Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize
Abstract
:1. Introduction
2. Results
2.1. Identification of Maize sh2008 Mutant with Distorted and Shrunken Kernels
2.2. The sh2008 Mutant Largely Reduced the Accumulation of the Starch and Zein Protein in the Endosperm
2.3. Map-Based Cloning Showed That sh2008 Encodes a Mutated ZmThx20
2.4. Validation of the Role of ZmThx20 in Endosperm Development by Complementation Analysis and Gene-Editing
2.5. ZmThx20 Encodes a GT-2 Like Transcription Factor and Plays Roles in Gene Expression Regulation
2.6. Effects of ZmThx20 on Gene Expression
2.7. ZmThx20 Is a Nuclear-Localized Protein and an Activator of 19 kDa Zein Gene Expression
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Determination of Starch, Soluble Sugar, Amino Acid, and Protein Content in Maize Kernels (Endosperm)
4.3. Light Microscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) Analysis of the Morphology and Structure of the Starch Granules and Protein Bodies
4.4. Subcellular Localization, Overexpression, and Gene Editing of ZmThx20
4.5. qRT-PCR and Transcriptome Analysis
4.6. Yeast Single Hybrid Experiment
4.7. Transient Transcription Dual-LUC Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
kDa | Kilodalton |
O2 | Opaque 2 |
FL | Floury |
OHP | O2-heterodimerizing proteins |
PBF | DOF family TF Prolamin-box binding factor |
sh | Shrunken |
su 1 | Sugary 1 |
WT | Wild-type |
DAP | Days after pollination |
GO | Gene ontology |
DEG | Differentially expressed gene |
qRT-PCR | Quantitative real-time reverse transcription-polymerase chain reaction |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
References
- Food Security. The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, B.G.; Hannah, L.C. Shrunken-1 Encoded Sucrose Synthase Is Not Required for Sucrose Synthesis in the Maize Endosperm. Plant Physiol. 1988, 88, 1219–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint-Garcia, S.A.; Bodnar, A.L.; Scott, M.P. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 2009, 119, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.; White, P.; Johnson, L. Description, development, structure, and composition of the corn kernel. In Corn: Chemistry and Technology, 2nd ed.; American Association of Cereal Chemists: London, UK, 2003; pp. 69–106. [Google Scholar]
- Leroux, B.M.; Goodyke, A.J.; Schumacher, K.I.; Abbott, C.P.; Clore, A.M.; Yadegari, R.; Larkins, B.A.; Dannenhoffer, J. Maize early endosperm growth and development: From fertilization through cell type differentiation. Am. J. Bot. 2014, 101, 1259–1274. [Google Scholar] [CrossRef] [PubMed]
- Doll, N.M.; Depège-Fargeix, N.; Rogowsky, P.; Widiez, T. Signaling in Early Maize Kernel Development. Mol. Plant 2017, 10, 375–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Messing, J. Proteome balancing of the maize seed for higher nutritional value. Front. Plant Sci. 2014, 5, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esen, A. A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J. Cereal Sci. 1987, 5, 117–128. [Google Scholar] [CrossRef]
- Coleman, C.E.; Clore, A.M.; Ranch, J.P. Expression of a mutant α-zein creates the floury2 phenotype in transgenicmaize. Proc. Natl. Acad. Sci. USA 1997, 94, 7094–7097. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Hunter, B.G.; Kraft, J.; Boston, R.S.; Yans, S.; Jung, R.; Larkins, B.A. A Defective Signal Peptide in a 19-kD α-Zein Protein Causes the Unfolded Protein Response and an Opaque Endosperm Phenotype in the Maize De*-B30 Mutant. Plant Physiol. 2004, 134, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Qi, W.; Wu, Q.; Yao, D.; Zhang, J.; Zhu, J.; Wang, G.; Wang, G.; Tang, Y.; Song, R. Identification and Characterization of Maize floury4 as a Novel Semidominant Opaque Mutant That Disrupts Protein Body Assembly. Plant Physiol. 2014, 165, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Gibbon, B.C.; Gillikin, J.W.; Larkins, B.A.; Boston, R.S.; Jung, R. The maize Mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant J. 2006, 48, 440–451. [Google Scholar] [CrossRef]
