo, J.; Capdevila, A.; Pons-Llado, G.; Carreras, F.; Hidalgo, A.; Badimon, L. Hypercholesterolemia Abolishes High-Density Lipoprotein-Related Cardioprotective Effects in the Setting of Myocardial Infarction. J. Am. Coll. Cardiol. 2015, 66, 2469–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padró, T.; Cubedo, J.; Camino, S.; Béjar, M.T.; Ben-Aicha, S.; Mendieta, G.; Escolà-Gil, J.C.; Escate, R.; Gutiérrez, M.; Casani, L.; et al. Detrimental Effect of Hypercholesterolemia on High-Density Lipoprotein Particle Remodeling in Pigs. J. Am. Coll. Cardiol. 2017, 70, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Ben-Aicha, S.; Escate, R.; Casaní, L.; Padró, T.; Peña, E.; Arderiu, G.; Mendieta, G.; Badimón, L.; Vilahur, G. High-Density Lipoprotein Remodelled in Hypercholesterolaemic Blood Induce Epigenetically Driven down-Regulation of Endothelial HIF-1α Expression in a Preclinical Animal Model. Cardiovasc. Res. 2019, 116, 1288–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, H.; Saheb, S.; Couturier, M.; Atassi, M.; Orsoni, A.; Carrié, A.; Therond, P.; Chantepie, S.; Robillard, P.; Bruckert, E.; et al. Small, Dense High-Density Lipoprotein 3 Particles Exhibit Defective Antioxidative and Anti-Inflammatory Function in Familial Hypercholesterolemia: Partial Correction by Low-Density Lipoprotein Apheresis. J. Clin. Lipidol. 2016, 10, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Adorni, M.P.; Zimetti, F.; Puntoni, M.; Bigazzi, F.; Sbrana, F.; Minichilli, F.; Bernini, F.; Ronda, N.; Favari, E.; Sampietro, T. Cellular Cholesterol Efflux and Cholesterol Loading Capacity of Serum: Effects of LDL-Apheresis. J. Lipid Res. 2012, 53, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Vilahur, G.; Cubedo, J.; Padró, T.; Casaní, L.; Mendieta, G.; González, A.; Badimon, L. Intake of Cooked Tomato Sauce Preserves Coronary Endothelial Function and Improves Apolipoprotein A-I and Apolipoprotein J Protein Profile in High-Density Lipoproteins. Transl. Res. 2015, 166, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Casani, L.; Mendieta, G.; Lamuela-Raventos, R.M.; Estruch, R.; Badimon, L. Beer Elicits Vasculoprotective Effects through Akt/ENOS Activation. Eur. J. Clin. Invest. 2014, 44, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Sanllorente, A.; Lassale, C.; Soria-Florido, M.T.; Castañer, O.; Fitó, M.; Hernáez, Á. Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 5897. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; de Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Pecoraro, V.; Moja, L.; Dall’Olmo, L.; Cappellini, G.; Garattini, S. Most Appropriate Animal Models to Study the Efficacy of Statins: A Systematic Review. Eur. J. Clin. Investig. 2014, 44, 848–871. [Google Scholar] [CrossRef]
- Busnelli, M.; Manzini, S.; Froio, A.; Vargiolu, A.; Cerrito, M.G.; Smolenski, R.T.; Giunti, M.; Cinti, A.; Zannoni, A.; Leone, B.E.; et al. Diet Induced Mild Hypercholesterolemia in Pigs: Local and Systemic Inflammation, Effects on Vascular Injury-Rescue by High-Dose Statin Treatment. PLoS ONE 2013, 8, e80588. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Solano-Aguilar, G.; Meng, H.; Lamon-Fava, S.; Goldbaum, A.; Walker, M.E.; Jang, S.; Lakshman, S.; Molokin, A.; Xie, Y.; et al. The Ossabaw Pig Is a Suitable Translational Model to Evaluate Dietary Patterns and Coronary Artery Disease Risk. J. Nutr. 2018, 148, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fuchimoto, D.; Sudo, M.; Haruta, H.; Lin, Q.