Next Article in Journal
CX-5461 Enhances the Efficacy of APR-246 via Induction of DNA Damage and Replication Stress in Triple-Negative Breast Cancer
Next Article in Special Issue
Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins?
Previous Article in Journal
Application of Immunohistochemistry in the Pathological Diagnosis of Liver Tumors
Previous Article in Special Issue
Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure

The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
Int. J. Mol. Sci. 2021, 22(11), 5783; https://doi.org/10.3390/ijms22115783
Submission received: 10 May 2021 / Revised: 20 May 2021 / Accepted: 22 May 2021 / Published: 28 May 2021
(This article belongs to the Special Issue Metabolic Therapies for Heart Failure)

Abstract

:
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.

1. Introduction

Adrenergic receptors (ARs) are members of the G-Protein Coupled Receptor (GPCR) superfamily that bind adrenaline (i.e., epinephrine) and noradrenaline (i.e., norepinephrine) [1]. They regulate the sympathetic nervous system at both central and peripheral sites and modulate the “flight or fight” response to stress. Manifestations of this response include increasing heart rate and contractility, diverting blood flow to essential organs such as skeletal muscle and increasing metabolism to promote survival. ARs are classified into three families: α1, α2, and β. Each of these families contain three subtypes (α1A, α1B, α1D), (α2A, α2B, α2C), (β1, β2, and β3), and all three families bind epinephrine (Epi) and norepinephrine (NE) with similar affinity. However, they can regulate different physiological processes because they couple to different heterotrimeric and monomeric G-proteins and effector proteins that transduce different signaling pathways (Table 1). AR signaling causes a negative feedback to desensitize and regulate the signal transduction process through activation of GPCR kinases that phosphorylate specific residues on the receptor [2,3].
While β-ARs are well known to be affected during heart failure (HF) and β-AR blockers used in HF treatment, the role of α1-ARs, particularly the α1A-AR, are recent developments in offering cardioprotective and inotropic benefits during HF. Their roles in regulating metabolic pathways that are altered during HF may be an underappreciated mechanism in their ability to treat HF and is the focus of this review.

2. Cardiac ARs

The myocyte expresses both α1- and β-AR subtypes. β-ARs are predominately expressed in the myocyte, followed by the β2-AR subtype [4,5] in an approximate 80:20 ratio. β-ARs are transduced by the Gs G-protein to stimulate adenylate cyclase which produces a transient rise in the second messenger cAMP (Table 1). The main effector of cAMP is protein kinase A (PKA). The major function of β-ARs in the heart are to regulate rate and contractility in response to the sympathetic release of NE and Epi. PKA signaling mediates a positive inotropic and chronotropic response (Table 1) through the phosphorylation of cardiac calcium-handling and myofilaments that control the excitation-contraction coupling such as L-type Ca2+ channels, ryanodine receptors, phospholamban and troponin I [6,7,8,9]. The β2-AR signals differently from the β1-AR in the heart with the β2-AR being able to switch coupling to Gi (Table 1), resulting in cardioprotective effects against apoptosis [10,11,12] but has little effects on inotropy or chronotropy. There is a small amount (5% of total β-AR pool) of the β3-AR in human heart. While the β1-ARs regulate positive inotropy, the β3-AR is postulated to regulate negative inotropy through its release of nitric oxide [13,14,15,16] (Table 1).
Of the α1-ARs, both the α1A and α1B-AR but not the α1D-AR subtype is expressed in myocytes [17,18,19] (Table 1). The α1D-AR is expressed in vascular smooth muscle as are the other α1-AR subtypes but is more highly expressed in coronary arteries [20,21,22]. The α1B-AR is expressed at higher levels in the heart than the α1A-AR based upon radioligand binding studies in rodent and human tissues [18,21,23] but represent a much overall lower density than total β-ARs. The main signaling pathway that is transduced by α1-ARs are coupled to the Gq/11 family of G-proteins. Gq/11 activates phospholipase Cβ1 (PLCβ1) which cleaves the membrane-bound phosphatidylinositol 4,5-bisphosphate to release inositol triphosphate (IP3) and diacylglycerol (DAG) [24] (Table 1). The IP3 causes a release of intracellular calcium from the endoplasmic reticulum while DAG activates protein kinase C (PKC). α1-ARs activate a positive inotropy induced from calcium sensitizing the myofibril filaments [25,26,27] and by phosphorylation of various cardiac proteins by PKC and/or Rho also contributing [28,29,30,31].
A main function of all α1-ARs is its ability to increase blood pressure via contraction of vascular smooth muscle (Table 1). However, in the heart, studies suggest that the α1A-AR subtype mediates positive inotropy [29,32,33,34] while the α1B-AR regulates negative inotropy [35,36,37,38,39] which may act as a physiological brake to regulate the robust positive inotropy of β-ARs [40].
While the α2-ARs are not present in the myocyte, the α2B-AR subtype does control vascular contraction and blood flow [41] while the α2A-AR and α2C-AR subtypes are located on sympathetic nerve terminals to regulate the release of NE [42] (Table 1) and thus, can still influence the onset and progression of HF [43]. During failure, there is a chronic release of catecholamines from the sympathetic nerves and a genetic dysfunctional variant of the α2C-AR has been described in a human heart failure patient linked with poor prognosis [44].

3. ARs in Heart Failure

In HF, the sympathetic nervous system tries to compensate from the loss of contractility by causing high levels of catecholamine release, referred to as overdrive. The elevated plasma levels of NE cause β1-ARs to be desensitized and downregulated by as much as 50% with β2-ARs levels remaining unchanged as shown by radioligand binding studies [4,45]. Chronic stimulation of the β1-ARs, while beneficial in the short-term for HF by increasing inotropy, long-term signaling causes necrosis and cell death due to cAMP-mediated calcium overload, so β1-AR agonists are not a viable therapy [46,47,48,49]. In contrast, β2-AR stimulation is thought to be cardioprotective, protecting against apoptosis [11,50,51] and may improve function [51,52], but becomes more diffuse and non-compartmentalized in the myocyte during HF and may not signal properly [53]. β-AR blockers have long been used as a standard of treatment for HF [45,54,55,56,57]. Besides a direct blocking action of catecholamines, β-AR blockers also can re-sensitize the β-ARs preventing their downregulation and repopulating the myocyte cell surface [58].
β3-AR stimulation has been proposed as a brake system for β1- and β2-AR overstimulation during HF since they may couple to Gi in the myocardium [13,14]. Besides having its own cardioprotective benefits [59], the β3-AR lacks GPCR kinase recognition sites [60] and so will not become desensitized as the other β-ARs during sympathetic overdrive during HF. However, the potential use of β3-AR agonists or antagonists in HF is still highly debated.
Changes in α1-AR receptor protein levels during HF are also controversial with receptor levels being either unchanged [21,61], increased [17,62,63,64] or decreased [65,66,67]. The vast variability in these studies of changes in α1-AR protein levels could be due to the severity, or degree of HF [66], the amount of sympathetic overdrive and plasma levels of catecholamines [68] or the etiology of HF (ischemic versus non-ischemic) since α1-ARs are known to increase receptor density during ischemia or low oxygen conditions [69,70,71,72,73,74].
Early assessments of α1-AR effects on the heart were first reported as secondary and minor to β-ARs [1] but with better tools available, the α1A-AR has been shown to have a robust positive inotropic response in the human heart and remains functional during failure [34,37,75,76,77]. It is believed that α1A-AR stimulation is adaptive in the heart and stimulation of this subtype may provide therapeutic benefit during failure [1,34]. Transgenic and knock-out (KO) mouse models indicate that mice are protected against HF [78] or myocardial infarction [79]. The α1A-AR selective agonist, A61603 or dabuzalgron can increase survival and prevent cardiac damage [80,81]. In contrast, stimulation of the α1B-AR subtype is maladaptive in the heart and can lead to dilated cardiomyopathy or dysfunction [82,83,84], progressing to HF [85]. During HF and β-AR downregulation, the α1A-AR’s contractile effects in the myocyte may become important in mitigating the loss of β-AR-mediated inotropy [37,38,39].

4. Metabolic Regulation of Normal vs. Failing Heart

The heart has the highest metabolic rate and energy requirement of all organs other than the kidney [86] and HF has often been characterized as “an engine out of fuel” [87]. To satisfy these high energy demands, the normal heart has a high degree of flexibility to metabolize various substrates to generate adenosine triphosphate (ATP) such as utilizing glucose, lactate, fatty acids, and ketone bodies. This process is tightly regulated but has a high degree of plasticity and interdependence between the substrates utilized. The pathology of HF causes alterations in the heart’s ability to regulate and metabolize these substrates resulting in energy deficits that contribute to aversive outcomes and poor prognosis [88,89,90].

4.1. Glucose Utilization

Various carbohydrates such as glucose, glycogen, and lactate are used by the heart to produce ATP. Glucose is taken up by the myocyte through glucose transporters (GLUTs) GLUT1 and GLUT4 [91], then metabolized by oxidation to produce ATP, CO2, and H2O. This process first entails glycolysis which does not require oxygen (i.e., anaerobic) and occurs in the cytosol. Phosphofructokinase 1 is the step that commits glucose to undergoing glycolysis [92]. If sufficient oxygen (i.e., aerobic) is present, pyruvate then enters the mitochondria and is metabolized further by the citric acid cycle or Krebs cycle and the electron transport system, producing in total 30 ATP molecules per molecule of glucose. If the heart is ischemic (i.e., lack or low oxygen levels), only 5 ATP molecules are produced, a vast difference. The oxidation of glucose is mainly regulated by the pyruvate dehydrogenase (PDH) complex. A schematic of glycolysis and glucose oxidation in the myocyte is shown in Figure 1.
An alternative pathway for glucose utilization is the pentose phosphate pathway (PPP) which is the main generator of nicotinamide adenine dinucleotide phosphate (NADPH) in the cytoplasm [93]. It also generates ribose sugars which are used for nucleotide synthesis. The first step of the PPP is the oxidation of glucose-6-phosphate (produced through glycolysis) which uses the rate-limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD) to generate NADPH (Figure 1). NADPH is required by several defensive redox antioxidant pathways for survival of the cell against reactive oxygen species (ROS), particularly in organs with high energy requirements, such as the heart [94]. In a normal heart, approximately 2–4% of oxygen used during metabolism during oxidative phosphorylation is converted to ROS [95,96,97]. In a healthy cell, the rate of superoxide production is kept in check by its dismutation to water and oxygen via the enzyme superoxide dismutase to hydrogen peroxide, then eventually to water [93,98]. An imbalance in this system can occur due to excessive ROS production or insufficient antioxidant breakdown. Increased ROS species have been well documented to occur in HF patients [99,100,101,102,103,104].
A loss of that protection from ROS damage in the heart can result from deficiency in G6PD and shown to occur during ischemia [105], and HF [105,106,107,108]. Unloading of the failing heart using a left ventricular assist device increased the metabolic flux into the PPP [108,109]. However, persistent activation of this pathway or upregulation of G6PD can occur during severe HF when glucose oxidation becomes severely limited and forces more of the glucose to enter the alternate PPP [110,111]. In this case, the PPP now promotes superoxide generation and oxidative stress in the failing heart due to increases in NADPH oxidase [112,113]. Increases in G6PD in the heart can also occur in diabetic or obese patients before cardiac pathology develops leading to more adverse outcomes [114]. The role of G6PD is even more complicated because the same study that associated deficiency and loss of ROS damage protection during HF [106] also found evidence of improvement in coronary artery disease and has been confirmed in additional studies [115,116]. Several studies on the metabolomic profiles of HF patients indicated a large array of metabolic dysfunction including the PPP [90,91,117,118]. The regulation of the PPP may be more important than previously realized in HF because decreased G6PD levels are the most common enzyme deficiency in humans [119,120]. The genetic mutation in G6PD that causes decreased expression is X-linked recessive [121], hence it is most commonly present in males and could be a possible explanation of why men developed HF more frequently than women.

4.2. Fatty Acid Metabolism

In the normal adult heart, about 95% of its ATP requirements are due to mitochondrial oxidative phosphorylation with 60–80% of that from fatty acid oxidation [122,123,124,125,126]. Fatty acids can freely cross the cell membrane or are transported and activated in the heart via transport proteins (fatty acid transport protein, FATP) and are activated by conversion to long-chain fatty acyl-CoA esters. They are then exported into the mitochondria for β-oxidation [127]. While medium chain fatty acids can cross freely into the mitochondria, a transport mechanism called the carnitine shuttle is required to shuttle long-chain fatty acids into the mitochondria using the enzymes carnitine palmitoyl transferase 1 and 2 (CPT1 and 2) [128,129]. Once in the mitochondria, β-oxidation begins and is cyclic, shortening the fatty acyl-CoA esters by 2 carbon units each cycle till the chain is fully broken down, liberating acetyl-CoA (which enters the TCA cycle for further metabolism), and producing nicotinamide adenine dinucleotide (NADH) and 1,5-dihydro-flavin adenine dinucleotide (FADH2) which are oxidized in the electron transport chain (i.e., oxidative phosphorylation) to produce ATP and water. A schematic of fatty acid oxidation in the cardiac myocyte is shown in Figure 2.
As the heart fails, its ATP levels drop by 30–40% during the advanced stages of failure compared to the normal heart [130,131,132]. The drop in ATP production during HF is due to several factors such as increased ROS, altered calcium handling, defects in the consumption rates of oxygen, mitochondrial dysfunction, decreased electron transport chain activity, which all have effects on ATP generation during oxidative phosphorylation [87,89,126,133,134,135,136]. This energy deficit during HF is responsible for the loss of contractile function as contraction alone requires more than 60% of the available normal ATP pool [126]. The little ATP that is left after contraction during failure results in insufficient energy to regulate the other critical functions of the heart such as calcium handling, cellular homeostasis, and maintaining membrane potentials resulting in decrease mitochondrial turnover and biogenesis [137,138,139,140,141].
The metabolic profiling of induced-HF in various animal models does show considerable variability and the need to be cautious in interpretations of the early metabolic changes. During pressure overload-induced HF, there is a decrease in both fatty acid and glucose oxidation [142,143]. In other animal models of HF, such as rapid ventricular pacing, there are decreased rates of fatty acid oxidation but increased rates of glucose oxidation [110,143,144,145]. These differences might be due to the severity of the HF, as metabolic flexibility in substrate use that occurs in the normal heart is lost during the progression to severe HF, resulting in decreased ability to increase either fatty acid or glucose uptake [146,147].
Another explanation for the metabolic disparity in the various types of HF models may be dependent upon whether there is failure with preserved ejection fraction (HFpEF) or with reduced ejection fraction (HFrEF) [148,149,150]. Volume or pressure overload HF models may not cause a reduction in ejection fraction. HFpEF accounts for almost half of the HF population but has similar morbidity and mortality rates as HFrEF [137,151,152,153]. In HFrEF models, the metabolic changes mostly include a decrease in both fatty acid and glucose oxidation but increases in glycolysis [144,146,149,154,155,156]. In contrast, in HFpEF models, fatty acid oxidation and glycolysis are increased but glucose oxidation is decreased [157,158,159,160,161,162,163]. As both HFrEF and HFpEF have in common a decrease in glucose oxidation resulting in cardiac energy inefficiency, metabolic treatments that can increase glucose oxidation may be the most universal in treating HF.
Abnormally high rates of glucose metabolism are one of the earliest metabolic changes that occurs during the development of HF [154,164]. The shift to increased utilization of glucose as opposed to fatty acids is postulated to occur because it spares the use of oxygen [125,165]. While glucose uptake is generally preserved or increased during failure, there is a metabolic shift from oxidative pathways to glycolysis and an uncoupling between glycolysis and its complete oxidation. This is because of reduced capacity to enter the TCA cycle [166] or oxidative phosphorylation due to defects in electron transport [104,167,168,169,170], resulting in energy inefficiency and functional weakening of the heart [171,172]. An increase in anaerobic glycolysis uncouples the oxidative process and results in the generation of lactate and protons [173,174,175]. The resulting decrease in pH reduces the contractility of the heart [176,177] and decreases cardiac efficiency [125,161,178,179]. Hence, therapeutics that can optimize glucose utilization and oxidation may reduce the severity of HF by increasing energy efficiency of glucose [179,180,181,182,183,184].

4.3. General Metabolic Therapies for HF

Stimulating glucose uptake and oxidation in the heart has been shown to improve the rate of recovery from ischemic damage [179,182,185,186]. This can occur through increased GLUT expression or translocation, increased activity of phosphofructokinase 1 or flux into glycolysis [109,110]. However, current thinking is that increasing glucose uptake without also increasing glucose oxidation may cause an uncoupling of the pathways and lead to cardiac inefficiency [125]. Activation of pyruvate dehydrogenase (PDH), a rate-limiting enzyme in glucose oxidation, can increase glucose oxidation rates. PDK kinase inhibitors such as dichloroacetate, can stimulate PDH activity improves energy efficiency and reduces oxygen consumption to improve function during HF [187] but has a short half-life and would need to be continuously infused.
Inhibition of fatty acid oxidation causes a compensatory increase in glucose oxidation and improves cardiac metabolic efficiency, decreases mitochondrial oxidative capacity, and has also been used for a number of therapeutic strategies in HF [156]. Carnitine palmitoyltransferase-1 (CPT1) is an enzyme involved in the uptake of fatty acids into the mitochondria [188]. Inhibitors of CPT1 decrease fatty acid oxidation and increase glucose oxidation in the heart [180,188,189] and can improve outcomes in HF [190,191] but can lead to serious side effects and high doses cause impaired energetics [192,193]. Inhibitors of the last enzyme in fatty acid oxidation, long-chain 3-ketoacyl CoA thiolase, are showing a better therapeutic profile in treating HF [194,195,196].
Since fatty acid oxidation provides much greater ATP production compared with glucose, therapeutic treatments that revert the heart back to using fatty acids as substrates might also be an option for treating HF, but several models of HF have shown downregulated or have dysfunctional enzymes or proteins involved in the fatty acid oxidation process [142,197,198,199]. If these defects can be reversed through mechanical unloading or other means, targeting peroxisome proliferator-activated receptors (PPARs) or mitochondrial fatty acid metabolizing proteins could provide therapeutic treatments for HF.

5. ARs in Cardiac Metabolism and as Potential Therapeutics

ARs regulate many aspects of metabolism in the substrate preference, mobilization, and utilization as it relates to normal heart function and changes that can occur during HF [90,117,200,201]. Mouse embryos with dopamine β-hydroxylase gene KO which prevents the biosynthesis of NE or Epi, have decreased glucose metabolism, oxygen consumption, ATP levels with elevated concentrations of ADP, leading to HF and death [90,200,201]. These deficiencies could be reversed by administration of either the β-AR agonist, isoproterenol, or the α1-AR agonist, phenylephrine [201]. The addition of pyruvate also led to a recovery of the ATP loss, suggesting that the loss of cardiac glycolysis prevented sufficient substrate for aerobic respiration [90]. Targeted disruption of the pathway that leads to only Epi biosynthesis does not affect heart development nor develops HF [202,203]. These results suggest that NE by stimulating both α1- and β-ARs are essential for heart development and metabolism by regulating the embryonic shift from anaerobic glycolysis to aerobic metabolism and oxidative phosphorylation in the heart.
In general, catecholamines have also been shown to increase glucose uptake, glycolysis, and glucose and fatty acid oxidation in the adult heart [204,205,206,207] driving fatty acid oxidation at much less levels (10% increase) versus a much larger proportion (410% increase) in glucose oxidation [208]. Catecholamines also increase lipolysis in fat cells, reduce insulin release and insulin sensitivity which can lead to metabolic effects on the heart [209,210,211].