- Holding, D.R.; Otegui, M.; Li, B.; Meeley, R.B.; Dam, T.; Hunter, B.G.; Jung, R.; Larkins, B.A. The Maize Floury1 Gene Encodes a Novel Endoplasmic Reticulum Protein Involved in Zein Protein Body Formation. Plant Cell 2007, 19, 2569–2582. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sun, X.; Wang, G.; Wang, F.; Gao, Q.; Sun, X.; Tang, Y.; Chang, C.; Lai, J.; Zhu, L.; et al. Opaque7 Encodes an Acyl-Activating Enzyme-Like Protein That Affects Storage Protein Synthesis in Maize Endosperm. Genetics 2011, 189, 1281–1295. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, F.; Wang, G.; Wang, F.; Zhang, X.; Zhong, M.; Zhang, J.; Lin, D.; Tang, Y.; Xu, Z.; et al. Opaque1 Encodes a Myosin XI Motor Protein That Is Required for Endoplasmic Reticulum Motility and Protein Body Formation in Maize Endosperm. Plant Cell 2012, 24, 3447–3462. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Qi, W.; Li, X.; Yang, Q.; Yan, S.; Ling, H.; Wang, G.; Wang, G.; Song, R. Maize opaque10 Encodes a Cereal-Specific Protein That Is Essential for the Proper Distribution of Zeins in Endosperm Protein Bodies. PLoS Genet. 2016, 12, e1006270. [Google Scholar] [CrossRef]
- Myers, A.M.; James, M.G.; Lin, Q.; Yi, G.; Stinard, P.S.; Hennen-Bierwagen, T.; Becraft, P.W. Maize opaque5 Encodes Monogalactosyldiacylglycerol Synthase and Specifically Affects Galactolipids Necessary for Amyloplast and Chloroplast Function. Plant Cell 2011, 23, 2331–2347. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, J.; Ye, J.; Zheng, X.; Xiang, X.; Li, C.; Fu, M.; Wang, Q.; Zhang, Z.; Wu, Y. The Maize Imprinted Gene Floury3 Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase III. Plant Cell 2017, 29, 2661–2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, B.G.; Beatty, M.K.; Singletary, G.W.; Hamaker, B.R.; Dilkes, B.; Larkins, B.A.; Jung, R. Maize Opaque Endosperm Mutations Create Extensive Changes in Patterns of Gene Expression. Plant Cell 2002, 14, 2591–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Qiao, Z.; Qi, W.; Wang, Q.; Yuan, Y.; Yang, X.; Tang, Y.; Mei, B.; Lv, Y.; Zhao, H.; et al. Genome-Wide Characterization of cis-Acting DNA Targets Reveals the Transcriptional Regulatory Framework of Opaque2 in Maize. Plant Cell 2015, 27, 532–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, J.; Li, G.; Ryu, C.-H.; Ma, C.; Zhang, S.; Lloyd, A.; Hunter, B.G.; Larkins, B.A.; Drews, G.N.; Wang, X.; et al. Opaque-2 Regulates a Complex Gene Network Associated with Cell Differentiation and Storage Functions of Maize Endosperm. Plant Cell 2018, 30, 2425–2446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.J.; Burr, F.A.; Aukerman, M.J.; Burr, B. Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc. Natl. Acad. Sci. USA 1990, 87, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.J. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell Online 1992, 4, 689–700. [Google Scholar]
- Muth, J.R.; Müller, M.; Lohmer, S.; Salamini, F.; Thompson, R.D. The role of multiple binding sites in the activation of zein gene expression by Opaque. Mol. Gen. Genet. MGG 1996, 252, 723–732. [Google Scholar]
- Mertz, E.T.; Bates, L.S.; Nelson, O.E. Mutant gene that changes protein composition and inicreases lysine content of maize endosperm. Science 1964, 145, 279–280. [Google Scholar] [CrossRef]
- Xu, J.-H.; Messing, J. Diverged Copies of the Seed Regulatory Opaque-2 Gene by a Segmental Duplication in the Progenitor Genome of Rice, Sorghum, and Maize. Mol. Plant 2008, 1, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ji, C.; Wu, Y. Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs. Genetics 2016, 204, 581–591. [Google Scholar] [CrossRef]
- Pysh, L.D.; Aukerman, M.J.; Schmidt, R.J. OHP1: A maize basic domain/leucine zipper protein that interacts with opaque. Plant Cell 1993, 5, 227–236. [Google Scholar] [PubMed] [Green Version]