-F.; Takayama, T.; Morita, S.; Nochi, T.; Suzuki, S.; Sembon, S.; et al. Development of Human-Like Advanced Coronary Plaques in Low-Density Lipoprotein Receptor Knockout Pigs and Justification for Statin Treatment Before Formation of Atherosclerotic Plaques. J. Am. Heart Assoc. 2016, 5, e002779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boodhwani, M.; Mieno, S.; Voisine, P.; Feng, J.; Sodha, N.; Li, J.; Sellke, F.W. High-Dose Atorvastatin Is Associated with Impaired Myocardial Angiogenesis in Response to Vascular Endothelial Growth Factor in Hypercholesterolemic Swine. J. Thorac. Cardiovasc. Surg. 2006, 132, 1299–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.J.; Choi, S.; Cheon, D.H.; Kim, K.Y.; Cheon, E.J.; Ann, S.-J.; Noh, H.-M.; Park, S.; Kang, S.-M.; Choi, D.; et al. Effect of Two Lipid-Lowering Strategies on High-Density Lipoprotein Function and Some HDL-Related Proteins: A Randomized Clinical Trial. Lipids Health Dis. 2017, 16, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triolo, M.; Annema, W.; de Boer, J.F.; Tietge, U.J.F.; Dullaart, R.P.F. Simvastatin and Bezafibrate Increase Cholesterol Efflux in Men with Type 2 Diabetes. Eur. J. Clin. Invest. 2014, 44, 240–248. [Google Scholar] [CrossRef]
- Guerin, M.; Egger, P.; Soudant, C.; le Goff, W.; van Tol, A.; Dupuis, R.; Chapman, M.J. Dose-Dependent Action of Atorvastatin in Type IIB Hyperlipidemia: Preferential and Progressive Reduction of Atherogenic ApoB-Containing Lipoprotein Subclasses (VLDL-2, IDL, Small Dense LDL) and Stimulation of Cellular Cholesterol Efflux. Atherosclerosis 2002, 163, 287–296. [Google Scholar] [CrossRef]
- Muñoz-Hernandez, L.; Ortiz-Bautista, R.J.; Brito-Córdova, G.; Lozano-Arvizu, F.; Saucedo, S.; Pérez-Méndez, O.; Zentella-Dehesa, A.; Dauteuille, C.; Lhomme, M.; Lesnik, P.; et al. Cholesterol Efflux Capacity of Large, Small and Total HDL Particles Is Unaltered by Atorvastatin in Patients with Type 2 Diabetes. Atherosclerosis 2018, 277, 72–79. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.; Kerstens, M.N.; Sluiter, W.J.; Groen, A.K.; van Tol, A.; Dullaart, R.P.F. Cellular Cholesterol Efflux to Plasma from Moderately Hypercholesterolaemic Type 1 Diabetic Patients Is Enhanced, and Is Unaffected by Simvastatin Treatment. Diabetologia 2005, 48, 1105–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwala, A.P.; Rodrigues, A.; Risman, M.; McCoy, M.; Trindade, K.; Qu, L.; Cuchel, M.; Billheimer, J.; Rader, D.J. High-Density Lipoprotein (HDL) Phospholipid Content and Cholesterol Efflux Capacity Are Reduced in Patients With Very High HDL Cholesterol and Coronary Disease. Arter. Thromb. Vasc. Biol. 2015, 35, 1515–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, P.R.; Ortiz-Cadenas, A.; la Torre, I.G.-D.; Nava, A.; Oregon-Miranda, A.; Batuca, J.R.; Kojima, K.; Lopez, L.R.; Matsuura, E. Rosuvastatin Treatment Is Associated with a Decrease of Serum Oxidised Low-Density Lipoprotein/Beta2-Glycoprotein I Complex Concentration in Type 2 Diabetes. Br. J. Diabetes Vasc. Dis. 2010, 10, 292–299. [Google Scholar] [CrossRef]