5.1. α1-ARs

Early studies on the role of α1-ARs in metabolism have shown increased gluconeogenesis and ketogenesis in both the liver [212,213,214,215,216] and in the kidneys [217,218]. The mechanism is through calcium release and the phosphorylation of glycogen phosphorylase [219,220]. Both the liver and kidneys are gluconeogenic organs and both can increase systemic glucose production. Glucose and sodium metabolism are linked as the kidneys reabsorb glucose through sodium-glucose cotransporters (SGLT) 1 and 2. SGLT inhibitors and inhibition of glucose reabsorption can improve hemodynamics to reduce adverse outcomes in HF [221,222], postulated to occur through increasing fuel efficiency, utilization, and oxygen delivery [221] SGLT inhibitors also induce a fast-like metabolic state that enhances gluconeogenesis and ketogenesis [223], unlike traditional antihyperglycemic agents such as insulin or metformin which suppresses both gluconeogenesis and ketogenesis [224,225]. Ketone bodies are highly efficient source of energy and improve heart work efficiency [226] and more so during HF in the diabetic where glucose metabolism is impaired due to insulin resistance [227]. Ketones are also anti-inflammatory [228,229,230] and antioxidant [231], all protective mechanisms in HF. We speculate that α1-AR agonists may confer part of their cardioprotective benefits and limit the progression of HF, particularly in the diabetic heart, by metabolically increasing glucose and ketone body availability through enhanced glucogenesis and ketogenesis.
Glucose uptake is increased in the heart during ischemia via translocation of the glucose transporters GLUT 1 and GLUT 4 [232]. Both GLUT isoforms 1 and 4 are decreased in human HF [111]. α1-AR stimulation can increase glucose substrate availability by increasing its uptake into the heart or in myocytes [232,233,234,235,236] and also in a wide variety of cell lines and cell types such as L6 and C2C12 muscle cells [237,238,239], and adipocytes [240,241,242,243,244]. The mechanism of glucose uptake in the heart is through α1-AR stimulation of PKC activation which increase translocation of GLUT 1 or 4 to the membrane resulting in GLUT activation [234,245] (Figure 1). α1-AR mediated 3H-deoxyglucose uptake was blocked by an inhibitor of GLUT 1 or 4 translocation and by the PKC inhibitor rottlerin or siRNA against PKCδ [246]. α1A- and α1B-AR KO mice [23,246] or transgenic mice designed with large fragments of their endogenous promoters to drive systemic overexpression of the α1A- or α1B-AR subtypes with constitutively active mutations (CAMs) [247,248,249] were used to discern effects of the specific α1- AR subtypes on metabolism. The α1A-AR and not the α1B-AR subtype appears selective for glucose uptake in the heart as only transgenic CAM α1A- but not CAM α1B-ARs increased glucose uptake in the heart and plasma membrane translocation of both GLUT1 and GLUT4. In congruence, knockout (KO) of the α1A-AR but not α1B-AR mice decreased glucose uptake and GLUT translocation [234,250]. The α1A-selective agonist, A61603 also increased glucose uptake into primary myocytes [235]. α1A-AR stimulation also increased glucose uptake during glucose-starved conditions of ischemia and protected against annexin V+ apoptosis and increased levels of lactate dehydrogenase [232,250]. These results suggest that α1A-AR-mediated regulation of glucose uptake in the heart would provide the needed increased metabolic requirements in HF but also provide cardioprotective benefits against apoptosis and cell death.
Without a concomitant increase in glucose oxidation, an increase in glucose substrate is not energy efficient and of limited benefit in HF. Recently, studies have indicated that α1A-AR agonists would also not only increase glucose uptake and availability but also increase its oxidation in the heart. Using radioactive tracers of 14C-glucose or 14C-palmitate to measure oxidation rates in primary cardiac myocytes, α1-AR stimulation with phenylephrine increased glucose oxidation which was blocked by an inhibitor to AMP-activated protein kinase (AMPK) [236], under both normal and diseased (i.e., ischemic) conditions. Therefore, α1A-AR agonist treatment may promote energy efficiency and increase the needed ATP in the failing heart by increasing both glucose substrate availability and its subsequent oxidation.
AMPK is a key regulator of energy metabolism and plays a cardioprotective role. AMPK activation is protective in the heart against ischemic damage [251,252,253], cardiac hypertrophy [254] and decreases inflammation and fibrosis [255,256,257,258]. AMPK is an energy sensor that measures the ratio of AMP to ATP to regulate ATP-generating pathways but also prevent oxidative stress by improving and NAD+ homeostasis [259,260,261]. AMPK regulates glucose metabolism in myocytes by increasing the translocation of GLUT and activating PKC to increase glycolysis during ischemia [262,263] (Figure 1). α1-ARs have been readily shown to activate AMPK in the heart [253,255,264,265]. α1-AR mediated ischemic protection is mediated through PKC and AMPK [253] and induces GLUT4 upregulation [251,266] and is shared with the α1-AR signals that mediates glucose oxidation [236,250] (Figure 1). Therefore, α1-AR metabolic effects and protective signals in the heart may both be regulated through AMPK.
While the systemically expressing CAM α1-AR mice can improve glucose tolerance and the α1A-AR subtype specifically regulated glucose uptake in the heart, whole body indirect calorimetry found that both CAM α1A and CAM α1B mice had increased whole body fatty acid oxidation by increasing its preference to burn fatty acids as an energy substrate even though they were fed a normal chow diet [234]. In congruence, α1-AR KO mice from both subtypes increased whole body glucose oxidation by increasing the preference to burn carbohydrates [234]. The ability to regulate both glucose and fatty acid oxidation suggests that α1-ARs may regulate and switch energy fuel preference through coupling to AMPK. α1-ARs can regulate AMPK activity not only in the heart [253,257,264,265] but in a wide variety of cell types such as in liver [267], adipose [268], skeletal muscle [239,269] and CHO transfected cells [270]. It is likely that α1-AR CAM mice increased whole body fatty acid oxidation through stimulating fatty acid oxidation in the skeletal muscle as that muscle utilizes 40–50% of a body’s whole energy metabolism. The CAM α1-AR mice also had increased levels of leptin in the plasma while α1-AR KO mice had decreased leptin levels [234]. Leptin can increase the oxidation of glucose in skeletal muscle in the absence of insulin [271,272] or can stimulate fatty acid oxidation in skeletal muscle by activating AMPK and inhibiting acetyl coenzyme A carboxylase, which inhibits carnitine palmitoyltransferase 1 through decreased levels of malonyl-CoA [269] (Figure 1 and Figure 2). During HF where there is metabolic inflexibility on the use of fuel substrates [273,274], the ability of α1-AR activation to regulate and shift energy pathways as needed may lead to better outcomes.
α1-AR stimulation can also activate PPARs, in addition to AMPK, to regulate oxidative phosphorylation, glucose homeostasis, ROS, and hypertrophic responses in myocytes [274,275,276,277,278]. PPARs are crucial to maintain normal cardiac function, its energy requirements, and regulates many key metabolic oxidative processes and mitochondrial biogenesis and function [279,280,281]. PPARs are also cardioprotective, particularly PPAR [282]. Cardiac-targeted KO of PPAR decreases basal fatty acid oxidation leading to cardiac dysfunction, lipid accumulation and HF [283]. Cardiac-targeted overexpression of PPARβ/increased glucose utilization [281]. Both PPARα and PPAR activation as well as α1-AR agonists increased AMPK phosphorylation and glucose uptake in the heart [274]. α1-AR stimulation in the heart reverses ROS and mitochondrial dysfunction when co-treated with PPARα agonists [275,276] or PPAR co-activators [277] (Figure 1). As PPAR activators can rescue HF through metabolic alterations and are being pursued as therapeutics [284,285], PPAR activators have different and sometimes detrimental outcomes in noncardiac tissues and may induce tumorigenesis [286,287,288,289]. Therefore, α1-AR agonists may offer a better treatment option in HF by its ability to target PPAR signals in the heart.
α1-ARs, and the α1A-AR in particular, also have general effects on glucose homeostasis that may be of benefit to treat HF. α1A- and α1B-AR KO mice [23,246] or the CAM transgenic mice [247,248,249] were assessed for whole body metabolic changes. Both CAM α1A and CAM α1B-AR transgenic mice had an increased tolerance for glucose. However, CAM α1A-AR mice were more robust in glucose control and only the CAM α1A-AR mice had statistically lowered fasting glucose levels. The α1A-AR KO mice had elevated blood glucose after fasting [234]. The CAM α1A-AR mice also specifically reduced fasting plasma triglycerides levels while only the α1A-AR KO mice had elevated levels [250]. α1-AR agonists have also been shown to reduce serum triglycerides [290]. In a metabolomic analysis, the α1A-AR selective agonist, A61603, produced a reduction in polyunsaturated fatty acids in the heart [291]. While there is a report that the α1B-AR KO mice had impaired glucose homeostasis, insulin resistance and reduced glycogen synthesis [292], the phenotype only appeared when the mice were fed a high fat diet. These results suggest that an α1A-AR agonist may provide improved blood lipid and carbohydrate profiles if used as a potential therapeutic to treat HF.
Additional beneficial effects on glucose utilization were shown when either α1- and β-AR stimulation increased PPP activity in the heart through increasing the mRNA and protein synthesis of G6PD [293,294,295,296] (Figure 1). In corroboration, carvedilol which antagonizes both the β- and α1-ARs [297], blocks PPP activity [298]. Catecholamine deletion due to dopamine β-hydroxylase KO also produced decreased G6PD activity [91]. Therefore, an additional benefit of α1A-AR agonism to treat HF would be its generation of NADPH through the PPP to protect the heart against ROS damage.

5.2. α1A-AR Therapeutics

The above review suggests that the α1A-AR subtype may be a therapeutic target for its ability to metabolically protect the heart during failure. However, α1A-AR agonists have not been extensively developed in the past because of its ability to also increase blood pressure [299,300,301,302,303]. However, to circumvent non-desirable blood pressure effects, α1A-AR agonists are being currently developed that either bias or allosterically prevent signals (i.e., IP3 or calcium release) away from those that induce the blood pressure response.
α2-AR and not α1-AR agonists commonly contain the imidazoline pharmacophore and, in general, have better selectivity for α2-ARs. α2-AR agonists reduce blood pressure by decreasing NE release at the α2A-AR autoreceptor on sympathetic nerve endings [304] and also are weak antagonists at the α1-AR [305]. However, depending upon the substituents off the imidazoline ring structure, some imidazolines can be designed to become high affinity α1-AR selective agonists [306,307,308]. Imidazolines also have about 50-fold higher selectivity for the α1A-AR subtype compared to the α1B- or α1D-AR subtypes [309,310]. There are several imidazolines (i.e., cirazoline, A61603, dabuzalgron) that are α1A-AR selective and shown to reduce stress urinary incontinence without a strong response on blood pressure by biasing the signaling towards cAMP and not the IP3/Ca+2 response [311,312,313,314] and demonstrated to have improve function or protect during HF [38,39,80,81]. The ability of α1A-AR structured imidazolines to separate cardioprotection from the blood pressure effect would depend upon the therapeutic index or the dose of the drug that can separate therapeutic efficacy from toxic side effects. Dabuzalgron (aka Ro 115,1240), for example, was taken to Phase ll clinical trials showing improvement in stress urinary incontinence with little or no cardiovascular effect [311] but did not meet the efficacy hurdle as stated in the clinical trial [315].
Another area of drug development for α1A-AR agonists are positive allosteric modulators (PAMs) that increase a receptor’s function but does not bind to the orthosteric (i.e., endogenous) site that agonists bind, such as NE [316]. Allosteric modulators result in greater selectivity by binding to non-conserved regions of the receptor and several advantages over orthosteric agonists, such as usually having conformational bias that can alter the receptor’s signaling pathways [316]. There are now many GPCR allosteric modulators in clinical trials [317,318]. The first PAM at the α1-ARs with selectivity for the α1A-AR subtype has been developed [319] that can improve the cognitive functions in an Alzheimer’s Disease mouse model without increased blood pressure.

5.3. β2-ARs

Similar to α1-ARs, β1-AR but not β2-AR stimulation increases glycogenolysis by the phosphorylation and activation of glycogen phosphorylase [320]. Under increased workload and higher energy requirements in the heart during failure, β1-AR agonists can increase anaerobic metabolism when needed [321] and may do so through increased glycogenolysis and subsequent glucose metabolism [208,322,323]. While β-AR stimulation of cAMP increases glucose uptake via GLUT translocation in skeletal cells [324,325], but it has not been shown in myocytes directly. β-AR agonism can reduced the levels of metabolites found in the Krebs cycle, glycogen metabolism, and glycolysis [326], suggesting that β-AR stimulation increases the oxidation of glucose in the heart and may benefit HF. β1-ARs appear to increase oxidative metabolism at a greater rate than the β2-AR [327] and may explain why downregulation of the β1-AR in HF is detrimental. While inotropic interventions for HF might improve short-term hemodynamics, β-AR agonists have long-term effects that have failed to improve outcomes and can even worsen as excessive release of catecholamines induces apoptosis, increased heart rate, and arrhythmias [328,329].
β3-ARs have been mostly studied in adipose cells to increase cAMP levels, activation of lipase, and thermogenesis [330,331]. Most studies suggest that the β3-AR produces a negative inotropy in opposition to positive inotropy regulated by the β1- or β2-AR [14,16], is cardioprotective [59], and upregulated during human HF [60,332]. As the β3-AR does not desensitize and may even increase during HF [65,333,334,335], a β3-AR agonist may also provide metabolic benefit. However, the role of the β3-AR in HF is controversial. One study suggests that cardiac function can be recovered in HF by blocking the β3-AR which improves the energy efficiency in myocardial tissues by suppressing iNOS expression [336]. A β3-AR KO mouse model is cardioprotective [337]. In contrast, there are far more abundant studies that indicate that β3-AR stimulation or cardiac-overexpression is cardioprotective in many models of ischemia, pressure overload and hypertrophy through inducing nitric oxide (NO) [59,338,339,340,341,342,343,344]. Therefore, β3-AR agonism may still be a viable metabolic therapeutic candidate for HF.
The β3-AR agonist, mirabegron, can improve glucose homeostasis in insulin-resistant obese humans although this occurs through its function on brown adipose tissue [345]. Mirabegron reduced adipose tissue dysfunction and resulted in improved whole-body glucose tolerance, increased lipolysis and expression of PPAR and enhanced oxidative capacity [345,346]. Mirabegron and other β3-AR agonists improved glucose tolerance, utilization [347] and insulin sensitivity in lean mice [348] or mice fed a high fat diet [349,350]. β3-AR agonism is anti-atherosclerotic in apoE KO mice with decreased plasma triglycerides, low density lipoproteins, cholesterol, and increased insulin sensitivity and PPARα and expression in the liver [351,352]. These results suggest that β3-AR agonists can regulate whole body lipid and glucose metabolism. While a clinical trial of mirabegron failed to improve left ventricular ejection fraction in HF [353], there was significant improvement in a subset of patents with ejection fractions under 40%. This suggest that mirabegron may be therapeutic in HF patients with reduced ejection fraction. There is an ongoing large-scale clinical trial to confirm this effect of mirabegron therapy on improving function in patients with progressive left ventricular remodeling [354].

5.4. β1-AR Therapeutics

With the subsequent downregulation of β1-ARs in HF and worse outcomes with long-term stimulation, the metabolic effects of β-blockers to treat HF are preferred. β-AR blockers are a standard therapy in the treatment of HF by reducing sympathetic overdrive resulting in increased ejection fraction and survival [56]. However, β-AR blockers may also improve outcomes through its effects on energy substrate utilization and metabolic efficiency by using oxygen-sparing mechanisms [355,356]. As fatty acid oxidation in the heart utilizes more oxygen per unit of ATP generation, it is less efficient as compared to glucose oxidation [171,172,357]. Early studies studying the effects of β-AR blockage on general metabolism suggests that β-AR antagonists induce hypoglycemia and decrease the breakdown of glycogen [358,359,360,361]. Some clinicians are reluctant to prescribe β-AR blockers for HF because of negative inotropic and these general metabolic effects, including loss of glycemic control and insulin resistance [358,359,360,361]. However, the major effect of β-AR blockage in the heart is the suppression of lipolysis, decreased fatty acid uptake, and a reduction in myocardial fatty acid oxidation which may result in a compensatory increase in glucose oxidation and its resulting metabolic benefit in treating HF [362,363,364,365,366,367,368] (Figure 2). Furthermore, studies have shown that not all β-AR blockers are equal in their metabolic effects. Carvedilol, which is vasodilating (through α1B-AR blockage) in addition to its β-AR blockage, have metabolic effects that contribute to better outcomes in HF, compared with pure β-AR blockers [369,370,371,372,373,374,375].
Studies have also suggested that β-AR blockers may also increase cardiac mitochondrial respiration [376,377,378,379] and have anti-oxidative effects [380], along with regulating mitochondrial calcium levels and ADP uptake [381,382]. Mitochondrial abnormalities are associated with HF [383,384]. PPARs regulates many key metabolic oxidative processes and mitochondrial biogenesis and function [279,280,281]. As mentioned for α1-AR agonists coupling to PPARs, PPAR activators increase mitochondrial oxidative capacity in the heart [280] and is cardioprotective [282]. Isoproterenol-induced HF can be rescued though PPARα activation [284,287], suggesting that β1-AR stimulation decreases PPAR activation. Similarly, β1-AR autoantibodies induce a positive inotropy in the heart [385] but also induce HF [386,387], apoptosis [388] and inhibit the PPAR pathway [389,390]. However, the metabolic protective effects of a β2-AR agonist, higenamine, against mitochondrial and respiratory dysfunction is mediated though increased PPARα signals [391] (Figure 2). These results suggest that β1-AR selective blockers may be better at increasing mitochondrial function during HF than non-selective β-blockers.
Besides generating ATP, mitochondria are the main produces of ROS, generated during oxidative phosphorylation [392,393]. Mitochondrial-targeted antioxidants are gaining acceptance as an emerging therapy for HF [394]. Results from two small clinical studies suggest β-AR blockers can decrease fatty acid uptake and oxidation [366,368] (Figure 2), while increasing LV function in the absence of increased oxygen utilization which would limit ROS formation [394,395]. In patients with HF, long-term usage of β-AR blockers reduced the metabolic demand of oxygen on the heart and lowered oxidative stress and ROS damage [102,396,397,398,399,400,401,402]. Therefore, β-AR blockers would also limit ROS damage, an additional benefit as a metabolic therapeutic in HF.
The best described β-AR blocker and its effects on cardiac metabolism is carvedilol. Carvedilol is a β-AR antagonist and an α1-AR antagonist [403]. The α1-AR blocking ability of carvedilol has been downplayed in its cardiac protective potential as non-selective α1-AR blockers can increase the morbidity of heart failure [404]. However, carvedilol has a little higher selectivity for β2- versus β1-ARs [405,406] and has 10-fold higher affinity for the α1B-ARs versus α1A-ARs and binds with higher affinity at α1-ARs than at β1-ARs [407]. A possible explanation for carvedilol’s better outcomes in HF when compared to other β-AR blockers is its ability to selectivity block the α1B-AR. The α1B-AR, unlike the α1A-AR [1], mediates maladaptive effects on the heart [35,84,85,407] and does not mediate glucose metabolism in the heart [234,235,250], but still would produce vasodilation that has positive effects on heart function by decreasing heart rate and vascular resistance. Therefore, selective blockage of the α1B-AR by carvedilol would decrease its maladaptive effects in the heart and not disrupt the metabolic and other cardioprotective benefits of the α1A-AR.
In clinical studies, carvedilol has better cardioprotective metabolic properties than other β-blockers and may be a preferred treatment for HF. Carvedilol is better than metoprolol in its antioxidative properties [408,409,410,411] and has more favorable effects on glucose metabolism [412] and calcium load [413]. Carvedilol shifts the heart energy substrate usage from fatty acids to glucose oxidation [315,368] by decreasing free fatty acids, inhibiting fatty acid oxidation, resulting in increased glycolysis, oxidation and energy efficiency [364,395,414,415] (Figure 2). Mechanisms of cardioprotective effects of carvedilol are linked to oxidative metabolism and decreases in oxidative stress [102,327,363,414,415,416,417,418], which reduces the impairment of mitochondrial metabolism during HF [419]. Carvedilol can also improve insulin sensitivity and plasma lipid profile [419,420,421]. The net effect of these metabolic changes are favorable effects on glucose metabolism [412,421], by improving myocardial energy efficiency through increased carbohydrate utilization [395,422,423], similar to α1A-AR agonism.
Carvedilol’s mechanism to shift metabolism to glucose utilization is also an AMPK-mediated mechanism, similar to α1-AR stimulation [424]. AMPK can increase fatty acid oxidation by increasing fatty acid uptake, increasing the expression of the fatty acid transporters, and by decreasing levels of malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase 1 [425,426] (Figure 2). β-ARs have been shown to regulate AMPK in the heart [427] and the decrease in responsiveness in β-ARs during heart failure and its associated pathological remodeling has been linked to β-AR’s associated loss of AMPK signals [428,429,430]. As β1-ARs are downregulated in HF, β-AR blockers may reactivate AMPK pathways to shift metabolism to glucose utilization. The β3-AR is also postulated to mediate its exercise-mediated cardioprotection through activation of AMPK signals [431].