- Unger, E.; Parsons, R.L.; Schmidt, R.J.; Bowen, B.; Roth, B.A. Dominant Negative Mutants of Opaque2 Suppress Transactivation of a 22-kD Zein Promoter by Opaque2 in Maize Endosperm Cells. Plant Cell 1993, 5, 831–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicente-Carbajosa, J.; Moose, S.P.; Parsons, R.L.; Schmidt, R.J. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque. Proc. Natl. Acad. Sci. USA 1997, 94, 7685–7690. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Z.; Qi, W.; Wang, Q.; Feng, Y.; Yang, Q.; Zhang, N.; Wang, S.; Tang, Y.; Song, R. ZmMADS47 Regulates Zein Gene Transcription through Interaction with Opaque. PLoS Genet. 2016, 12, e1005991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Qiao, Z.; Liang, Z.; Mei, B.; Xu, Z.; Song, R. Zea mays Taxilin Protein Negatively Regulates Opaque-2 Transcriptional Activity by Causing a Change in Its Sub-Cellular Distribution. PLoS ONE 2012, 7, e43822. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yue, Y.; Chen, H.; Qi, W.; Song, R. The ZmbZIP22 Transcription Factor Regulates 27-kD gamma-Zein Gene Transcription during Maize Endosperm Development. Plant Cell 2018, 30, 2402–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Dong, J.; Ji, C.; Wu, Y.; Messing, J. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc. Natl. Acad. Sci. USA 2019, 116, 11223–11228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chourey, P.S.; Nelson, O.E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem. Genet. 1976, 14, 1041–1055. [Google Scholar] [CrossRef]
- Nelson, O.E. The WAXY Locus in Maize. II. the Location of the Controlling Element Alleles. Genetics 1968, 60, 507–524. [Google Scholar] [CrossRef] [PubMed]
- Cobb, B.G.; Hannah, L.C. Development of wild type, shrunken-1 and shrunken-2 maize kernels grown in vitro. Theor. Appl. Genet. 1983, 65, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.B.; Boyer, C.D. Immunological Characterization of Maize Starch Branching Enzymes. Plant Physiol. 1983, 72, 813–816. [Google Scholar] [CrossRef] [Green Version]
- James, M.G.; Robertson, D.S.; Myers, A.M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 1995, 7, 417–429. [Google Scholar] [PubMed] [Green Version]
- Szymanek, M.; Tanaś, W.; Kassar, F.H. Kernel Carbohydrates Concentration in Sugary-1, Sugary Enhanced and Shrunken Sweet Corn Kernels. Agric. Agric. Sci. Procedia 2015, 7, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Nelson, O.E.; Rines, H.W. The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 1962, 9, 297–300. [Google Scholar] [CrossRef]
- Kang, B.-H.; Xiong, Y.; Williams, D.S.; Pozueta-Romero, D.; Chourey, P.S. Miniature1-Encoded Cell Wall Invertase Is Essential for Assembly and Function of Wall-in-Growth in the Maize Endosperm Transfer Cell. Plant Physiol. 2009, 151, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Le Gourrierec, J.; Li, Y.-F.; Zhou, D.-X. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J. 1999, 18, 663–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan-Levy, R.N.; Brewer, P.B.; Quon, T.; Smyth, D.R. The trihelix family of transcription factors—light, stress and development. Trends Plant Sci. 2012, 17, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xie, K.; Hou, X.; Hu, H.; Xiong, L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol. Genet. Genom. 2009, 283, 157–169. [Google Scholar] [CrossRef]
- Zhang, S.; Zhan, J.; Yadegari, R. Maize opaque mutants are no longer so opaque. Plant Reprod. 2018, 31, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Stelpflug, S.C.; Sekhon, R.S.; Vaillancourt, B.; Hirsch, C.N.; Buell, C.R.; De Leon, N.; Kaeppler, S.M. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome 2016, 9. [Google Scholar] [CrossRef]
- Hoopes, G.; Hamilton, J.P.; Wood, J.; Esteban, E.; Pasha, A.; Vaillancourt, B.; Provart, N.J.; Buell, C.R. An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J. 2018, 97, 1154–1167. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Huang, M.; Liu, L. The genome wide analysis of GT transcription factors that respond to drought and waterlogging stresses in maize. Euphytica 2016, 208, 113–122. [Google Scholar] [CrossRef]
- Jiang, L.Y.X.; Chen, D.; Wang, H.; Cao, D.; Zhang, J.; Li, J. Expression analysis of trihelix gene family in maize (Zea mays) using bioinformatics. Int. J. Agric. Biol. 2020, 23, 863–868. [Google Scholar] [CrossRef]
- Kuhn, R.M.; Caspar, T.; Dehesh, K.; Quail, P.H. DNA binding factor GT-2 from Arabidopsis. Plant Mol. Biol. 1993, 23, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, X.; Yang, J.; Messing, J.; Wu, Y. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc. Natl. Acad. Sci. USA 2016, 113, 10842–10847. [Google Scholar] [CrossRef] [Green Version]