- Brites, F.; Martin, M.; Guillas, I.; Kontush, A. Antioxidative Activity of High-Density Lipoprotein (HDL): Mechanistic Insights into Potential Clinical Benefit. BBA Clin. 2017, 8, 66–77. [Google Scholar] [CrossRef]
- Saadat, S.; Boskabady, M.H. Anti-Inflammatory and Antioxidant Effects of Rosuvastatin on Asthmatic, Hyperlipidemic, and Asthmatic-Hyperlipidemic Rat Models. Inflammation 2021, 44, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Sultan, F.; Kaur, R.; Tarfain, N.U.; Mir, A.H.; Dumka, V.K.; Sharma, S.K.; Singh Saini, S.P. Protective Effect of Rosuvastatin Pretreatment against Acute Myocardial Injury by Regulating Nrf2, Bcl-2/Bax, INOS, and TNF-α Expressions Affecting Oxidative/Nitrosative Stress and Inflammation. Hum. Exp. Toxicol. 2022, 41, 9603271211066064. [Google Scholar] [CrossRef]
- Beltowski, J. Statins and Modulation of Oxidative Stress. Toxicol. Mech. Methods 2005, 15, 61–92. [Google Scholar] [CrossRef]
- Vasankari, T.; Ahotupa, M.; Viikari, J.; Nuotio, I.; Vuorenmaa, T.; Strandberg, T.; Vanhanen, H.; Tikkanen, M.J. Effects of Statin Therapy on Circulating Conjugated Dienes, a Measure of LDL Oxidation. Atherosclerosis 2005, 179, 207–209. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F.; Ooi, E.M.M.; Ji, J.; Johnson, A.G.; Barrett, P.H.R. Atorvastatin and Fenofibrate Have Comparable Effects on VLDL-Apolipoprotein C-III Kinetics in Men with the Metabolic Syndrome. Arter. Thromb. Vasc. Biol. 2008, 28, 1831–1837. [Google Scholar] [CrossRef] [Green Version]
- Desroches, S.; Ruel, I.L.; Deshaies, Y.; Paradis, M.-E.; Archer, W.R.; Couture, P.; Bergeron, N.; Lamarche, B. Kinetics of Plasma Apolipoprotein C-III as a Determinant of Diet-Induced Changes in Plasma Triglyceride Levels. Eur. J. Clin. Nutr. 2008, 62, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, D.; Harrison, T.; Lane, K.; Boddy, L.; Amirabdollahian, F.; Schmidt, M.; Enright, K.; Stewart, C.; Davies, I. The Effect of a Low Carbohydrate High Fat Diet on Apolipoproteins and Cardiovascular Risk. Proc. Nutr. Soc. 2020, 79, E677. [Google Scholar] [CrossRef]
- Luo, M.; Liu, A.; Wang, S.; Wang, T.; Hu, D.; Wu, S.; Peng, D. ApoCIII Enrichment in HDL Impairs HDL-Mediated Cholesterol Efflux Capacity. Sci. Rep. 2017, 7, 2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Zhao, S. Effect of Simvastatin on the Expression and Regulation Mechanism of Apolipoprotein M. Int. J. Mol. Med. 2012, 29, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.; Zheng, L. Regulation of the Apolipoprotein M Signaling Pathway: A Review. J. Recept. Signal. Transduct. Res. 2021, 42, 285–292. [Google Scholar] [CrossRef]
- Kurano, M.; Ikeda, H.; Iso-O, N.; Hara, M.; Tsukamoto, K.; Yatomi, Y. Regulation of the Metabolism of Apolipoprotein M and Sphingosine 1-Phosphate by Hepatic PPARγ Activity. Biochem. J. 2018, 475, 2009–2024. [Google Scholar] [CrossRef] [PubMed]
- Márquez, A.B.; Nazir, S.; van der Vorst, E.P.C. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines 2020, 8, 549. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, M.; Jentsch, J.A.; Peters, S.; Keul, P.; Weske, S.; Gräler, M.H.; Mladenov, E.; Iliakis, G.; Heusch, G.; Levkau, B. Regulation of ABCA1-Mediated Cholesterol Efflux by Sphingosine-1-Phosphate Signaling in Macrophages. J. Lipid Res. 2019, 60, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting Animal Research: Explanation and Elaboration for the ARRIVE Guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