6. Conclusions

While inotropic interventions for HF might improve contractile function for the short-term, chronic treatments have failed to improve outcomes. During the progression of HF there is a tremendous amount of metabolic inflexibility [273] caused by the progressive dysfunction of the metabolic pathways that generate ATP which starve the heart. Our current understanding of the failing heart suggests that optimizing energy substrate metabolism by inhibiting fatty acid oxidation while increasing glucose substrate availability in conjunction with its oxidation may provide a means to increase the efficiency of ATP production that is needed to maintain the high energy demands of cardiac function. Since severe HF also has diminished mitochondrial function, metabolic therapies that are multi-faceted and regulate key metabolic sensors may provide greatest benefit during all of the stages of HF. α1- and β-ARs regulate cardiac metabolism in opposition with α1A-AR agonism and β-AR blockage converging on increasing glucose availability and oxidation, suggesting that a dual action drug might provide the greatest therapeutic benefit. The ability of β-AR antagonists and α1A-AR agonists to regulate, optimize, and shift energy pathways as needed by the heart during failure are also predicted to lead to better outcomes.

Funding

This work was supported by a grant from The Edward N. & Della L. Thome Memorial Foundation Award Programs in Alzheimer’s Disease Drug Discovery Research and an RO1 from the National Institute of Aging (AG066627).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Perez, D.M.; Doze, V.A. Cardiac and neuroprotection regulated by α1-adrenergic receptor subtypes. J. Recept. Signal. Transduct. Res. 2011, 31, 98–110. [Google Scholar] [CrossRef] [Green Version]
  2. Stadel, J.M.; Namb, I.P.; Shorr, R.G.; Sawyer, D.F.; Caron, M.G.; Lefkowitz, R.J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1983, 80, 3173–3177. [Google Scholar] [CrossRef] [Green Version]
  3. Hausdorff, W.P.; Caron, M.G.; Lefkowitz, R.J. Turning off the signal: Desensitization of b-adrenergic receptor function. FASEB J. 1990, 4, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
  4. Bristow, M.R.; Ginsburg, R.; Umans, V.; Fowler, M.; Minobe, W.; Rasmussen, R.; Zera, P.; Menlove, R.; Shah, P.; Jamieson, S.; et al. β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ. Res. 1986, 59, 297–309. [Google Scholar] [CrossRef] [Green Version]
  5. Brodde, O.E. β1- and β2-adrenoceptors in the human heart: Properties, function, and alterations in chronic heart failure. Pharmacol. Rev. 1991, 43, 203–242. [Google Scholar] [PubMed]
  6. Sulakhe, P.V.; Vo, X.T. Regulation of phospholamban and troponin-I phosphorylation in the intact rat cardiomyocytes by adrenergic and cholinergic stimuli: Roles of cyclic nucleotides, calcium, protein kinases and phosphatases and depolarization. Mol. Cell Biochem. 1995, 149–150, 103–126. [Google Scholar] [CrossRef] [PubMed]
  7. Xiang, Y.; Kobilka, B.K. Myocyte adrenoceptor signaling pathways. Science 2003, 300, 1530–1532. [Google Scholar] [CrossRef]
  8. Xiao, R.P.; Zhu, W.; Zheng, M.; Cao, C.; Zhang, Y.; Lakatta, E.G.; Han, Q. Subtype-specific α1- and β-adrenoceptor signaling in the heart. Trends Pharmacol. Sci. 2006, 27, 330–337. [Google Scholar] [CrossRef]
  9. Bers, D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 2008, 70, 23–49. [Google Scholar] [CrossRef] [Green Version]
  10. Communal, C.; Singh, K.; Sawyer, D.B.; Colucci, W.S. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: Role of a pertussis toxin-sensitive G protein. Circulation 1999, 100, 2210–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  11. Chesley, A.; Lundberg, M.S.; Asai, T.; Xiao, R.P.; Ohtani, S.; Lakatta, E.G.; Crow, M.T. The β2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ. Res. 2000, 87, 1172–1179. [Google Scholar] [CrossRef] [Green Version]
  12. Zhu, W.Z.; Zheng, M.; Koch, W.J.; Lefkowitz, R.J.; Kobilka, B.K.; Xiao, R.P. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl. Acad. Sci. USA 2001, 98, 1607–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Gauthier, C.; Tavernier, G.; Charpentier, F.; Langin, D.; Le Marec, H. Functional β3-adrenoceptor in the human heart. J. Clin. Investig. 1996, 98, 556–562. [Google Scholar] [CrossRef]
  14. Gauthier, C.; Leblais, V.; Kobzik, L.; Trochu, J.N.; Khandoudi, N.; Bril, A.; Balligand, J.L.; Le Marec, H. The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Investig. 1998, 102, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
  15. Varghese, P.; Harrison, R.W.; Lofthouse, R.A.; Georgakopoulos, D.; Berkowitz, D.E.; Hare, J.M. β3-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J. Clin. Investig. 2000, 106, 697–703. [Google Scholar] [CrossRef] [Green Version]
  16. Tavernier, G.; Toumaniantz, G.; Erfanian, M.; Heymann, M.F.; Laurent, K.; Langin, D.; Gauthier, C. β3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human β3-adrenergic receptor. Cardiovasc. Res. 2003, 2, 288–296. [Google Scholar] [CrossRef]
  17. Steinfath, M.; Chen, Y.Y.; Lavicky, J.; Magnussen, O.; Nose, M.; Rosswag, S.; Schmitz, W.; Scholz, H. Cardiac α1-adrenoceptor densities in different mammalian species. Br. J. Pharmacol. 1992, 107, 185–188. [Google Scholar] [CrossRef]
  18. Michel, M.C.; Hanft, G.; Gross, G. Radioligand binding studies of α1-adrenoceptor subtypes in rat heart. Br. J. Pharmacol. 1994, 111, 533–538. [Google Scholar] [CrossRef]
  19. Scofield, M.A.; Liu, F.; Abel, P.W.; Jeffries, W.B. Quantification of steady state expression of mRNA for α1-adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. J. Pharmacol. Exp. Ther. 1995, 275, 1035–1042. [Google Scholar]
  20. Turnbull, L.; McCloskey, D.T.; O’Connell, T.D.; Simpson, P.C.; Baker, A.J. α1-adrenergic receptor responses in α1AB-AR knockout mouse hearts suggest the presence of α1D-AR. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1104–H1109. [Google Scholar] [CrossRef]
  21. Jensen, B.C.; Swigart, P.M.; De Marco, T.; Hoopes, C.; Simpson, P.C. α1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ. Heart Fail. 2009, 2, 654–663. [Google Scholar] [CrossRef] [Green Version]
  22. Methven, L.; Simpson, P.C.; McGrath, J.C. α1A/B-knockout mice explain the native α1D-adrenoceptor’s role in vasoconstriction and show that its location is independent of the other α1-subtypes. Br. J. Pharmacol. 2009, 158, 1663–1675. [Google Scholar] [CrossRef] [Green Version]
  23. Rokosh, D.G.; Simpson, P.C. Knockout of the α1A/C-adrenergic receptor subtype: The α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc. Natl. Acad. Sci. USA 2002, 99, 9474–9479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Piascik, M.T.; Perez, D.M. α1-adrenergic receptors: New insights and directions. J. Pharmacol. Exp. Ther. 2001, 298, 403–410. [Google Scholar] [PubMed]
  25. Otani, H.; Otani, H.; Das, D.K. α1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ. Res. 1988, 62, 8–17. [Google Scholar] [CrossRef] [Green Version]
  26. Pucéat, M.; Terzic, A.; Clément, O.; Scamps, F.; Vogel, S.M.; Vassort, G. Cardiac α1-adrenoceptors mediate positive inotropy via myofibrillar sensitization. Trends Pharmacol. Sci. 1992, 13, 263–265. [Google Scholar] [CrossRef]
  27. Endoh, M. Cardiac α1-Adrenoceptors and Inotropy: Myofilament Ca2+ Sensitivity, Intracellular Ca2+ Mobilization, Signaling Pathway, and Pathophysiological Relevance. Circ. Res. 2016, 119, 587–590. [Google Scholar] [CrossRef] [PubMed]
  28. Venema, R.C.; Raynor, R.L.; Noland, T.A., Jr.; Kuo, J.F. Role of protein kinase C in the phosphorylation of cardiac myosin light chain. Biochem. J. 1993, 294, 401–406. [Google Scholar] [CrossRef] [Green Version]
  29. Snabaitis, A.K.; Yokoyama, H.; Avkiran, M. Roles of mitogen-activated protein kinases and protein kinase C in α1A-adrenoceptor-mediated stimulation of the sarcolemmal Na+-H+ exchanger. Circ. Res. 2000, 86, 214–220. [Google Scholar] [CrossRef] [Green Version]
  30. Yu, Z.Y.; Tan, J.C.; McMahon, A.C.; Iismaa, S.E.; Xiao, X.H.; Kesteven, S.H.; Reichelt, M.E.; Mohl, M.C.; Smith, N.J.; Fatkin, D.; et al. RhoA/ROCK signaling and pleiotropic α1A-adrenergic receptor regulation of cardiac contractility. PLoS ONE 2014, 9, e99024. [Google Scholar] [CrossRef] [Green Version]
  31. Taniguchi, M.; Okamoto, R.; Ito, M.; Goto, I.; Fujita, S.; Konishi, K.; Mizutani, H.; Dohi, K.; Hartshorne, D.J.; Itoh, T. New Isoform of Cardiac Myosin Light Chain Kinase and the Role of Cardiac Myosin Phosphorylation in α1-Adrenoceptor Mediated Inotropic Response. PLoS ONE 2015, 10, e0141130. [Google Scholar] [CrossRef]
  32. Endoh, M.; Hiramoto, T.; Ishihata, A.; Takanashi, M.; Inui, J. Myocardial α1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ. Res. 1991, 68, 1179–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Lin, F.; Owens, W.A.; Chen, S.; Stevens, M.E.; Kesteven, S.; Arthur, J.F.; Woodcock, E.A.; Feneley, M.P.; Graham, R.M. Targeted α1A-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ. Res. 2001, 89, 343–350. [Google Scholar] [CrossRef] [Green Version]
  34. Janssen, P.M.L.; Canan, B.D.; Kilic, A.; Whitson, B.A.; Baker, A.J. Human Myocardium Has a Robust α1A-Subtype Adrenergic Receptor Inotropic Response. J. Cardiovasc. Pharmacol. 2018, 72, 136–142. [Google Scholar] [CrossRef]
  35. Ross, S.A.; Rorabaugh, B.R.; Chalothorn, D.; Yun, J.; Gonzalez-Cabrera, P.J.; McCune, D.F.; Piascik, M.T.; Perez, D.M. The α1B-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc. Res. 2003, 60, 598–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Uchi, J.; Sasaki, H.; Morimoto, S.; Kusakari, Y.; Shinji, H.; Obata, T.; Hongo, K.; Komukai, K.; Kurihara, S. Interaction of α1-adrenoceptor subtypes with different G proteins induces opposite effects on cardiac L-type Ca2+ channel. Circ. Res. 2008, 102, 1378–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Cowley, P.M.; Wang, G.; Chang, A.N.; Makwana, O.; Swigart, P.M.; Lovett, D.H.; Stull, J.T.; Simpsom, P.C.; Baker, A.J. The α1A-adrenergic receptor subtype mediates increased contraction of failing right ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H888–H896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Cowley, P.M.; Wang, G.; Joshi, S.; Swigart, P.M.; Lovett, D.H.; Simpson, P.C.; Baker, A.J. α1A-Subtype adrenergic agonist therapy for the failing right ventricle. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H1109–H1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  39. Cowley, P.M.; Wang, G.; Swigart, P.M.; Raghunathan, A.; Reddy, N.; Dulam, P.; Lovett, D.H.; Simpson, P.C.; Baker, A.J. Reversal of right ventricular failure by chronic α1A-subtype adrenergic agonist therapy. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H224–H232. [Google Scholar] [CrossRef] [PubMed]
  40. Myagmar, B.E.; Flynn, J.M.; Cowley, P.M.; Swigart, P.M.; Montgomery, M.D.; Thai, K.; Nair, D.; Gupta, R.; Deng, D.X.; Hosoda, C.; et al. Adrenergic Receptors in Individual Ventricular Myocytes: The β1 and α1B Are in All Cells, the α1A Is in a Subpopulation, and the β2 and β3 Are Mostly Absent. Circ. Res. 2017, 120, 1103–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  41. Philipp, M.; Hein, L. Adrenergic receptor knockout mice: Distinct functions of 9 receptor subtypes. Pharmacol. Ther. 2004, 101, 65–74. [Google Scholar] [CrossRef]
  42. Hein, L.; Altman, J.D.; Kobilka, B.K. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature. 1999, 402, 181–184. [Google Scholar] [CrossRef]
  43. Lymperopoulos, A.; Rengo, G.; Koch, W.J. Adrenal adrenoceptors in heart failure: Fine-tuning cardiac stimulation. Trends Mol. Med. 2007, 13, 503–511. [Google Scholar] [CrossRef] [PubMed]
  44. Brede, M.; Wiesmann, F.; Jahns, R.; Hadamek, K.; Arnolt, C.; Neubauer, S.; Lohse, M.J.; Hein, L. Feedback inhibition of catecholamine release by two different α2-adrenoceptor subtypes prevent progression of heart failure. Circulation 2002, 106, 2491–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Bristow, M.R. Mechanistic and clinical rationales for using beta-blockers in heart failure. J. Card. Fail. 2000, 6, 8–14. [Google Scholar] [PubMed]
  46. Todd, G.L.; Baroldi, G.; Pieper, G.M.; Clayton, F.C.; Eliot, R.S. Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions. J. Mol. Cell. Cardiol. 1985, 17, 317–338. [Google Scholar] [CrossRef]
  47. Mann, D.L.; Kent, R.L.; Parsons, B.; Cooper, G., 4th. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992, 85, 790–804. [Google Scholar] [CrossRef] [Green Version]
  48. Communal, C.; Singh, K.; Pimentel, D.R.; Colucci, W.S. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the β-adrenergic pathway. Circulation 1998, 98, 1329–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Felker, G.M.; O’Connor, C.M. Inotropic therapy for heart failure: An evidence-based approach. Am. Heart J. 2001, 142, 393–401. [Google Scholar] [CrossRef]
  50. Zaugg, M.; Xu, W.; Lucchinetti, E.; Shafiq, S.A.; Jamali, N.Z.; Siddiqui, M.A. β-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 2000, 102, 344–350. [Google Scholar] [CrossRef] [Green Version]
  51. Ahmet, I.; Krawczyk, M.; Heller, P.; Moon, C.; Lakatta, E.G.; Talan, M.I. Beneficial effects of chronic pharmacological manipulation of β-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 2004, 110, 1083–1090. [Google Scholar] [CrossRef] [Green Version]
  52. Ahmet, I.; Krawczyk, M.; Zhu, W.; Woo, A.Y.; Morrell, C.; Poosala, S.; Xiao, R.P.; Lakatta, E.G.; Talan, M.I. Cardioprotective and survival benefits of long-term combined therapy with β2 adrenoreceptor (AR) agonist and β1 AR blocker in dilated cardiomyopathy postmyocardial infarction. J. Pharmacol. Exp. Ther. 2008, 325, 491–499. [Google Scholar] [CrossRef] [Green Version]
  53. Nikolaev, V.O.; Moshkov, A.; Lyon, A.R.; Miragoli, M.; Novak, P.; Paur, H.; Lohse, M.J.; Korchev, Y.E.; Harding, S.E.; Gorelik, J. β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 2010, 327, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
  54. Packer, M.; Bristow, M.R.; Cohn, J.N. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. carvedilol heart failure study group. N. Engl. J. Med. 1996, 334, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
  55. Packer, M.; Antonopoulos, G.V.; Berlin, J.A.; Chittams, J.; Konstam, M.A.; Udelson, J.E. Comparative effects of carvedilol and metoprolol on left ventricular ejection fraction in heart failure: Results of a meta-analysis. Am. Heart J. 2001, 141, 899–907. [Google Scholar] [CrossRef] [PubMed]
  56. Erdmann, E.; Lechat, P.; Verkenne, P.; Wiemann, H. Results from post-hoc analyses of the CIBIS II trial: Effect of bisoprolol in high-risk patient groups with chronic heart failure. Eur. J. Heart Fail. 2001, 3, 469–479. [Google Scholar]
  57. Leineweber, K.; Rohe, P.; Beilfuss, A.; Wolf, C.; Sporkmann, H.; Bruck, H.; Jakob, H.G.; Heusch, G.; Philipp, T.; Brodde, O.E. G-protein-coupled receptor kinase activity in human heart failure: Effects of β-adrenoceptor blockade. Cardiovasc. Res. 2005, 66, 512–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Garcia-Prieto, J.; Garcia-Ruiz, J.M.; Sanz-Rosa, D.; Pun, A.; Garcia-Alvarez, A.; Davidson, S.M.; Fernández-Friera, L.; Nuno-Ayala, M.; Fernández-Jiménez, R.; Bernal, J.A.; et al. β3-adrenergic receptor selective stimulation during ischemia/ reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res. Cardiol. 2014, 109, 422. [Google Scholar] [CrossRef]
  59. Cannavo, A.; Koch, W.J. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade. J. Cardiovasc. Pharmacol. 2017, 69, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  60. Bristow, M.R.; Ginsburg, R.; Minobe, W.; Cubicciotti, R.S.; Sageman, W.S.; Lurie, K.; Billingham, M.E.; Harrison, D.C.; Stinson, E.B. Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N. Engl. J. Med. 1982, 307, 205–211. [Google Scholar] [CrossRef]
  61. Hwang, K.C.; Gray, C.D.; Sweet, W.E.; Moravec, C.S.; Im, M.J. α1-adrenergic receptor coupling with Gh in the failing human heart. Circulation 1996, 94, 718–726. [Google Scholar] [CrossRef] [PubMed]
  62. Vago, T.; Bevilacqua, M.; Norbiato, G.; Baldi, G.; Chebat, E.; Bertora, P.; Baroldi, R.; Accinni, R. Identification of α1-adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: Characteristics and linkage to GTP-binding protein. Circ. Res. 1989, 64, 474–481. [Google Scholar] [CrossRef] [Green Version]
  63. Grigore, A.; Poindexter, B.; Vaughn, W.K.; Nussmeier, N.; Frazier, O.H.; Cooper, J.R.; Gregoric, I.D.; Buja, L.M.; Bick, R.J. Alterations in α-adrenoreceptor density and localization after mechanical left ventricular unloading with the Jarvik flowmaker left ventricular assist device. J. Heart Lung Transpl. 2005, 24, 609–613. [Google Scholar] [CrossRef]