- Hannah, L.C.; Nelson, O.E. Characterization of Adenosine Diphosphate Glucose Pyrophosphorylases from Developing Maize Seeds. Plant Physiol. 1975, 55, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannah, L.C.; Nelson, O.E. Characterization of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize. Biochem. Genet. 1976, 14, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Bhave, M.R.; Lawrence, S.; Barton, C.; Hannah, L.C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 1990, 2, 581–588. [Google Scholar]
- Weng, H.; Yoo, C.Y.; Gosney, M.J.; Hasegawa, P.M.; Mickelbart, M.V. Poplar GTL1 Is a Ca2+/Calmodulin-Binding Transcription Factor that Functions in Plant Water Use Efficiency and Drought Tolerance. PLoS ONE 2012, 7, e32925. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.Y.; Pence, H.E.; Jin, J.B.; Miura, K.; Gosney, M.J.; Hasegawa, P.M.; Mickelbart, M.V. The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD. Plant Cell 2011, 22, 4128–4141. [Google Scholar] [CrossRef] [Green Version]
- Pagnussat, G.; Yu, H.-J.; Ngo, Q.A.; Rajani, S.; Mayalagu, S.; Johnson, C.S.; Capron, A.; Xie, L.-F.; Ye, D.; Sundaresan, V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005, 132, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.-J.; Lydiate, D.J.; Li, X.; Lui, H.; Gjetvaj, B.; Hegedus, D.D.; Rozwadowski, K. Repression of Seed Maturation Genes by a Trihelix Transcriptional Repressor in Arabidopsis Seedlings. Plant Cell 2009, 21, 54–71. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.-J.; Li, X.; Lui, H.; Gropp, G.M.; Lydiate, D.D.; Wei, S.; Hegedus, D.D. ASIL1 is required for proper timing of seed filling in Arabidopsis. Plant Signal. Behav. 2011, 6, 1886–1888. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Griffith, M.E.; Li, X.; Zhu, Z.; Tan, L.; Fu, Y.; Zhang, W.; Wang, X.; Xie, D.; Sun, C. Origin of seed shattering in rice (Oryza sativa L.). Planta 2007, 226, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.A.; Keith, B.; Shinozaki, K.; Chye, M.L.; Chua, N.H. The rice phytochrome gene: Structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5’ upstream region. Plant Cell 1989, 1, 351–360. [Google Scholar]
- Green, P.J.; Kay, S.A.; Chua, N.H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 1987, 6, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Kinnersley, A.M.; Turano, F.J. Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Crit. Rev. Plant Sci. 2000, 19, 479–509. [Google Scholar] [CrossRef]
- Rai, V. Role of Amino Acids in Plant Responses to Stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Li, N.; Zhang, S.; Zhao, Y.; Li, B.; Zhang, J. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 2011, 233, 241–250. [Google Scholar] [CrossRef]
- Reyes, F.G.; Varseveld, G.W.; Kuhn, M.C. Sugar Composition and Flavor Quality of High Sugar (Shrunken) and Normal Sweet Corn. J. Food Sci. 1982, 47, 753–755. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, N.; Li, B.; Li, Z.; Xie, G.; Zhang, J. Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology. Planta 2014, 241, 449–461. [Google Scholar] [CrossRef]
- Zhu, J.; Song, N.; Sun, S.; Yang, W.; Zhao, H.; Song, W.; Lai, J. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas. J. Genet. Genom. 2016, 43, 25–36. [Google Scholar] [CrossRef]
- Hellens, R.P.; Allan, A.C.; Friel, E.N.; Bolitho, K.; Grafton, K.; Templeton, M.D.; Karunairetnam, S.; Gleave, A.P.; Laing, W.A. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 2005, 1, 13. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Li, Z.; Xie, G.; Zhang, J. Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize. Int. J. Mol. Sci. 2021, 22, 12137. https://doi.org/10.3390/ijms222212137
Li P, Li Z, Xie G, Zhang J. Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize. International Journal of Molecular Sciences. 2021; 22(22):12137. https://doi.org/10.3390/ijms222212137
Chicago/Turabian StyleLi, Peng, Zhaoxia Li, Guangning Xie, and Juren Zhang. 2021. "Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize" International Journal of Molecular Sciences 22, no. 22: 12137. https://doi.org/10.3390/ijms222212137
APA StyleLi, P., Li, Z., Xie, G., & Zhang, J. (2021). Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize. International Journal of Molecular Sciences, 22(22), 12137. https://doi.org/10.3390/ijms222212137