- Havel, R.J.; Eder, H.A.; Bragdon, J.H. The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum. J. Clin. Invest. 1955, 34, 1345–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escolà-Gil, J.C.; Lee-Rueckert, M.; Santos, D.; Cedó, L.; Blanco-Vaca, F.; Julve, J. Quantification of In Vitro Macrophage Cholesterol Efflux and In Vivo Macrophage-Specific Reverse Cholesterol Transport. Methods Mol. Biol. 2015, 1339, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Moradi, H.; Pahl, M.V.; Fogelman, A.M.; Navab, M. In Vitro Stimulation of HDL Anti-Inflammatory Activity and Inhibition of LDL pro-Inflammatory Activity in the Plasma of Patients with End-Stage Renal Disease by an ApoA-1 Mimetic Peptide. Kidney Int. 2009, 76, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallol, R.; Amigó, N.; Rodríguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L.; et al. Liposcale: A Novel Advanced Lipoprotein Test Based on 2D Diffusion-Ordered 1H NMR Spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adorni, M.P.; Ronda, N.; Bernini, F.; Zimetti, F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Chi, G.; Fitzgerald, C.; Kazmi, S.H.A.; Kalayci, A.; Korjian, S.; Duffy, D.; Shaunik, A.; Kingwell, B.; Yeh, R.W.; et al. Cholesterol Efflux Capacity and Its Association with Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Front. Cardiovasc Med. 2021, 8, 774418. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | HDL-P (µmol/L) | p-Value |
---|---|---|
(a) Day 0 | 17.9 ± 2.7 | <0.0001 (vs. b,c,d) |
(b) Day 10 | 50.2 ± 13.6 | <0.0001 (vs. a,e,f) |
Day 40 | ||
(c) HC | 54.0 ± 9.5 | <0.0001 (vs. a,e,f) |
(d) HC + R | 56.4 ± 15.0 | <0.0001 (vs. a,e,f) |
(e) NC | 18.5 ± 2.6 | <0.0001 (vs. b,c,d) |
(f) NC + R | 16.8 ± 3.2 | <0.0001 (vs. b,c,d) |
Component | HC Diet (SSniff) | NC Diet (Sanky) |
---|---|---|
Energy | 4881 kcal/kg | 4019 kcal/kg |
Total fat | 24% | 4% |
of which is saturated fat | 21% | |
of which is cholesterol | 2% | |
of which is cholic acid | 1% | |
Proteins | 20% | 20% |
Carbohydrates | 35% | 53% |
Fiber | 5% | 6% |
Minerals | 6% | 8% |
Water | 10% | 9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoch, L.; Sutelman, P.; Suades, R.; Casani, L.; Padro, T.; Badimon, L.; Vilahur, G. Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. Int. J. Mol. Sci. 2022, 23, 8596. https://doi.org/10.3390/ijms23158596
Schoch L, Sutelman P, Suades R, Casani L, Padro T, Badimon L, Vilahur G. Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. International Journal of Molecular Sciences. 2022; 23(15):8596. https://doi.org/10.3390/ijms23158596
Chicago/Turabian StyleSchoch, Leonie, Pablo Sutelman, Rosa Suades, Laura Casani, Teresa Padro, Lina Badimon, and Gemma Vilahur. 2022. "Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model" International Journal of Molecular Sciences 23, no. 15: 8596. https://doi.org/10.3390/ijms23158596
APA StyleSchoch, L., Sutelman, P., Suades, R., Casani, L., Padro, T., Badimon, L., & Vilahur, G. (2022). Hypercholesterolemia-Induced HDL Dysfunction Can Be Reversed: The Impact of Diet and Statin Treatment in a Preclinical Animal Model. International Journal of Molecular Sciences, 23(15), 8596. https://doi.org/10.3390/ijms23158596