  64. Zhao, M.; Hagler, H.K.; Muntz, K.H. Regulation of α1-, β1-, and β2-adrenergic receptors in rat heart by norepinephrine. Am. J. Physiol. 1996, 271, H1762–H1768. [Google Scholar] [PubMed]
  65. Limas, C.J.; Limas, C.; Goldenberg, I.F. Intracellular distribution of adrenoceptors in the failing human myocardium. Am. Heart J. 1989, 117, 1310–1316. [Google Scholar] [CrossRef]
  66. Fischer, V.; Gabauer, I.; Tillinger, A.; Novakova, M.; Pechan, I.; Krizanova, O.; Myslivecek, J. Heart adrenoceptor gene expression and binding sites in the human failing heart. Ann. N. Y. Acad. Sci. 2008, 1148, 400–408. [Google Scholar] [CrossRef]
  67. Shi, T.; Moravec, C.S.; Perez, D.M. Novel proteins associated with human dilated cardiomyopathy: Selective reduction in α1A-adrenergic receptors and increased desensitization proteins. J. Recept. Signal. Transduct. Res. 2013, 33, 96–106. [Google Scholar] [CrossRef] [Green Version]
  68. Corr, P.B.; Shayman, J.A.; Kramer, J.B.; Kipnis, R.J. Increased α-adrenergic receptors in ischemic cat myocardium: A potential mediator of electrophysiological derangements. J. Clin. Investig. 1981, 67, 1232–1236. [Google Scholar] [CrossRef]
  69. Maisel, A.S.; Motulsky, H.J.; Ziegler, M.G.; Insel, P.A. Ischemia- and agonist-induced changes in α- and β-adrenergic receptor traffic in guinea pig hearts. Am. J. Physiol. 1987, 253, H1159–H1166. [Google Scholar] [CrossRef]
  70. Butterfield, M.C.; Chess-Williams, R. Enhanced α-adrenoceptor responsiveness and receptor number during global ischaemia in the Langendorff perfused rat heart. Br. J. Pharmacol. 1990, 100, 641–645. [Google Scholar] [CrossRef]
  71. Itaya, T.; Hashimoto, H.; Satoh, R.; Uematsu, T.; Nakashima, M. Increases in α- but not β-adrenoceptors in hypertrophied non-infarcted cardiac muscles from rats with chronic myocardial infarction. Jpn. J. Pharmacol. 1990, 53, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Kurz, T.; Yamada, K.A.; DaTorre, S.D.; Corr, P.B. α1-adrenergic system and arrhythmias in ischaemic heart disease. Eur. Heart J. 1991, 12, 88–98. [Google Scholar] [CrossRef] [PubMed]
  73. Eckhart, A.D.; Zhu, Z.; Arendshorst, W.J.; Faber, J.E. Oxygen modulates α1B-adrenergic receptor gene expression by arterial but not venous vascular smooth muscle. Am. J. Physiol. 1996, 271, H1599–H1608. [Google Scholar] [PubMed]
  74. Böhm, M.; Diet, F.; Feiler, G.; Kemkes, B.; Erdmann, E. α-adrenoceptors and α-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J. Cardiovasc. Pharmacol. 1988, 12, 357–364. [Google Scholar] [CrossRef] [PubMed]
  75. Skomedal, T.; Borthne, K.; Aass, H.; Geiran, O.; Osnes, J.B. Comparison between α1- adrenoceptor-mediated and β-adrenoceptor-mediated inotropic components elicited by norepinephrine in failing human ventricular muscle. J. Pharmacol. Exp. Ther. 1997, 280, 721–729. [Google Scholar]
  76. Sjaastad, I.; Schiander, I.; Sjetnan, A.; Qvigstad, E.; Bøkenes, J.; Sandnes, D.; Osnes, J.-B.; Sejersted, O.M.; Skomedal, T. Increased contribution of α1- vs. β-adrenoceptor-mediated inotropic response in rats with congestive heart failure. Acta Physiol. Scand. 2003, 177, 449–458. [Google Scholar] [CrossRef]
  77. Du, X.J.; Fang, L.; Gao, X.M.; Kiriazis, H.; Feng, X.; Hotchkin, E.; Finch, A.M.; Chaulet, H.; Graham, R.M. Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J. Mol. Cell Cardiol. 2004, 37, 979–987. [Google Scholar] [CrossRef] [PubMed]
  78. Du, X.J.; Gao, X.M.; Kiriazis, H.; Moore, X.L.; Ming, Z.; Su, Y.; Finch, A.M.; Hannan, R.A.; Dart, A.M.; Graham, R.M. Transgenic α1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc. Res. 2006, 71, 735–743. [Google Scholar] [CrossRef] [Green Version]
  79. Beak, J.; Huang, W.; Parker, J.S.; Hicks, S.T.; Patterson, C.; Simpson, P.C.; Ma, A.; Jin, J.; Jensen, B.C. An Oral Selective α1A-Adrenergic Receptor Agonist Prevents Doxorubicin Cardiotoxicity. JACC Basic Transl. Sci. 2017, 2, 39–53. [Google Scholar] [CrossRef]
  80. Montgomery, M.D.; Chan, T.; Swigart, P.M.; Myagmar, B.E.; Dash, R.; Simpson, P.C. An α1A-Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice. PLoS ONE 2017, 12, e0168409. [Google Scholar] [CrossRef] [Green Version]
  81. Akhter, S.A.; Milano, C.A.; Shotwell, K.F.; Cho, M.C.; Rockman, H.A.; Lefkowitz, R.J.; Koch, W.J. Transgenic mice with cardiac overexpression of α1B-adrenergic receptors. In vivo α1-adrenergic receptor-mediated regulation of β-adrenergic signaling. J. Biol. Chem. 1997, 272, 21253–21259. [Google Scholar] [CrossRef] [Green Version]
  82. Grupp, I.L.; Lorenz, J.N.; Walsh, R.A.; Boivin, G.P.; Rindt, H. Overexpression of α1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am. J. Physiol. 1998, 275, H1338–H1350. [Google Scholar] [CrossRef]
  83. Lemire, I.; Ducharme, A.; Tardif, J.C.; Poulin, F.; Jones, L.R.; Allen, B.G.; Hebert, T.E.; Rindt, H. Cardiac-directed overexpression of wild-type α1B-adrenergic receptor induces dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H931–H938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Wang, B.H.; Du, X.J.; Autelitano, D.J.; Milano, C.A.; Woodcock, E.A. Adverse effects of constitutively active α1B-adrenergic receptors after pressure overload in mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H1079–H1086. [Google Scholar] [CrossRef]
  85. Elia, M. Organ and tissue contribution to metabolic rate. In Energy Metabolism: Tissue Determinants and Cellular Corollaries; Kinney, J.M., Tucker, H.N., Eds.; Raven Press: New York, NY, USA, 1992; pp. 61–80. [Google Scholar]
  86. Neubauer, S. The failing heart—An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef] [Green Version]
  87. Olson, R.E.; Schwartz, W.B. Myocardial metabolism in congestive heart failure. Medicine 1951, 30, 21–41. [Google Scholar] [CrossRef] [PubMed]
  88. Cheng, M.L.; Wang, C.H.; Shiao, M.S.; Liu, M.H.; Huang, Y.Y.; Huang, C.Y.; Mao, C.-T.; Lin, J.-F.; Ho, H.-Y.; Yang, N.-I. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: Diagnostic and prognostic value of metabolomics. J. Am. Coll. Cardiol. 2015, 65, 1509–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Peoples, J.; Maxmillian, T.; Le, Q.; Nadtochiy, S.M.; Brookes, P.S.; Porter, G.A., Jr.; Davidson, V.L.; Ebert, S.N. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. J. Biol. Chem. 2018, 293, 6925–6941. [Google Scholar] [CrossRef] [Green Version]
  90. Becker, C.; Sevilla, L.; Tomas, E.; Palacin, M.; Zorzano, A.; Fischer, Y. The endosomal compartment is an insulin-sensitive recruitment site for GLUT4 and GLUT1 glucose transporters in cardiac myocytes. Endocrinology 2001, 142, 5267–5276. [Google Scholar] [CrossRef]
  91. Depré, C.; Rider, M.H.; Hue, L. Mechanisms of control of heart glycolysis. Eur. J. Biochem. 1998, 258, 277–290. [Google Scholar] [CrossRef]
  92. Stanton, R.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. Iubmb Life 2012, 64, 362–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Jain, M.; Brenner, D.A.; Cui, L.; Lim, C.C.; Wang, B.; Pimentel, D.R.; Koh, S.; Sawyer, D.B.; Leopold, J.A.; Handy, D.E.; et al. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ. Res. 2003, 93, e9–e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Turrens, J.F.; Alexandre, A.; Lehninger, A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 1985, 237, 408–414. [Google Scholar] [CrossRef]
  95. Turrens, J.F. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 1997, 17, 3–8. [Google Scholar] [CrossRef]
  96. Viola, H.M.; Hool, L.C. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. J. Mol. Cell. Cardiol. 2010, 49, 875–885. [Google Scholar] [CrossRef]
  97. Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef]
  98. Belch, J.J.; Bridges, A.B.; Scott, N.; Chopra, M. Oxygen free radicals and congestive heart failure. Br. Heart J. 1991, 65, 245–248. [Google Scholar] [CrossRef] [Green Version]
  99. Hill, M.F.; Singal, P.K. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 1997, 96, 2414–2420. [Google Scholar] [CrossRef]
  100. Mallat, Z.; Philip, I.; Lebret, M.; Chatel, D.; Maclouf, J.; Tedgui, A. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: A potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998, 97, 1536–1539. [Google Scholar] [CrossRef] [Green Version]
  101. Nakamura, K.; Kusano, K.; Nakamura, Y.; Kakishita, M.; Ohta, K.; Nagase, S.; Yamamoto, M.; Miyaji, K.; Saito, H.; Morita, H.; et al. Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 2002, 105, 2867–2871. [Google Scholar] [CrossRef] [Green Version]
  102. Sam, F.; Kerstetter, D.L.; Pimental, D.R.; Mulukutla, S.; Tabaee, A.; Bristow, M.R.; Colucci, W.S.; Sawyer, D.B. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J. Card. Fail. 2005, 11, 473–480. [Google Scholar] [CrossRef]
  103. Sheeran, F.L.; Pepe, S. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E449–E460. [Google Scholar] [CrossRef] [PubMed]
  104. Jain, M.; Cui, L.; Brenner, D.A.; Wang, B.; Handy, D.E.; Leopold, J.A.; Loscalzo, J.; Apstein, C.S.; Liao, R. Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 2004, 109, 898–903. [Google Scholar] [CrossRef] [Green Version]
  105. Long, W.K.; Wilson, S.W.; Frenkel, E.P. Associations between red cell glucose-6-phosphate dehydrogenase variants and vascular diseases. Am. J. Hum. Genet. 1967, 19, 35–53. [Google Scholar] [PubMed]
  106. Hecker, P.A.; Lionetti, V.; Ribeiro, R.F., Jr.; Rastogi, S.; Brown, B.H.; O’Connell, K.A.; Cox, J.W.; Shekar, K.C.; Gamble, D.M.; Sabbah, H.N.; et al. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ. Heart Fail. 2013, 6, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Badolia, R.; Ramadurai, D.K.A.; Abel, E.D.; Ferrin, P.; Taleb, I.; Shankar, T.S.; Krokidi, A.T.; Navankasattusas, S.; McKellar, S.H.; Yin, M.; et al. The Role of Nonglycolytic Glucose Metabolism in Myocardial Recovery Upon Mechanical Unloading and Circulatory Support in Chronic Heart Failure. Circulation 2020, 142, 259–274. [Google Scholar] [CrossRef] [PubMed]
  108. Diakos, N.A.; Navankasattusas, S.; Abel, E.D.; Rutter, J.; McCreath, L.; Ferrin, P.; McKellar, S.H.; Miller, D.V.; Park, S.Y.; Richardson, R.S.; et al. Evidence of Glycolysis Up-Regulation and Pyruvate Mitochondrial Oxidation Mismatch During Mechanical Unloading of the Failing Human Heart: Implications for Cardiac Reloading and Conditioning. JACC Basic Transl. Sci. 2016, 1, 432–444. [Google Scholar] [CrossRef] [Green Version]
  109. Lei, B.; Lionetti, V.; Young, M.E.; Chandler, M.P.; d’Agostino, C.; Kang, E.; Altarejos, M.; Matsuo, K.; Hintze, T.H.; Stanley, W.C.; et al. Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J. Mol. Cell. Cardiol. 2004, 36, 567–576. [Google Scholar] [CrossRef]
  110. Razeghi, P.; Young, M.E.; Alcorn, J.L.; Moravec, C.S.; Frazier, O.H.; Taegtmeyer, H. Metabolic gene expression in fetal and failing human heart. Circulation 2001, 104, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
  111. Gupte, S.A.; Levine, R.J.; Gupte, R.S.; Young, M.E.; Lionetti, V.; Labinskyy, V.; Floyd, B.C.; Ojaimi, C.; Bellomo, M.; Wolin, M.S.; et al. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart. J. Mol. Cell. Cardiol. 2006, 41, 340–349. [Google Scholar] [CrossRef] [Green Version]
  112. Gupte, R.S.; Vijay, V.; Marks, B.; Levine, R.J.; Sabbah, H.N.; Wolin, M.S.; Recchia, F.A.; Gupte, S.A. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart. J. Card. Fail. 2007, 13, 497–506. [Google Scholar] [CrossRef]
  113. Serpillon, S.; Floyd, B.C.; Gupte, R.S.; George, S.; Kozicky, M.; Neito, V.; Recchia, F.; Stanley, W.; Wolin, M.S.; Gupte, S.A. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H153–H162. [Google Scholar] [CrossRef] [Green Version]
  114. Vimercati, C.; Qanud, K.; Mitacchione, G.; Sosnowska, D.; Ungvari, Z.; Sarnari, R.; Mania, D.; Patel, N.; Hintze, T.H.; Gupte, S.; et al. Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H709–H717. [Google Scholar] [CrossRef] [Green Version]
  115. Cocco, P.; Todde, P.; Fornera, S.; Manca, M.B.; Manca, P.; Sias, A.R. Mortality in a cohort of men expressing the glucose-6-phosphate dehydrogenase deficiency. Blood 1998, 91, 706–709. [Google Scholar] [CrossRef] [Green Version]
  116. Meloni, L.; Manca, M.R.; Loddo, I.; Cioglia, G.; Cocco, P.; Schwartz, A.; Muntoni, S.; Muntoni, S. Glucose-6-phosphate dehydrogenase deficiency protects against coronary heart disease. J. Inherit. Metab. Dis. 2008, 31, 412–417. [Google Scholar] [CrossRef]
  117. Sansbury, B.E.; DeMartino, A.M.; Xie, Z.; Brooks, A.C.; Brainard, R.E.; Watson, L.J.; DeFilippis, A.P.; Cummins, T.D.; Harbeson, M.A.; Brittian, K.R.; et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ. Heart Fail. 2014, 7, 634–642. [Google Scholar] [CrossRef] [Green Version]
  118. Contaifer, D., Jr.; Buckley, L.F.; Wohlford, G.; Kumar, N.G.; Morriss, J.M.; Ranasinghe, A.D.; Carbone, S.; Canada, J.M.; Trankle, C.; Abbate, A.; et al. Metabolic modulation predicts heart failure tests performance. PLoS ONE 2019, 14, e0218153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  119. World Health Organization Working Group. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull. World Health Organ. 1989, 67, 601–611. [Google Scholar]
  120. Cappellini, M.D.; Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008, 371, 64–74. [Google Scholar] [CrossRef]
  121. Luzzatto, L. Glucose-6-phosphate dehydrogenase deficiency. Advanced Medicine-Twelve. In Proceedings of the Conference Held at the Royal College of Physicians of London, Churchill Livingstone, UK, 11–14 February 1986. [Google Scholar]
  122. Opie, L.H. Metabolism of the heart in health and disease. I. Am. Heart J. 1968, 76, 685–698. [Google Scholar] [CrossRef]
  123. Opie, L.H. Metabolism of the heart in health and disease. II. Am. Heart J. 1969, 77, 100–122. [Google Scholar] [CrossRef]
  124. Neely, J.R.; Morgan, H.E. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu. Rev. Physiol. 1974, 36, 413–459. [Google Scholar] [CrossRef]
  125. Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010, 90, 207–258. [Google Scholar] [CrossRef] [PubMed]
  126. Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef] [PubMed]
  127. Koonen, D.P.; Glatz, J.F.; Bonen, A.; Luiken, J.J. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim. Biophys. Acta 2005, 3, 163–180. [Google Scholar] [CrossRef] [PubMed]
  128. McGarry, J.D.; Brown, N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1–14. [Google Scholar] [CrossRef]
  129. Ramsay, R.R.; Gandour, R.D.; van der Leij, F.R. Molecular enzymology of carnitine transfer and transport. Biochim. Biophys. Acta 2001, 1546, 21–43. [Google Scholar] [CrossRef]
  130. Conway, M.A.; Allis, J.; Ouwerkerk, R.; Niioka, T.; Rajagopalan, B.; Radda, G.K. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 1991, 338, 973–976. [Google Scholar] [CrossRef]
  131. Beer, M.; Seyfarth, T.; Sandstede, J.; Landschütz, W.; Lipke, C.; Köstler, H.; von Kienlin, M.; Harre, K.; Hahn, D.; Neubauer, S. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol. 2002, 40, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
  132. Tian, R.; Nascimben, L.; Kaddurah-Daouk, R.; Ingwall, J.S. Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters. J. Mol. Cell. Cardiol. 1996, 28, 755–765. [Google Scholar] [CrossRef]
  133. Piacentino, V., III; Weber, C.R.; Chen, X.; Weisser-Thomas, J.; Margulies, K.B.; Bers, D.M.; Houser, S.R. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ. Res. 2003, 92, 651–658. [Google Scholar] [CrossRef] [Green Version]
  134. Noland, R.C.; Koves, T.R.; Seiler, S.E.; Lum, H.; Lust, R.M.; Ilkayeva, O.; Stevens, R.D.; Hegardt, F.G.; Muoio, D.M. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J. Biol. Chem. 2009, 284, 22840–22852. [Google Scholar] [CrossRef] [Green Version]
  135. Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.; Newgard, C.B.; et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell. Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Akhmedov, A.T.; Rybin, V.; Marin-Garcia, J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail. Rev. 2015, 20, 227–249. [Google Scholar] [CrossRef] [PubMed]
  137. Steinberg, B.A.; Zhao, X.; Heidenreich, P.A.; Peterson, E.D.; Bhatt, D.L.; Cannon, C.P.; Hernandez, A.F.; Fonarow, G.C.; Get With the Guidelines Scientific Advisory Committee and Investigators. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: Prevalence, therapies, and outcomes. Circulation 2012, 126, 65–75. [Google Scholar] [CrossRef] [Green Version]
  138. Li, X. SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin. 2013, 45, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  139. Dorn, G.W.; Vega, R.B.; Kelly, D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015, 29, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
  140. Lu, T.M.; Tsai, J.Y.; Chen, Y.C.; Huang, C.Y.; Hsu, H.L.; Weng, C.F.; Shih, C.C.; Hsu, C.P. Downregulation of Sirt1 as aging change in advanced heart failure. J. Biomed. Sci. 2014, 21, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Santulli, G.; Nakashima, R.; Yuan, Q.; Marks, A.R. Intracellular calcium release channels: An update. J. Physiol. 2017, 595, 3041–3051. [Google Scholar] [CrossRef] [Green Version]
  142. Bugger, H.; Schwarzer, M.; Chen, D.; Schrepper, A.; Amorim, P.A.; Schoepe, M.; Nguyen, T.D.; Mohr, F.W.; Khalimonchuk, O.; Weimer, B.C.; et al. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc. Res. 2010, 85, 376–384. [Google Scholar] [CrossRef]
  143. Doenst, T.; Pytel, G.; Schrepper, A.; Amorim, P.; Farber, G.; Shingu, Y.; Mohr, F.W.; Schwarzer, M. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc. Res. 2010, 86, 461–470. [Google Scholar] [CrossRef] [Green Version]
  144. Osorio, J.C.; Stanley, W.C.; Linke, A.; Castellari, M.; Diep, Q.N.; Panchal, A.R.; Hintze, T.H.; Lopaschuk, G.D.; Recchia, F.A. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 2002, 106, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Qanud, K.; Mamdani, M.; Pepe, M.; Khairallah, R.J.; Gravel, J.; Lei, B.; Gupte, S.A.; Sharov, V.G.; Sabbah, H.N.; Stanley, W.C.; et al. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H2098–H2105. [Google Scholar] [CrossRef] [Green Version]
  146. Neglia, D.; De Caterina, A.; Marraccini, P.; Natali, A.; Ciardetti, M.; Vecoli, C.; Gastaldelli, A.; Ciociaro, D.; Pellegrini, P.; Testa, R.; et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3270–H3278. [Google Scholar] [CrossRef] [Green Version]
  147. Ingwall, J.S. On substrate selection for ATP synthesis in the failing human myocardium. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3225–H3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  148. Zordoky, B.N.; Sung, M.M.; Ezekowitz, J.; Mandal, R.; Han, B.; Bjorndahl, T.C.; Bouatra, S.; Anderson, T.; Oudit, G.Y.; Wishart, D.S.; et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE 2015, 10, e0124844. [Google Scholar]
  149. Hunter, W.G.; Kelly, J.P.; McGarrah, R.W., III; Khouri, M.G.; Craig, D.; Haynes, C.; Ilkayeva, O.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; et al. Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure with Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure. J. Am. Heart Assoc. 2016, 5, e003190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  150. De Jong, K.A.; Lopaschuk, G.D. Complex Energy Metabolic Changes in Heart Failure with Preserved Ejection Fraction and Heart Failure with Reduced Ejection Fraction. Can. J. Cardiol. 2017, 33, 860–871. [Google Scholar] [CrossRef]
  151. Senni, M.; Redfield, M.M. Heart failure with preserved systolic function: A different natural history? J. Am. Coll. Cardiol. 2001, 38, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
  152. Hogg, K.; Swedberg, K.; McMurray, J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J. Am. Coll. Cardiol. 2004, 43, 317–327. [Google Scholar] [CrossRef] [Green Version]
  153. Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef] [Green Version]
  154. Davila-Roman, V.G.; Vedala, G.; Herrero, P.; de las Fuentes, L.; Rogers, J.G.; Kelly, D.P.; Gropler, R.J. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 2002, 40, 271–277. [Google Scholar] [CrossRef] [Green Version]
  155. Tuunanen, H.; Engblom, E.; Naum, A.; Någren, K.; Hesse, B.; Airaksinen, K.E.; Nuutila, P.; Iozzo, P.; Ukkonen, H.; Opie, L.H.; et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 2006, 114, 2130–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Kato, T.; Niizuma, S.; Inuzuka, Y.; Kawashima, T.; Okuda, J.; Tamaki, Y.; Iwanaga, Y.; Narazaki, M.; Matsuda, T.; Soga, T.; et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 2010, 3, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Christe, M.E.; Rodgers, R.L. Cardiac glucose and fatty acid oxidation in the streptozotocin-induced diabetic spontaneously hypertensive rat. Hypertension 1995, 25, 235–241. [Google Scholar] [CrossRef] [PubMed]
  158. Abel, E.D.; Kaulbach, H.C.; Tian, R.; Hopkins, J.C.; Duffy, J.; Doetschman, T.; Minnemann, T.; Boers, M.E.; Hadro, E.; Oberste-Berghaus, C.; et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J. Clin. Investig. 1999, 104, 1703–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  159. Lopaschuk, G.D.; Folmes, C.D.; Stanley, W.C. Cardiac energy metabolism in obesity. Circ. Res. 2007, 101, 335–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  160. Mori, J.; Basu, R.; McLean, B.A.; Das, S.K.; Zhang, L.; Patel, V.B.; Wagg, C.S.; Kassiri, Z.; Lopaschuk, G.D.; Oudit, G.Y. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation. A metabolic contribution to heart failure with normal ejection fraction. Circ. Heart Fail. 2012, 5, 493–503. [Google Scholar] [CrossRef] [Green Version]
  161. Mori, J.; Alrob, O.A.; Wagg, C.S.; Harris, R.A.; Lopaschuk, G.D.; Oudit, G.Y. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: A critical role of Pdkam. J. Physiol. Heart Circ. Physiol. 2013, 304, H1103–H1113. [Google Scholar] [CrossRef] [Green Version]
  162. Zhang, L.; Jaswal, J.S.; Ussher, J.R.; Sankaralingam, S.; Wagg, L.; Zaugg, M.; Lopaschuk, G.D. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ. Heart Fail. 2013, 6, 1039–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Sankaralingam, S.; Abo Alrob, O.; Zhang, L.; Jaswal, J.S.; Wagg, C.S.; Fukushima, A.; Padwal, R.S.; Johnstone, D.E.; Sharma, A.M.; Lopaschuk, G.D. Lowering body weight in obese mice with diastolic heart failure improves cardiac insulin sensitivity and function: Implications for the obesity paradox. Diabetes 2015, 64, 1643–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Lionetti, V.; Stanley, W.C.; Recchia, F.A. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res. 2011, 90, 202–209. [Google Scholar] [CrossRef] [PubMed]
  165. Fillmore, N.; Mori, J.; Lopaschuk, G.D. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br. J. Pharmacol. 2014, 171, 2080–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Sorokina, N.; O’Donnell, J.M.; McKinney, R.D.; Pound, K.M.; Woldegiorgis, G.; LaNoue, K.F.; Ballal, K.; Taegtmeyer, H.; Buttrick, P.M.; Lewandowski, E.D. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 2007, 115, 2033–2041. [Google Scholar] [CrossRef] [Green Version]
  167. Jarreta, D.; Orus, J.; Barrientos, A.; Miro, O.; Roig, E.; Heras, M.; Moraes, C.T.; Cardellach, F.; Casademont, J. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2000, 45, 860–865. [Google Scholar] [CrossRef] [Green Version]
  168. Quigley, A.F.; Kapsa, R.M.; Esmore, D.; Hale, G.; Byrne, E. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J. Card. Fail. 2000, 6, 47–55. [Google Scholar] [CrossRef]
  169. Sheeran, F.L.; Pepe, S. Energy deficiency in the failing heart: Linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim. Biophys. Acta 2006, 1757, 543–552. [Google Scholar] [CrossRef] [Green Version]
  170. Scheubel, R.J.; Tostlebe, M.; Simm, A.; Rohrbach, S.; Prondzinsky, R.; Gellerich, F.N.; Silber, R.E.; Holtz, J. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J. Am. Coll. Cardiol. 2002, 40, 2174–2181. [Google Scholar] [CrossRef] [Green Version]
  171. Kjekshus, J.K.; Mjos, O.D. Effect WI inhibition of lipolysis on myocardial oxygen consumption in the presence of isoproterenol. J. Clin. Investig. 1972, 51, 1767–1776. [Google Scholar] [CrossRef] [Green Version]
  172. Mjos, O.D. Effect of inhibition of lipolysis on myocardial oxygen consumption in the presence of isoproterenol. J. Clin. Investig. 1971, 50, 1869–1873. [Google Scholar] [CrossRef]
  173. Liu, B.; Clanachan, A.S.; Schulz, R.; Lopaschuk, G.D. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ. Res. 1996, 79, 940–948. [Google Scholar] [CrossRef] [PubMed]
  174. Liu, Q.; Docherty, J.C.; Rendell, J.C.T.; Clanachan, A.S.; Lopaschuk, G.D. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J. Am. Coll. Cardiol. 2002, 39, 718–725. [Google Scholar] [CrossRef] [Green Version]
  175. Folmes, C.D.; Clanachan, A.S.; Lopaschuk, G.D. Fatty acids attenuate insulin regulation of 5′-AMP-activated protein kinase and insulin cardioprotection after ischemia. Circ. Res. 2006, 99, 61–68. [Google Scholar] [CrossRef] [Green Version]
  176. Vogel, S.; Sperelakis, N. Blockade of myocardial slow inward current at low pH. Am. J. Phys. 1977, 233, C99–C103. [Google Scholar] [CrossRef]
  177. Steenbergen, C.; Deleeuw, G.; Rich, T.; Williamson, J.R. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ. Res. 1977, 41, 849–858. [Google Scholar] [CrossRef] [Green Version]
  178. Beanlands, R.S.B.; Armstrong, W.F.; Hicks, R.J.; Nicklas, J.; Moore, C.; Hutchins, G.D.; Wolpers, H.G.; Schwaiger, M. The effects of afterload reduction on myocardial carbon 11-labeled acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy. J. Nucl. Cardiol. 1994, 1, 3–16. [Google Scholar] [CrossRef]
  179. Masoud, W.G.; Ussher, J.R.; Wang, W.; Jaswal, J.S.; Wagg, C.S.; Dyck, J.R.; Lygate, C.A.; Neubauer, S.; Clanachan, A.S.; Lopaschuk, G.D. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc. Res. 2014, 101, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  180. Lopaschuk, G.D.; Barr, R.; Thomas, P.D.; Dyck, J.R. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ. Res. 2003, 93, e33–e37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Dyck, J.R.; Cheng, J.F.; Stanley, W.C.; Barr, R.; Chandler, M.P.; Brown, S.; Wallace, D.; Arrhenius, T.; Harmon, C.; Yang, G.; et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 2004, 94, e78–e84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  182. Dyck, J.R.; Hopkins, T.A.; Bonnet, S.; Michelakis, E.D.; Young, M.E.; Watanabe, M.; Kawase, Y.; Jishage, K.; Lopaschuk, G.D. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 2006, 114, 1721–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Ussher, J.R.; Wang, W.; Gandhi, M.; Keung, W.; Samokhvalov, V.; Oka, T.; Wagg, C.S.; Jaswal, J.S.; Harris, R.A.; Clanachan, A.S.; et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc. Res. 2012, 94, 359–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Fukushima, A.; Milner, K.; Gupta, A.; Lopaschuk, G.D. Myocardial Energy Substrate Metabolism in Heart Failure: From Pathways to Therapeutic Targets. Curr. Pharm. Des. 2015, 21, 3654–3664. [Google Scholar] [CrossRef] [PubMed]
  185. Fillmore, N.; Levasseur, J.L.; Fukushima, A.; Wagg, C.S.; Wang, W.; Dyck, J.R.B.; Lopaschuk, G.D. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol. Med. 2018, 24, 3. [Google Scholar] [CrossRef] [Green Version]
  186. Li, T.; Xu, J.; Qin, X.; Hou, Z.; Guo, Y.; Liu, Z.; Wu, J.; Zheng, H.; Zhang, X.; Gao, F. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E577–E585. [Google Scholar] [CrossRef] [Green Version]
  187. Wargovich, T.J.; MacDonald, R.G.; Hill, J.A.; Feldman, R.L.; Stacpoole, P.W.; Pepine, C.J. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am. J. Cardiol. 1988, 61, 65–70. [Google Scholar] [CrossRef]
  188. McGarry, J.D.; Takabayashi, Y.; Foster, D.W. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 1978, 253, 8294–8300. [Google Scholar] [CrossRef]
  189. Lopaschuk, G.D.; Wal, l.S.R.; Olley, P.M.; Davies, N.J. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ. Res. 1988, 63, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
  190. Wall, S.R.; Lopaschuk, G.D. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim. Biophys. Acta 1989, 1006, 97–103. [Google Scholar] [CrossRef]
  191. Schmidt-Schweda, S.; Holubarsch, C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin. Sci. 2000, 99, 27–35. [Google Scholar] [CrossRef]
  192. Lee, L.; Campbell, R.; Scheuermann-Freestone, M.; Taylor, R.; Gunaruwan, P.; Williams, L.; Ashrafian, H.; Horowitz, J.; Fraser, A.G.; Clarke, K.; et al. Metabolic modulation with perhexiline in chronic heart failure: A randomized, controlled trial of short-term use of a novel treatment. Circulation 2005, 112, 3280–3288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  193. Holubarsch, C.J.; Rohrbach, M.; Karrasch, M.; Boehm, E.; Polonski, L.; Ponikowski, P.; Rhein, S. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: The ERGO (Etomoxir for the Recovery of Glucose Oxidation) study. Clin. Sci. 2007, 113, 205–212. [Google Scholar] [CrossRef]
  194. Abozguia, K.; Elliott, P.; McKenna, W.; Phan, T.T.; Nallur-Shivu, G.; Ahmed, I.; Maher, A.R.; Kaur, K.; Taylor, J.; Henning, A.; et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 2010, 122, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
  195. Fragasso, G.; Palloshi, A.; Puccetti, P.; Silipigni, C.; Rossodivita, A.; Pala, M.; Calori, G.; Alfieri, O.; Margonato, A. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J. Am. Coll. Cardiol. 2006, 48, 992–998. [Google Scholar] [CrossRef] [Green Version]
  196. Tuunanen, H.; Engblom, E.; Naum, A.; Nagren, K.; Scheinin, M.; Hesse, B.; Juhani Airaksinen, K.E.; Nuutila, P.; Iozzo, P.; Ukkonen, H.; et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 2008, 118, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
  197. Gao, D.; Ning, N.; Niu, X.; Hao, G.; Meng, Z. Trimetazidine: A meta-analysis of randomized controlled trials in heart failure. Heart 2011, 97, 278–286. [Google Scholar] [CrossRef] [PubMed]
  198. El Alaoui-Talibi, Z.; Landormy, S.; Loireau, A.; Moravec, J. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am. J. Physiol. 1992, 262, H1068–H1074. [Google Scholar] [CrossRef] [PubMed]
  199. El Alaoui-Talibi, Z.; Moravec, J. Carnitine transport and exogenous palmitate oxidation in chronically volume-overloaded rat hearts. Biochim. Biophys. Acta 1989, 1003, 109–114. [Google Scholar] [CrossRef]
  200. Ruiz, M.; Labarthe, F.; Fortier, A.; Bouchard, B.; Legault Thompson, J.; Bolduc, V.; Rigal, O.; Chen, J.; Ducharme, A.; Crawford, P.A.; et al. Circulating acylcarnitine profile in human heart failure: A surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H768–H781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  201. Zhou, Q.Y.; Quaife, C.J.; Palmiter, R.D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 1995, 374, 640–643. [Google Scholar] [CrossRef]
  202. Baker, C.N.; Gidus, S.A.; Price, G.F.; Peoples, J.N.; Ebert, S.N. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E402–E413. [Google Scholar] [CrossRef]
  203. Bao, X.; Lu, C.M.; Liu, F.; Gu, Y.; Dalton, N.D.; Zhu, B.Q.; Foster, E.; Chen, J.; Karliner, J.S.; Ross, J.; et al. Epinephrine is required for normal cardiovascular responses to stress in the phenylethanolamine N-methyltransferase knockout mouse. Circulation 2007, 116, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
  204. Ebert, S.N.; Rong, Q.; Boe, S.; Pfeifer, K. Catecholamine-synthesizing cells in the embryonic mouse heart. Ann. N. Y. Acad. Sci. 2008, 1148, 317–324. [Google Scholar] [CrossRef] [Green Version]
  205. Goutis, A.; Felts, J.M. Effects of epinephrine, norepinephrine, glucose and insulin on extraction and oxidation of free fatty acid by myocardium. Circulation 1963, 28, 729. [Google Scholar]
  206. Gold, M.; Atlas, H.J.; Scott, J.C.; Spitzen, J.J. Effect of norepinephrine on myocardial free fatty acid uptake and oxidation. Proc. Sot. Exp. Biol. Med. 1965, 118, 876–879. [Google Scholar] [CrossRef]
  207. Crass, M.F., III; Shipp, J.C.; Pieper, G.M. Effects of catecholamines on myocardial endogenous substrates and contractility. Am. J. Physiol. 1975, 228, 618–627. [Google Scholar] [CrossRef]
  208. Murthy, V.K.; Bauman, M.D.; Shipp, J.C. Effects of epinephrine and perfusion pressure on the peak aortic pressure development and glucose transport in the isolated perfused heart of normal and diabetic rats. Basic Res. Cardiol. 1983, 78, 281–288. [Google Scholar] [CrossRef]
  209. Collins-Nakai, R.L.; Noseworthy, D.; Lopaschuk, G.D. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am. J. Physiol. Heart Circ. Physiol. 1994, 267, H1862–H1871. [Google Scholar] [CrossRef] [PubMed]
  210. Robertson, R.P.; Porte, D., Jr. Adrenergic modulation of basal insulin secretion in man. Diabetes 1973, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
  211. Lerner, R.L.; Porte, D., Jr. Epinephrine: Selective inhibition of the acute insulin response to glucose. J. Clin. Investig. 1971, 50, 2453–2457. [Google Scholar] [CrossRef] [PubMed]
  212. Christensen, N.J.; Videbaek, J. Plasma catecholamines and carbohydrate metabolism in patients with acute myocardial infarction. J. Clin. Investig. 1974, 54, 278–286. [Google Scholar] [CrossRef] [PubMed]
  213. Hue, L.; Feliu, J.E.; Hers, H.G. Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. A parallel study of the effect of phenylephrine and of glucagon. Biochem. J. 1978, 176, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. García-Sáinz, J.A.; Hernández-Sotomayor, S.M. Adrenergic regulation of gluconeogenesis: Possible involvement of two mechanisms of signal transduction in α1-adrenergic action. PNAS 1985, 82, 6727–6730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  215. Stark, B.; Keller, U. a1-adrenergic stimulation of ketogenesis and fatty acid oxidation is associate with inhibition of lipogenesis in rat hepatocytes. Experientia 1987, 43, 1104–1106. [Google Scholar] [CrossRef]
  216. Chan, T.M.; Exton, J.H. Studies on α-adrenergic activation of hepatic glucose output. Studies on α-adrenergic inhibition of hepatic pyruvate kinase and activation of gluconeogenesis. J. Biol. Chem. 1978, 253, 6393–6400. [Google Scholar] [CrossRef]
  217. De Oliveira, A.L.; de Paula, M.N.; Comar, J.F.; Vilela, V.R.; Peralta, R.M.; Bracht, A. Adrenergic metabolic and hemodynamic effects of octopamine in the liver. Int. J. Mol. Sci. 2013, 14, 21858–21872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  218. Dileepan, K.N.; Khawaja, A.M.; Wagle, S.R. Studies on the mechanism of action of somatostatin on renal gluconeogenesis: Evidence for the involvement of α1- adrenergic stimuli. Arch. Biochem. Biophys. 1982, 213, 169–176. [Google Scholar] [CrossRef]
  219. Dileepan, K.N.; Wagle, S.R. Somatostatin: A metabolic regulator. Life Sci. 1985, 37, 2335–2343. [Google Scholar] [CrossRef]
  220. Hutson, N.J.; Brumley, F.T.; Assimacopoulos, F.D.; Harper, S.C.; Exton, J.H. Studies on the α-adrenergic activation of hepatic glucose output. I. Studies on the α-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J. Biol. Chem. 1976, 251, 5200–5208. [Google Scholar] [CrossRef]
  221. Assimacopoulos-Jeannet, F.D.; Blackmore, P.F.; Exton, J.H. Studies on α-adrenergic activation of hepatic glucose output. Studies on role of calcium in α-adrenergic activation of phosphorylase. J. Biol. Chem. 1977, 252, 2662–2669. [Google Scholar] [CrossRef]
  222. Packer, M. Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion. Cardiovasc. Diabetol. 2019, 18, 129. [Google Scholar] [CrossRef]
  223. McMurray, J.J.V.; Solomon, S.D.; Docherty, K.F.; Jhund, P.S. The dapagliflozin and prevention of adverse outcomes in heart failure trial (DAPA-HF) in context. Eur. Heart J. 2020, ii, ehz916. [Google Scholar] [CrossRef] [Green Version]
  224. Swe, M.T.; Thongnak, L.; Jaikumkao, K.; Pongchaidecha, A.; Chatsudthipong, V.; Lungkaphin, A. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. Clin. Sci. 2019, 133, 2415–2430. [Google Scholar] [CrossRef]
  225. Basu, R.; Shah, P.; Basu, A.; Norby, B.; Dicke, B.; Chandramouli, V.; Cohen, O.; Landau, B.R.; Rizza, R.A. Comparison of the effects of pioglitazone and metformin on hepatic and extra-hepatic insulin action in people with type 2 diabetes. Diabetes 2008, 57, 24–31. [Google Scholar] [CrossRef] [Green Version]
  226. Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014, 510, 542–546. [Google Scholar] [CrossRef] [Green Version]
  227. Cahill, G.F., Jr.; Veech, R.L. Ketoacids? Good medicine? Trans. Am. Clin. Climatol. Assoc. 2003, 114, 149–163. [Google Scholar]
  228. Abel, E.D.; O’Shea, K.M.; Ramasamy, R. Insulin resistance: Metabolic mechanisms and consequences in the heart. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2068–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  229. Guo, H.; Callaway, J.B.; Ting, J.P. Inflammasomes: Mechanism of action, role in disease and therapeutics. Nat. Med. 2015, 21, 677–687. [Google Scholar] [CrossRef] [Green Version]
  230. Puchalska, P.; Crawford, P.A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell. Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [Green Version]
  231. Kim, S.R.; Lee, S.G.; Kim, S.H.; Kim, J.H.; Choi, E.; Cho, W.; Rim, J.H.; Hwang, I.; Lee, C.J.; Lee, M.; et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 2020, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
  232. Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  233. Egert, S.; Nguyen, N.; Schwaiger, M. Contribution of α-adrenergic and β-adrenergic stimulation to ischemia-induced glucose transporter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ. Res. 1999, 84, 1407–1415. [Google Scholar] [CrossRef] [Green Version]
  234. Doenst, T.; Taegtmeyer, H. α-Adrenergic Stimulation Mediates Glucose Uptake Through Phosphatidylinositol 3-Kinase in Rat Heart. Circ. Res. 1999, 84, 467–474. [Google Scholar] [CrossRef] [Green Version]
  235. Shi, T.; Papay, R.S.; Perez, D.M. The role of α1-adrenergic receptors in regulating metabolism: Increased glucose tolerance, leptin secretion and lipid oxidation. J. Recept. Signal. Transduct. Res. 2017, 37, 124–132. [Google Scholar] [CrossRef] [PubMed]
  236. Sato, M.; Evans, B.A.; Sandström, A.L.; Chia, L.Y.; Mukaida, S.; Thai, B.S.; Nguyen, A.; Lim, L.; Tan, C.; Baltos, J.A.; et al. α1A-Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochem. Pharmacol. 2018, 148, 27–40. [Google Scholar] [CrossRef] [PubMed]
  237. Papay, R.S.; Perez, D.M. α1-Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes. J. Recept. Signal. Transduct. Res. 2021, 41, 138–144. [Google Scholar] [CrossRef] [PubMed]
  238. Liu, I.M.; Tsai, C.C.; Lai, T.Y.; Cheng, J.T. Stimulatory effect of isoferulic acid on α1A-adrenoceptor to increase glucose uptake into cultured myoblast C2C12 cells of mice. Auton. Neurosci. 2001, 88, 175–180. [Google Scholar] [CrossRef]
  239. Hutchinson, D.S.; Bengtsson, T. α1A-adrenoceptors activate glucose Uptake in L6 muscle cells through a phospholipase C-, phosphatidylinositol-3 kinase-, andatypical protein kinase C-dependent pathway. Endocrinology 2005, 146, 901–912. [Google Scholar] [CrossRef] [PubMed]
  240. Hutchinson, D.S.; Bengtsson, T. AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: Mediation by α1-adrenoceptors causing glucose uptake. Diabetes 2006, 55, 682–690. [Google Scholar] [CrossRef] [Green Version]
  241. Faintrenie, G.; Géloën, A. α1-adrenergic stimulation of glucose uptake in rat white adipocytes. J. Pharmacol. Exp. Ther. 1998, 1286, 607–610. [Google Scholar]
  242. Cheng, J.-T.; Liu, I.-M.; Yen, S.-T.; Chen, P.-C. Role of α1A-adrenoceptor in the regulation of glucose uptake into white adipocyte of rats in vitro. Auton. Neurosci. 2000, 84, 140–146. [Google Scholar] [CrossRef]
  243. Boschmann, M.; Krupp, G.; Luft, F.C.; Klaus, S.; Jordan, J. In vivo response to α1-adrenoreceptor stimulation in human white adipose tissue. Obes. Res. 2002, 10, 555–558. [Google Scholar] [CrossRef] [Green Version]
  244. Flechtner-Mors, M.; Jenkinson, C.P.; Alt, A.; Adler, G.; Ditschuneit, H.H. In vivo α1-adrenergic lipolytic activity in subcutaneous adipose tissue of obese subjects. J. Pharmacol. Exp. Ther. 2002, 301, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  245. Flechtner-Mors, M.; Jenkinson, C.P.; Alt, A.; Biesalski, H.K.; Adler, G.; Ditschuneit, H.H. Sympathetic regulation of glucose uptake by the α1-adrenoceptor in human obesity. Obes. Res. 2004, 12, 612–620. [Google Scholar] [CrossRef]
  246. Shi, T.; Papay, R.S.; Perez, D.M. α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake. J. Recept. Signal. Transduct. Res. 2016, 36, 261–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  247. Cavalli, A.; Lattion, A.L.; Hummler, E.; Nenniger, M.; Pedrazzini, T.; Aubert, J.F.; Michel, M.C.; Yang, M.; Lembo, G.; Vecchione, C.; et al. Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 11589–115894. [Google Scholar] [CrossRef] [Green Version]
  248. Zuscik, M.J.; Sand, S.; Ross, S.A.; Waugh, D.J.J.; Gaivin, R.J.; Morilak, D.; Perez, D.M. Overexpression of the α1b-Adrenergic receptor causes apoptotic neurodegeneration: A multiple system atrophy. Nat. Med. 2000, 6, 1388–1394. [Google Scholar] [CrossRef]
  249. Zuscik, M.J.; Chalothorn, D.; Hellard, D.; Deighan, C.; McGee, A.; Daly, C.; Waugh, D.J.; Ross, S.A.; Gaivin, R.J.; Morehead, A.J.; et al. Hypotension, autonomic failure and cardiac hypertrophy in transgenic mice over-expressing the α1b-adrenergic receptor. J. Biol. Chem. 2001, 276, 13738–13743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  250. Angeloni, C.; Maraldi, T.; Ghelli, A.; Rugolo, M.; Leoncini, E.; Hakim, G.; Hrelia, S. Green tea modulates α1-adrenergic stimulated glucose transport in cultured rat cardiomyocytes. J. Agric. Food Chem. 2007, 55, 7553–7558. [Google Scholar] [CrossRef] [PubMed]
  251. Rorabaugh, B.R.; Gaivin, R.J.; Papay, R.S.; Shi, T.; Simpson, P.C.; Perez, D.M. Both α1A- and α1B-Adrenergic Receptors Cross-talk to Downregulate β1-ARs in Mouse Heart: Coupling to Differential PTX-Sensitive Pathways. J. Mol. Cell. Cardiol. 2005, 39, 777–784. [Google Scholar] [CrossRef]
  252. Nishino, Y.; Miura, T.; Miki, T.; Sakamoto, J.; Nakamura, Y.; Ikeda, Y.; Kobayashi, H.; Shimamoto, K. Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc. Res. 2004, 61, 610–619. [Google Scholar] [CrossRef]
  253. Gundewar, S.; Calvert, J.W.; Jha, S.; Toedt-Pingel, I.; Ji, S.Y.; Nunez, D.; Ramachandran, A.; Anaya-Cisneros, M.; Tian, R.; Lefer, D.J. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ. Res. 2009, 104, 403–411. [Google Scholar] [CrossRef] [Green Version]
  254. Turrell, H.E.; Rodrigo, G.C.; Norman, R.I.; Dickens, M.; Standen, N.B. Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J. Mol. Cell. Cardiol. 2011, 51, 370–380. [Google Scholar] [CrossRef] [PubMed]
  255. Zarrinpashneh, E.; Beauloye, C.; Ginion, A.; Pouleur, A.C.; Havaux, X.; Hue, L.; Viollet, B.; Vanoverschelde, J.L.; Bertrand, L. AMPKα2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem. Biophys. Res. Commun. 2008, 376, 677–681. [Google Scholar] [CrossRef] [PubMed]
  256. Xiao, H.; Ma, X.; Feng, W.; Fu, Y.; Lu, Z.; Xu, M.; Shen, Q.; Zhu, Y.; Zhang, Y. Metformin attenuates cardiac fibrosis by inhibiting the TGFb1-Smad3 signalling pathway. Cardiovasc. Res. 2010, 87, 504–513. [Google Scholar] [CrossRef] [Green Version]
  257. Gaskin, F.S.; Kamada, K.; Zuidema, M.Y.; Jones, A.W.; Rubin, L.J.; Korthuis, R.J. Isoform-selective 5’-AMP-activated protein kinase-dependent preconditioning mechanisms to prevent postischemic leukocyte-endothelial cell adhesive interactions. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H1352–H1360. [Google Scholar] [CrossRef] [Green Version]
  258. Cieslik, K.A.; Taffet, G.E.; Crawford, J.R.; Trial, J.; Mejia Osuna, P.; Entman, M.L. AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J. Mol. Cell. Cardiol. 2013, 63, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  259. Ma, X.; Fu, Y.; Xiao, H.; Song, Y.; Chen, R.; Shen, J.; An, X.; Shen, Q.; Li, Z.; Zhang, Y. Cardiac Fibrosis Alleviated by Exercise Training Is AMPK-Dependent. PLoS ONE 2015, 10, e0129971. [Google Scholar] [CrossRef] [Green Version]
  260. Han, X.; Tai, H.; Wang, X.; Wang, Z.; Zhou, J.; Wei, X.; Ding, Y.; Gong, H.; Mo, C.; Zhang, J.; et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell. 2016, 15, 416–427. [Google Scholar] [CrossRef] [Green Version]
  261. Garg, G.; Singh, S.; Singh, A.K.; Rizvi, S.I. Metformin Alleviates Altered Erythrocyte Redox Status During Aging in Rats. Rejuvenation Res. 2017, 20, 15–24. [Google Scholar] [CrossRef] [PubMed]
  262. Na, H.J.; Park, J.S.; Pyo, J.H.; Jeon, H.J.; Kim, Y.S.; Arking, R.; Yoo, M.-A. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech. Ageing Dev. 2015, 149, 8–18. [Google Scholar] [CrossRef] [PubMed]
  263. Marsin, A.S.; Bertrand, L.; Rider, M.H.; Deprez, J.; Beauloye, C.; Vincent, M.F.; Van den Berghe, G.; Carling, D.; Hue, L. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 2000, 10, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
  264. Russell, R.R., 3rd; Li, J.; Coven, D.L.; Pypaert, M.; Zechner, C.; Palmeri, M.; Giordano, F.J.; Mu, J.; Birnbaum, M.J.; Young, L.H. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Investig. 2004, 114, 495–503. [Google Scholar] [CrossRef]
  265. Xu, M.; Zhao, Y.T.; Song, Y.; Hao, T.P.; Lu, Z.Z.; Han, Q.D.; Wang, S.Q.; Zhang, Y.Y. α1-adrenergic receptors activate AMP-activated protein kinase in rat hearts. Sheng Li Xue Bao 2007, 59, 175–182. [Google Scholar] [PubMed]
  266. Pang, T.; Rajapurohitam, V.; Cook, M.A.; Karmazyn, M. Differential AMPK phosphorylation sites associated with phenylephrine vs. antihypertrophic effects of adenosine agonists in neonatal rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H1382–H1390. [Google Scholar] [CrossRef] [Green Version]
  267. Horie, T.; Ono, K.; Nagao, K.; Nishi, H.; Kinoshita, M.; Kawamura, T.; Wada, H.; Shimatsu, A.; Kita, T.; Hasegawa, K. Oxidative stress induces GLUT4 translocation by activation of PI3-K/Akt and dual AMPK kinase in cardiac myocytes. J. Cell. Physiol. 2008, 215, 733–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  268. Miyamoto, L.; Ebihara, K.; Kusakabe, T.; Aotani, D.; Yamamoto-Kataoka, S.; Sakai, T.; Aizawa-Abe, M.; Yamamoto, Y.; Fujikura, J.; Hayashi, T.; et al. Leptin activates hepatic 5’-AMP-activated protein kinase through sympathetic nervous system and α1-adrenergic receptor: A potential mechanism for improvement of fatty liver in lipodystrophy by leptin. J. Biol. Chem. 2012, 287, 40441–40447. [Google Scholar] [CrossRef] [Green Version]
  269. Pulinilkunnil, T.; He, H.; Kong, D.; Asakura, K.; Peroni, O.D.; Lee, A.; Kahn, B.B. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J. Biol. Chem. 2011, 286, 8798–8809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  270. Minokoshi, Y.; Kim, Y.B.; Peroni, O.D.; Fryer, L.G.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002, 415, 339–343. [Google Scholar] [CrossRef]
  271. Kishi, K.; Yuasa, T.; Minami, A.; Yamada, M.; Hagi, A.; Hayashi, H.; Kemp, B.E.; Witters, L.A.; Ebina, Y. AMP-activated protein kinase is activated by the stimulations of G(q)-coupled receptors. Biochem. Biophys. Res. Commun. 2000, 276, 16–22. [Google Scholar] [CrossRef]
  272. Glund, S.; Deshmukh, A.; Long, Y.C.; Moller, T.; Koistinen, H.A.; Caidahl, K.; Zierath, Z.; Krook, A. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 2007, 56, 1630–1637. [Google Scholar] [CrossRef] [Green Version]
  273. Cadaret, C.N.; Beede, K.A.; Riley, H.E.; Yates, D.T. Acute exposure of primary rat soleus muscle to zilpaterol HCl (β2 adrenergic agonist), TNFα, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake. Cytokine 2017, 96, 107–113. [Google Scholar] [CrossRef]
  274. Karwi, Q.G.; Uddin, G.M.; Ho, K.L.; Lopaschuk, G.D. Loss of Metabolic Flexibility in the Failing Heart. Front. Cardiovasc. Med. 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
  275. Xiao, X.; Su, G.; Brown, S.N.; Chen, L.; Ren, J.; Zhao, P. Peroxisome proliferator-activated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMP-activated protein kinase. J. Nutr. Biochem. 2010, 21, 621–626. [Google Scholar] [CrossRef]
  276. Huang, Q.; Huang, J.; Zeng, Z.; Luo, J.; Liu, P.; Chen, S.; Liu, B.; Pan, X.; Zang, L.; Zhou, S. Effects of ERK1/2/PPARα/SCAD signal pathways on cardiomyocyte hypertrophy induced by insulin-like growth factor 1 and phenylephrine. Life Sci. 2015, 124, 41–49. [Google Scholar] [CrossRef] [PubMed]
  277. Kar, D.; Bandyopadhyay, A. Targeting Peroxisome Proliferator Activated Receptor α (PPAR α) for the Prevention of Mitochondrial Impairment and Hypertrophy in Cardiomyocytes. Cell. Physiol. Biochem. 2018, 49, 245–259. [Google Scholar] [CrossRef] [PubMed]
  278. Liu, Z.; Hua, J.; Cai, W.; Zhan, Q.; Lai, W.; Zeng, Q.; Ren, H.; Xu, D. N-terminal truncated peroxisome proliferator-activated receptor-γ coactivator-1α alleviates phenylephrine-induced mitochondrial dysfunction and decreases lipid droplet accumulation in neonatal rat cardiomyocytes. Mol. Med. Rep. 2018, 18, 2142–2152. [Google Scholar] [CrossRef]
  279. Lee, Y.-J.; Kim, H.S.; Seo, H.S.; Na, J.O.; Jang, Y.-N.; Han, Y.-M.; Kim, H.-M. Stimulation of α1-Adrenergic Receptor Ameliorates Cellular Functions of Multiorgans beyond Vasomotion through PPARδ. PPAR Res. 2020, 3785137. [Google Scholar] [CrossRef] [Green Version]
  280. Barger, P.M.; Kelly, D.P. PPAR signaling in the control of cardiac energy metabolism. Trends. Cardiovasc. Med. 2000, 10, 238–245. [Google Scholar] [CrossRef]
  281. Huss, J.M.; Kelly, D.P. Mitochondrial energy metabolism in heart failure: A question of balance. J. Clin. Investig. 2005, 115, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  282. Burkart, E.M.; Sambandam, N.; Han, X.; Gross, R.W.; Courtois, M.; Gierasch, C.M.; Shoghi, K.; Welch, M.J.; Kelly, D.P. Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart. J. Clin. Investig. 2007, 117, 3930–3939. [Google Scholar] [CrossRef]
  283. Yang, Q.; Long, Q. PPARd, a Potential Therapeutic Target for Heart Disease. Nucl. Recept. Res. 2018, 5, 101375. [Google Scholar] [CrossRef] [PubMed]
  284. Cheng, L.; Ding, G.; Qin, Q.; Huang, Y.; Lewis, W.; He, N.; Evans, R.M.; Schneider, M.D.; Brako, F.A.; Xiao, Y.; et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 2004, 10, 1245–1250. [Google Scholar] [CrossRef]
  285. Li, P.; Luo, S.; Pan, C.; Cheng, X. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate. Mol. Med. Rep. 2015, 12, 7899–7906. [Google Scholar] [CrossRef] [Green Version]
  286. Yuan, J.; Wu, J.; Han, Z.G. Fenofibrate improves energy metabolism and attenuates isoproterenol induced acute myocardial ischemic injury in rats via PPAR α activation. Zhonghua Xin Xue Guan Bing Za Zhi 2008, 36, 847–850. [Google Scholar]
  287. Zuo, X.; Peng, Z.; Moussalli, M.J.; Morris, J.S.; Broaddus, R.R.; Fischer, S.M.; Shureiqi, I. Targeted genetic disruption of peroxisome proliferator-activated receptor-delta and colonic tumorigenesis. J. Natl. Cancer Inst. 2009, 101, 762–767. [Google Scholar] [CrossRef] [Green Version]
  288. Zuo, X.; Xu, M.; Yu, J.; Wu, Y.; Moussalli, M.J.; Manyam, G.C.; Lee, S.I.; Lee, S.I.; Liang, S.; Gagea, M.; et al. Potentiation of colon cancer susceptibility in mice by colonic epithelial PPAR-δ/β overexpression. J. Natl. Cancer Inst. 2014, 106, dju052. [Google Scholar] [CrossRef] [Green Version]
  289. Xi, Y.; Zhang, Y.; Zhu, S.; Luo, Y.; Xu, P.; Huang, Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020, 9, 352. [Google Scholar] [CrossRef] [Green Version]
  290. Wagner, N.; Wagner, K.D. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020, 9, 1133. [Google Scholar] [CrossRef]
  291. Konstandi, M.; Kypreos, K.E.; Matsubara, T.; Xepapadaki, E.; Shah, Y.M.; Krausz, K.; Andriopoulou, C.E.; Kofinas, A.; Gonzalez, F.J. Adrenoceptor-related decrease in serum triglycerides is independent of PPARα activation. FEBS J. 2019, 286, 4328–4341. [Google Scholar] [CrossRef] [PubMed]
  292. Willis, M.S.; Ilaiwy, A.; Montgomery, M.D.; Simpson, P.C.; Jensen, B.C. The α1A- adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid and endocannabinoid metabolites associated with inflammation in vivo. Metabolomics 2016, 12, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  293. Burcelin, R.; Uldry, M.; Foretz, M.; Perrin, C.; Dacosta, A.; Nenniger-Tosato, M.; Seydoux, J.; Cotecchia, S.; Thorens, B. Impaired glucose homeostasis in mice lacking the α1b-adrenergic receptor subtype. J. Biol. Chem. 2004, 279, 1108–1115. [Google Scholar] [CrossRef] [Green Version]
  294. Zimmer, H.G.; Ibel, H.; Suchner, U. β-adrenergic agonists stimulate the oxidative pentose phosphate pathway in the rat heart. Circ. Res. 1990, 67, 1525–1534. [Google Scholar] [CrossRef] [Green Version]
  295. Zimmer, H.G.; Lankat-Buttgereit, B.; Kolbeck-Rühmkorff, C.; Nagano, T.; Zierhut, W. Effects of norepinephrine on the oxidative pentose phosphate pathway in the rat heart. Circ. Res. 1992, 71, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  296. Zimmer, H.G.; Irlbeck, M.; Kolbeck-Rühmkorff, C.K. Response of the rat heart to catecholamines and thyroid hormones. Mol. Cell. Biochem. 1995, 147, 105–114. [Google Scholar] [CrossRef] [PubMed]
  297. Irlbeck, M.; Zimmer, H.G. The functional and metabolic responses of the heart to catecholamines are attenuated in diabetic rats. Cardioscience 1995, 6, 131–138. [Google Scholar] [PubMed]
  298. Giannattasio, C.; Cattaneo, B.M.; Seravalle, G.; Carugo, S.; Mangoni, A.A.; Grassi, G.; Zanchetti, A.; Mancia, G. α1-blocking properties of carvedilol during acute and chronic administration. J. Cardiovasc. Pharmacol. 1992, 19, S18–S22. [Google Scholar] [CrossRef] [PubMed]
  299. Nagano, T.; O’Harrow, S.; Sponer, G.; Zimmer, H.G. Norepinephrine-induced changes in rat heart function, metabolism, and weight are antagonized by carvedilol. J. Cardiovasc. Pharmacol. 1993, 21, 530–536. [Google Scholar] [CrossRef] [PubMed]
  300. Woo, S.H.; Lee, C.O. Role of PKC in the effects of α1-adrenergic stimulation on Ca2+ transients, contraction and Ca2+ current in guinea-pig ventricular myocytes. Pflugers. Arch. 1999, 437, 335–344. [Google Scholar] [CrossRef] [PubMed]
  301. Wier, W.G.; Morgan, K.G. α1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 2003, 150, 91–139. [Google Scholar]
  302. Villalba, N.; Stankevicius, E.; Garcia-Sacristán, A.; Simonsen, U.; Prieto, D. Contribution of both Ca2+ entry and Ca2+ sensitization to the α1-adrenergic vasoconstriction of rat penile small arteries. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1157–H1169. [Google Scholar] [CrossRef]
  303. Gutiérrez, A.; Contreras, C.; Sánchez, A.; Prieto, D. Role of Phosphatidylinositol 3-Kinase (PI3K), Mitogen-Activated Protein Kinase (MAPK), and Protein Kinase C (PKC) in Calcium Signaling Pathways Linked to the α1-Adrenoceptor in Resistance Arteries. Front. Physiol. 2019, 10, 55. [Google Scholar] [CrossRef] [PubMed]
  304. Fordyce, C.B.; Roe, M.T.; Ahmad, T.; Libby, P.; Borer, J.S.; Hiatt, W.R.; Bristow, M.R.; Packer, M.; Wasserman, S.M.; Braunstein, N.; et al. Cardiovascular drug development: Is it dead or just hibernating? J. Am. Coll. Cardiol. 2015, 65, 1567–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  305. Ruffolo, R.R., Jr.; Rice, P.J.; Patil, P.N.; Hamada, A.; Miller, D.D. Differences in the applicability of the Easson-Stedman hypothesis to the α1- and α2-adrenergic effects of phenethylamines and imidazolines. Eur. J. Pharmacol. 1983, 86, 471–475. [Google Scholar] [CrossRef]
  306. Ruffolo, R.R., Jr.; Waddell, J.E. Receptor interactions of imidazolines. IX. Cirazoline is an α1-adrenergic agonist and an α2-adrenergic antagonist. J. Pharmacol. Exp. Ther. 1982, 222, 29–36. [Google Scholar] [PubMed]
  307. Hieble, J.P.; DeMarinis, R.M.; Matthews, W.D. Evidence for and against heterogeneity of α1-adrenoceptors. Life Sci. 1986, 38, 1339–1350. [Google Scholar] [CrossRef]
  308. Ruffolo, R.R., Jr.; Yaden, E.L.; Waddell, J.E.; Dillard, R.D. Receptor interactions of imidazolines. VI. Significance of carbon bridge separating phenyl and imidazoline rings of tolazoline-like α-adrenergic imidazolines. J. Pharmacol. Exp. Ther. 1980, 214, 535–540. [Google Scholar] [PubMed]
  309. Knepper, S.M.; Buckner, S.A.; Brune, M.E.; DeBernardis, J.F.; Meyer, M.D.; Hancock, A.A. A-61603, a potent α1-adrenergic receptor agonist, selective for the α1A receptor subtype. J. Pharmacol. Exp. Ther. 1995, 274, 97–103. [Google Scholar]
  310. Minneman, K.P.; Theroux, T.L.; Hollinger, S.; Han, C.; Esbenshade, T.A. Selectivity of agonists for cloned α1-adrenergic receptor subtypes. Mol. Pharmacol. 1994, 46, 929–936. [Google Scholar]
  311. Waugh, D.J.J.; Gaivin, R.J.; Zuscik, M.J.; Gonzalez-Cabrera, P.; Ross, S.A.; Yun, J.; Perez, D.M. Phe308 and Phe312 in TM VII are major sites of α1-Adrenergic Receptor Antagonist Binding: Imidazoline Agonists Bind Like Antagonists. J. Biol. Chem. 2001, 276, 25366–25371. [Google Scholar] [CrossRef] [Green Version]
  312. Musselman, D.M.; Ford, A.P.; Gennevois, D.J.; Harbison, M.L.; Laurent, A.L.; Mokatrin, A.S.; Stoltz, R.R.; Blue, D.R. A randomized crossover study to evaluate Ro 115–1240, a selective α1A/L -adrenoceptor partial agonist in women with stress urinary incontinence. BJU Int. 2004, 93, 78–83. [Google Scholar] [CrossRef]
  313. Blue, D.R.; Daniels, D.V.; Gever, J.R.; Jett, M.F.; O’Yang, C.; Tang, H.M.; Williams, T.J.; Ford, A.P. Pharmacological characteristics of Ro 115–1240, a selective α1A/L-adrenoceptor partial agonist: A potential therapy for stress urinary incontinence. BJU Int. 2004, 93, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  314. Evans, B.A.; Broxton, N.; Merlin, J.; Sato, M.; Hutchinson, D.S.; Christopoulos, A.; Summers, R.J. Quantification of functional selectivity at the human α1A-adrenoceptor. Mol. Pharmacol. 2011, 79, 298–307. [Google Scholar] [CrossRef]
  315. Da Silva, E.D.; Sato, M.; Merlin, J.; Broxton, N.; Hutchinson, D.S.; Ventura, S.; Evans, B.A.; Summers, R.J. Factors influencing biased agonism in recombinant cells expressing the human α1A-adrenoceptor. Br. J. Pharmacol. 2017, 174, 2318–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  316. Bishop, M.J. Recent Advances in the Discovery of α1-Adrenoceptor Agonists. Curr. Top. Med. Chem. 2007, 7, 135–145. [Google Scholar] [CrossRef] [PubMed]
  317. Christopoulos, A. Allosteric binding sites on cell-surface receptors: Novel targets for drug discovery. Nat. Rev. Drug Discov. 2002, 1, 198–210. [Google Scholar] [CrossRef] [PubMed]
  318. Maeda, K.; Das, D.; Nakata, H.; Mitsuya, H. CCR5 inhibitors: Emergence, success, and challenges. Expert Opin. Emerg. Drugs. 2012, 17, 135–145. [Google Scholar] [CrossRef] [PubMed]
  319. Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J. Med. Chem. 2019, 62, 88–127. [Google Scholar] [CrossRef] [PubMed]
  320. Perez, D.M. Novel Positive Allosteric Modulators of the α1A-Adrenergic Receptor to Treat Alzheimer’s Disease. Brain Connect. 2021, 11, A1–A8. [Google Scholar]
  321. Kuschel, M.; Zhou, Y.Y.; Spurgeon, H.A.; Bartel, S.; Karczewski, P.; Zhang, S.J.; Krause, E.G.; Lakatta, E.G.; Xiao, R.P. β2-Adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 1999, 99, 2458–2465. [Google Scholar] [CrossRef] [Green Version]
  322. McConville, P.; Fishbein, K.W.; Lakatta, E.G.; Spencer, R.G. Differences in the bioenergetic response of the isolated perfused rat heart to selective β1- and β2-adrenergic receptor stimulation. Circulation 2003, 107, 2146–2152. [Google Scholar] [CrossRef] [Green Version]
  323. Goodwin, G.W.; Ahmad, F.; Taegtmeyer, H. Preferential oxidation of glycogen in isolated working rat heart. J. Clin. Investig. 1996, 97, 1409–1416. [Google Scholar] [CrossRef] [Green Version]
  324. Goodwin, G.W.; Ahmad, F.; Doenst, T.; Taegtmeyer, H. Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am. J. Physiol. 1998, 274, H1239–H1247. [Google Scholar] [CrossRef] [PubMed]
  325. Nevzorova, J.; Bengtsson, T.; Evans, B.A.; Summers, R.J. Characterization of the β-adrenoceptor subtype involved in mediation of glucose transport in L6 cells. Br. J. Pharmacol. 2002, 137, 9–18. [Google Scholar] [CrossRef] [Green Version]
  326. Nevzorova, J.; Evans, B.A.; Bengtsson, T.; Summers, R.J. Multiple signalling pathways involved in β2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br. J. Pharmacol. 2006, 147, 446–454. [Google Scholar] [CrossRef] [Green Version]
  327. McConville, P.; Lakatta, E.G.; Spencer, R.G. Greater glycogen utilization during β1- than β2-adrenergic receptor stimulation in the isolated perfused rat heart. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1828–E1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  328. Andres, D.A.; Young, L.E.A.; Veeranki, S.; Hawkinson, T.R.; Levitan, B.M.; He, D.; Wang, C.; Satin, J.; Sun, R.C. Improved workflow for mass spectrometry-based metabolomics analysis of the heart. J. Biol. Chem. 2020, 295, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
  329. McConville, P.; Spencer, R.G.; Lakatta, E.G. Temporal dynamics of inotropic, chronotropic, and metabolic responses during β1- and β2-AR stimulation in the isolated, perfused rat heart. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E412–E418. [Google Scholar] [CrossRef]
  330. Ahmad, T.; Miller, P.E.; McCullough, M.; Desai, N.R.; Riello, R.; Psotka, M.; Böhm, M.; Allen, L.A.; Teerlink, J.R.; Rosano, G.; et al. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. Eur. J. Heart Fail. 2019, 21, 1064–1078. [Google Scholar] [CrossRef] [PubMed]
  331. Lafontan, M.; Berlan, M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 1993, 34, 1057–1091. [Google Scholar] [CrossRef]
  332. Zhao, J.; Cannon, B.; Nedergaard, J. Thermogenesis is β3- but not β1-adrenergically mediated in rat brown fat cells, even after cold acclimation. Am. J. Physiol. 1998, 275, R2002–R2011. [Google Scholar] [CrossRef]
  333. Barr, L.A.; Lambert, J.P.; Shimizu, Y.; Barouch, L.A.; Naqvi, N.; Calvert, J.W. Exercise training provides cardioprotection by activating and coupling endothelial nitric oxide synthase via a β3-adrenergic receptor-AMP-activated protein kinase signaling pathway. Med. Gas. Res. 2017, 7, 1–8. [Google Scholar]
  334. Moniotte, S.; Kobzik, L.; Feron, O.; Trochu, J.N.; Gauthier, C.; Balligand, J.L. Upregulation of β3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 2001, 103, 1649–1655. [Google Scholar] [CrossRef] [Green Version]
  335. Cheng, H.J.; Zhang, Z.S.; Onishi, K.; Ukai, T.; Sane, D.C.; Cheng, C.P. Upregulation of functional β3-adrenergic receptor in the failing canine myocardium. Circ. Res. 2001, 89, 599–606. [Google Scholar] [CrossRef] [Green Version]
  336. Treskatsch, S.; Feldheiser, A.; Rosin, A.T.; Sifringer, M.; Habazettl, H.; Mousa, S.A.; Shakibaei, M.; Schäfer, M.; Spies, C.D. A modified approach to induce predictable congestive heart failure by volume overload in rats. PLoS ONE 2014, 9, e87531. [Google Scholar]
  337. Kawaguchi, S.; Okada, M.; Ijiri, E.; Koga, D.; Watanabe, T.; Hayashi, K.; Kashiwagi, Y.; Fujita, S.; Hasebe, N. β3-Adrenergic receptor blockade reduces mortality in endotoxin-induced heart failure by suppressing induced nitric oxide synthase and saving cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H283–H294. [Google Scholar] [CrossRef] [PubMed]
  338. Ziskoven, C.; Grafweg, S.; Bolck, B.; Wiesner, R.J.; Jimenez, M.; Giacobino, J.P.; Bloch, W.; Schwinger, R.H.; Brixius, K. Increased Ca2+ sensitivity and protein expression of SERCA 2a in situations of chronic β3-adrenoceptor deficiency. Pflugers. Arch. 2007, 453, 443–453. [Google Scholar] [CrossRef] [PubMed]
  339. Moens, A.L.; Leyton-Mange, J.S.; Niu, X.; Yang, R.; Cingolani, O.; Arkenbout, E.K.; Champion, H.C.; Bedja, D.; Gabrielson, K.L.; Chen, J.; et al. Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the β3-adrenoreceptor. J. Mol. Cell. Cardiol. 2009, 47, 576–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  340. Aragon, J.P.; Condit, M.E.; Bhushan, S.; Predmore, B.L.; Patel, S.S.; Grinsfelder, D.B.; Gundewar, S.; Jha, S.; Calvert, J.W.; Barouch, L.A.; et al. β3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J. Am. Coll. Cardiol. 2011, 58, 2683–2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  341. Niu, X.; Watts, V.L.; Cingolani, O.H.; Sivakumaran, V.; Leyton-Mange, J.S.; Ellis, C.L.; Miller, K.L.; Vandegaer, K.; Bedja, D.; Gabrielson, K.L.; et al. Cardioprotective effect of β3-adrenergic receptor agonism: Role of neuronal nitric oxide synthase. J. Am. Coll. Cardiol. 2012, 59, 1979–1987. [Google Scholar] [CrossRef] [Green Version]
  342. Niu, X.; Zhao, L.; Li, X.; Xue, Y.; Wang, B.; Lv, Z.; Chen, J.; Sun, D.; Zheng, Q. β3-adrenoreceptor stimulation protects against myocardial infarction injury via eNOS and nNOS activation. PLoS ONE 2014, 9, e98713. [Google Scholar] [CrossRef] [Green Version]
  343. Belge, C.; Hammond, J.; Dubois-Deruy, E.; Manoury, B.; Hamelet, J.; Beauloye, C.; Markl, A.; Pouleur, A.C.; Bertrand, L.; Esfahani, H.; et al. Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 2014, 129, 451–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  344. Trappanese, D.M.; Liu, Y.; McCormick, R.C.; Cannavo, A.; Nanayakkara, G.; Baskharoun, M.M.; Jarrett, H.; Woitek, F.J.; Tillson, D.M.; Dillon, A.R.; et al. Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: New insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Res. Cardiol. 2015, 110, 456. [Google Scholar] [CrossRef] [Green Version]
  345. Kamiya, M.; Asai, K.; Maejima, Y.; Shirakabe, A.; Murai, K.; Noma, S.; Komiyama, H.; Sato, N.; Mizuno, K.; Shimizu, W. β3-adrenergic receptor agonist prevents diastolic dysfunction in an angiotensin II-induced cardiomyopathy mouse model. J. Pharmacol. Exp. Ther. 2021, 376, 473–481. [Google Scholar] [CrossRef] [PubMed]
  346. Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; El Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J.; et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Investig. 2020, 130, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
  347. Dehvari, N.; Sato, M.; Bokhari, M.H.; Kalinovich, A.; Ham, S.; Gao, J.; Nguyen, H.; Whiting, L.; Mukaida, S.; Merlin, J.; et al. The metabolic effects of mirabegron are mediated primarily by β3 -adrenoceptors. Pharmacol. Res. Perspect. 2020, 8, e00643. [Google Scholar] [CrossRef]
  348. Smith, S.A.; Levy, A.L.; Sennitt, M.V.; Simson, D.L.; Cawthorne, M.A. Effects of BRL 26830, a novel β-adrenoceptor agonist, on glucose tolerance, insulin sensitivity and glucose turnover in Zucker (fa/fa) rats. Biochem. Pharmacol. 1985, 34, 2425–2429. [Google Scholar] [CrossRef]
  349. Williams, C.A.; Shih, M.F.; Taberner, P.V. Sustained improvement in glucose homeostasis in lean and obese mice following chronic administration of the β3 agonist SR 58611A. Br. J. Pharmacol. 1999, 128, 1586–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  350. Cawthorne, M.A.; Carroll, M.J.; Levy, A.L.; Lister, C.A.; Sennitt, M.V.; Smith, S.A.; Young, P. Effects of novel β-adrenoceptor agonists on carbohydrate metabolism: Relevance for the treatment of non-insulin-dependent diabetes. Int. J. Obes. 1984, 8, 93–102. [Google Scholar]
  351. Hao, L.; Scott, S.; Abbasi, M.; Zu, Y.; Khan, M.S.H.; Yang, Y.; Wu, D.; Zhao, L.; Wang, S. Beneficial Metabolic Effects of Mirabegron In Vitro and in High-Fat Diet-Induced Obese Mice. J. Pharmacol. Exp. Ther. 2019, 369, 419–427. [Google Scholar] [CrossRef]
  352. Wang, Z.H.; Li, Y.F.; Guo, Y.Q. β3-Adrenoceptor activation attenuates atherosclerotic plaque formation in ApoE−/− mice through lowering blood lipids and glucose. Acta. Pharmacol. Sin. 2013, 34, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
  353. Shi, S.T.; Li, Y.F.; Guo, Y.Q.; Wang, Z.H. Effect of β3-adrenoceptor stimulation on the levels of ApoA-I, PPARα, and PPARγ in apolipoprotein E-deficient mice. J. Cardiovasc. Pharmacol. 2014, 64, 407–411. [Google Scholar] [CrossRef] [PubMed]
  354. Bundgaard, H.; Axelsson, A.; Hartvig Thomsen, J.; Sorgaard, M.; Kofoed, K.F.; Hasselbalch, R.; Fry, N.A.; Valeur, N.; Boesgaard, S.; Gustafsson, F.; et al. The first-in-man randomized trial of a β3 adrenoceptor agonist in chronic heart failure: The BEAT-HF trial. Eur. J. Heart Fail. 2017, 19, 566–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  355. Pouleur, A.C.; Anker, S.; Brito, D.; Brosteanu, O.; Hasenclever, D.; Casadei, B.; Edelmann, F.; Filippatos, G.; Gruson, D.; Ikonomidis, I.; et al. Rationale and design of a multicentre, randomized, placebo-controlled trial of mirabegron, a β3-adrenergic receptor agonist on left ventricular mass and diastolic function in patients with structural heart disease β3-left ventricular hypertrophy (b3-LVH). Esc Heart Fail. 2018, 5, 830–841. [Google Scholar] [CrossRef]
  356. Böhm, M.; Maack, C. Treatment of heart failure with b-blockers. Mechanisms and results. Basic Res. Cardiol. 2000, 95, 115–124. [Google Scholar] [CrossRef] [PubMed]
  357. Katz, A.M. Changing strategies in the management of heart failure. J. Am. Coll. Cardiol. 1989, 13, 513–523. [Google Scholar] [CrossRef] [Green Version]
  358. Hwang, I.C. Myocardial Efficiency: A Reliable Load-independent Parameter of Cardiac Performance? J. Cardiovasc. Imaging 2020, 28, 279–282. [Google Scholar] [CrossRef] [PubMed]
  359. Bing, R.J.; Siegel, A.; Ungar, I.; Gilbert, M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am. J. Med. 1954, 16, 504–515. [Google Scholar] [CrossRef]
  360. Opie, L.H. Effect of β-adrenergic blockade on biochemical and metabolic response to exercise. Am. J. Cardiol. 1985, 55, 95D–100D. [Google Scholar] [CrossRef]
  361. McLeod, A.A.; Brown, J.E.; Kitchell, B.B.; Sedor, F.A.; Kuhn, C.; Shand, D.G.; Williams, R.S. Hemodynamic and metabolic responses to exercise after adrenoceptor blockade in humans. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 56, 716–722. [Google Scholar] [CrossRef]
  362. Verstappen, F.T.; van Baak, M.A. Exercise capacity, energy metabolism, and β-adrenoceptor blockade. Comparison between a β1-selective and a non-selective β blocker. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 712–718. [Google Scholar] [CrossRef]
  363. Hansen, O.; Johansson, B.W.; Nilsson-Ehle, P. Metabolic, electrocardiographic, and hemodynamic responses to increased circulating adrenaline: Effects of selective and nonselective β-adrenoceptor blockade. Angiology 1990, 41, 175–188. [Google Scholar] [CrossRef]
  364. Sarafidis, P.A.; Bakris, G.L. Antihypertensive treatment with β-blockers and the spectrum of glycaemic control. QJM 2006, 99, 431–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  365. Deacon, S.P. The effects of atenolol and propranolol upon lipolysis. Br. J. Clin. Pharmacol. 1978, 5, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  366. Zmudka, K.; Dubiel, J.; Pieniazek, P.; Dudek, D.; Kocurek, A.; Trebacz, J.; Grodecki, J.; Flameng, W.; de Geest, H. Influence of an early adrenergic blockade on thrombotic infarct size and myocardial metabolism. J. Physiol. Pharmacol. 1998, 49, 333–352. [Google Scholar] [PubMed]
  367. Panchal, A.R.; Stanley, W.C.; Kerner, J.; Sabbah, H.N. β-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J. Card. Fail. 1998, 4, 121–126. [Google Scholar] [CrossRef]
  368. Igarashi, N.; Nozawa, T.; Fujii, N.; Suzuki, T.; Matsuki, A.; Nakadate, T.; Igawa, A.; Inoue, H. Influence of β-adrenoceptor blockade on the myocardial accumulation of fatty acid tracer and its intracellular metabolism in the heart after ischemia–reperfusion injury. Circ. J. 2006, 70, 1509–1514. [Google Scholar] [CrossRef] [Green Version]
  369. Wallhaus, T.R.; Taylor, M.; DeGrado, T.R.; Russell, D.C.; Stanko, P.; Nickles, R.J.; Stone, C.K. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001, 103, 2441–2446. [Google Scholar] [CrossRef]
  370. Sharma, V.; Dhillon, P.; Wambolt, R.; Parsons, H.; Brownsey, R.; Allard, M.F.; McNeill, J.H. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H1609–H1620. [Google Scholar] [CrossRef] [Green Version]
  371. Bøttcher, M.; Refsgaard, J.; Gøtzsche, O.; Andreasen, F.; Nielsen, T.T. Effect of carvedilol on microcirculatory and glucose metabolic regulation in patients with congestive heart failure secondary to ischemic cardiomyopathy. Am. J. Cardiol. 2002, 89, 1388–1393. [Google Scholar] [CrossRef]
  372. Podbregar, M.; Voga, G. Effect of selective and nonselective β-blockers on resting energy production rate and total body substrate utilization in chronic heart failure. J. Card Fail. 2002, 8, 369–378. [Google Scholar] [CrossRef]
  373. Bakris, G.L.; Fonseca, V.; Katholi, R.E.; McGill, J.B.; Messerki, F.H.; Phillips, R.A.; Raskin, P.; Wright, J.T., Jr.; Oakes, R.; Lukas, M.A.; et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension A randomized controlled trial. J. Am. Med. Assoc. 2004, 292, 2227–2236. [Google Scholar] [CrossRef] [Green Version]
  374. Al-Hesayen, A.; Azevedo, E.R.; Floras, J.S.; Hollingshead, S.; Lopaschuk, G.D.; Parker, J.D. Selective versus nonselective β-adrenergic receptor blockade in chronic heart failure: Differential effects on myocardial energy substrate utilization. Eur. J. Heart Fail 2005, 7, 618–623. [Google Scholar] [CrossRef] [PubMed]
  375. Basat, O.; Ucak, S.; Seber, S.; Oztekin, E.; Altuntas, Y. After myocardial infarction carvedilol improves insulin resistance compared to metoprolol. Clin. Res. Cardiol. 2006, 95, 99–104. [Google Scholar] [CrossRef] [PubMed]
  376. Fonseca, V.A. Effects of β-blockers on glucose and lipid metabolism. Curr. Med. Res. Opin. 2010, 26, 615–629. [Google Scholar] [CrossRef]
  377. De Peuter, O.R.; Verberne, H.J.; Kok, W.E.; van den Bogaard, B.; Schaap, M.; Nieuwland, R.; Meijers, J.C.; Somsen, G.A.; Bakx, A.; Kamphuisen, P.W. Differential effects of nonselective versus selective β-blockers on cardiac sympathetic activity and hemostasis in patients with heart failure. J. Nucl. Med. 2013, 54, 1733–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  378. Järvisalo, J.O.; Saris, N.-E.L. Action of propranolol on mitochondrial functions—Effects on energized ion fluxes in the presence of valinomycin. Biochem. Pharmacol. 1975, 24, 1701–1705. [Google Scholar]
  379. Komai, H.; Berkoff, H.A. Effects of quinidine and propranolol on energy transduction in beef heart mitochondria. Biochem. Pharmacol. 1979, 28, 1501–1504. [Google Scholar] [CrossRef]
  380. Bhayana, V.; Alto, L.E.; Dhalla, N.S. The effects of β-adrenergic receptor blockers on heart mitochondrial metabolism. Gen. Pharmacol. Vasc. System. 1980, 11, 271–274. [Google Scholar] [CrossRef]
  381. Kametani, R.; Miura, T.; Harada, N.; Shibuya, M.; Wang, R.; Tan, H.; Fukagawa, Y.; Kawamura, S.; Matsuzaki, M. Carvedilol inhibits mitochondrial oxygen consumption and superoxide production during calcium overload in isolated heart mitochondria. Circ. J. 2006, 70, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  382. Goldhammer, E.; Maor, I.; Shnitzer, S.; Lanir, A.; Abinader, E.G. The early antioxidant effect of carvedilol predicts the clinical course in congestive heart failure patients. J. Cardiovasc. Med. 2007, 8, 453–456. [Google Scholar] [CrossRef]
  383. Noack, E.; Greeff, K. Inhibition of calcium transport in mitochondria by -receptor blocking substances and its reactivation by phospholipids. Experientia 1971, 27, 810–811. [Google Scholar] [CrossRef]
  384. Dhalla, N.S.; Lee, S.L. Comparison of the actions of acebutolol, practolol and propranolol on calcium transport by heart microsomes and mitochondria. Br. J. Pharmac. 1976, 57, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  385. Palaniyandi, S.S.; Qi, X.; Yogalingam, G.; Ferreira, J.C.B.; Mochly-Rosen, D. Regulation of mitochondrial processes: A target for heart failure. Drug Discov. Today Dis. Mech. 2010, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
  386. Brown, D.A.; Perry, J.B.; Allen, M.E.; Sabbah, H.N.; Stauffer, B.L.; Shaikh, S.R.; Cleland, J.G.; Colucci, W.S.; Butler, J.; Voors, A.A.; et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 2017, 14, 238–250. [Google Scholar] [CrossRef] [PubMed]
  387. Staudt, A.; Mobini, R.; Fu, M.; Grosse, Y.; Stangl, V.; Stangl, K.; Thiele, A.; Baumann, G.; Felix, S.B. β1-Adrenoceptor antibodies induce positive inotropic response in isolated cardiomyocytes. Eur. J. Pharmacol. 2001, 423, 115–119. [Google Scholar] [CrossRef]
  388. Wallukat, G.; Müller, J.; Podlowski, S.; Nissen, E.; Morwinski, R.; Hetzer, R. Agonist-like β-adrenoceptor antibodies in heart failure. Am. J. Cardiol. 1999, 83, 75H–79H. [Google Scholar] [CrossRef]
  389. Magnusson, Y.; Wallukat, G.; Waagstein, F.; Hjalmarson, A.; Hoebeke, J. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the β1-adrenoceptor with positive chronotropic effect. Circulation 1994, 89, 2760–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  390. Staudt, Y.; Mobini, R.; Fu, M.; Felix, S.B.; Kühn, J.P.; Staudt, A. β1-adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. Eur. J. Pharmacol. 2003, 466, 1–6. [Google Scholar] [CrossRef]
  391. Shi, L.; Liu, J.; Zhang, Y.; Chen, M.; Liu, J. β1-adrenoceptor antibodies induce myocardial apoptosis via inhibiting PGC-1α-related pathway. BMC Cardiovasc. Disord. 2020, 20, 269. [Google Scholar] [CrossRef]
  392. Wen, J.; Wang, J.; Li, P.; Wang, R.; Wang, J.; Zhou, X.; Zhang, L.; Li, H.; Wei, S.; Cai, H.; et al. Protective effects of higenamine combined with (6)-gingerol against doxorubicin-induced mitochondrial dysfunction and toxicity in H9c2 cells and potential mechanisms. Biomed. Pharmacother. 2019, 115, 108881. [Google Scholar] [CrossRef]
  393. Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000, 29, 222–230. [Google Scholar] [CrossRef]
  394. Jiang, Q.; Yin, J.; Chen, J.; Ma, X.; Wu, M.; Liu, G.; Yao, K.; Tan, B.; Yin, Y. Mitochondria-Targeted Antioxidants: A Step towards Disease Treatment. Oxidative Med. Cell. Longev. 2020, 8837893. [Google Scholar] [CrossRef]
  395. Kiyuna, L.A.; Albuquerque, R.P.E.; Chen, C.H.; Mochly-Rosen, D.; Ferreira, J.C.B. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic. Biol. Med. 2018, 129, 155–168. [Google Scholar] [CrossRef]
  396. Eichhorn, E.J.; Bedotto, J.B.; Malloy, C.R.; Hatfield, B.A.; Deitchman, D.; Brown, M.; Willard, J.E.; Grayburn, P.A. Effect of β-adrenergic blockade on myocardial function and energetics in congestive heart failure. Improvements in hemodynamic, contractile, and diastolic performance with bucindolol. Circulation 1990, 82, 473–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  397. Eichhorn, E.J.; Heesch, C.M.; Barnett, J.H.; Alvarez, L.G.; Fass, S.M.; Grayburn, P.A.; Hatfield, B.A.; Marcoux, L.G.; Malloy, C.R. Effect of metoprolol on myocardial function and energetics in patients with nonischemic dilated cardiomyopathy A randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 1994, 24, 1310–1320. [Google Scholar] [CrossRef] [Green Version]
  398. Andersson, B.; Lomsky, M.; Waagstein, F. The link between acute haemodynamic adrenergic beta-blockade and long-term effects in patients with heart failure. A study on diastolic function, heart rate and myocardial metabolism following intravenous metoprolol. Eur. Heart J. 1993, 14, 1375–1385. [Google Scholar] [CrossRef]
  399. Galie, N.; Branzi, A.; Magnani, G.; Melandri, G.; Caldarera, I.; Rapezzi, C.; Grattoni, C.; Magnani, B. Effect of enoximone alone and in combination with metoprolol on myocardial function and energetics in severe congestive heart failure: Improvement in hemodynamic and metabolic profile. Cardiovasc. Drugs Ther. 1993, 7, 337–347. [Google Scholar] [CrossRef] [PubMed]
  400. Beanlands, R.S.; Nahmias, C.; Gordon, E.; Coates, G.; de Kemp, R.; Firnau, G.; Fallen, E. The effects of β1-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: A double-blind, placebo-controlled, positron-emission tomography study. Circulation 2000, 102, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
  401. Sanchez-Roman, I.; Gomez, J.; Naudi, A.; Ayala, V.; Portero-Otín, M.; Lopez-Torres, M.; Pamplona, R.; Barja, G. The β-blocker atenolol lowers the longevity-related degree of fatty acid unsaturation, decreases protein oxidative damage and increases ERK signaling in the heart of C57BL/6 mice. Rejuvenation Res. 2010, 13, 683–693. [Google Scholar] [CrossRef]
  402. Gómez, A.; Sánchez-Roman, I.; Gomez, J.; Cruces, J.; Mate, I.; Lopez-Torres, M.; Naudi, A.; Portero-Otin, M.; Pamplona, R.; De la Fuente, M.; et al. Lifelong treatment with atenolol decreases membrane fatty acid unsaturation and oxidative stress in heart and skeletal muscle mitochondria and improves immunity and behavior, without changing mice longevity. Aging Cell. 2014, 13, 551–560. [Google Scholar] [CrossRef] [Green Version]
  403. Yoshikawa, T.; Port, J.D.; Asano, K.; Chidiak, P.; Bouvier, M.; Dutcher, D.; Roden, R.L.; Minobe, W.; Tremmel, K.D.; Bristow, M.R. Cardiac adrenergic receptor effects of carvedilol. Eur. Heart J. 1996, 17, 8–16. [Google Scholar] [CrossRef]
  404. ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: The antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000, 283, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
  405. Molenaar, P.; Christ, T.; Ravens, U.; Kaumann, A. Carvedilol blocks β2- more than β1-adrenoceptors in human heart. Cardiovasc. Res. 2006, 69, 128–139. [Google Scholar] [CrossRef] [PubMed]
  406. Molenaar, P.; Christ, T.; Berk, E.; Engel, A.; Gillette, K.T.; Galindo-Tovar, A.; Ravens, U.; Kaumann, A.J. Carvedilol induces greater control of β2- than β1-adrenoceptor-mediated inotropic and lusitropic effects by PDE3, while PDE4 has no effect in human failing myocardium. Naunyn. Schmiedebergs. Arch. Pharmacol. 2014, 387, 629–640. [Google Scholar] [CrossRef] [PubMed]
  407. Koshimizu, T.A.; Tsujimoto, G.; Hirasawa, A.; Kitagawa, Y.; Tanoue, A. Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human α1D- and α1B-adrenergic receptors. Cardiovasc. Res. 2004, 63, 662–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  408. Iaccarino, G.; Keys, J.R.; Rapacciuolo, A.; Shotwell, K.F.; Lefkowitz, R.J.; Rockman, H.A.; Koch, W.J. Regulation of myocardial βARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing α1B-adrenergic receptors. J. Am. Coll. Cardiol. 2001, 38, 534–540. [Google Scholar] [CrossRef] [Green Version]
  409. Kukin, M.L.; Kalman, J.; Charney, R.H.; Levy, D.K.; Buchholz-Varley, C.; Ocampo, O.N.; Eng, C. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation 1999, 99, 2645–2651. [Google Scholar] [CrossRef] [Green Version]
  410. Lysko, P.G.; Webb, C.L.; Gu, J.L.; Ohlstein, E.H.; Ruffolo, R.R., Jr.; Yue, T.L. A comparison of carvedilol and metoprolol antioxidant activities in vitro. J. Cardiovasc. Pharmacol. 2000, 36, 277–281. [Google Scholar] [CrossRef]
  411. Arumanayagam, M.; Chan, S.; Tong, S.; Sanderson, J.E. Antioxidant properties of carvedilol and metoprolol in heart failure: A double-blind randomized controlled trial. J. Cardiovasc. Pharmacol. 2001, 37, 48–54. [Google Scholar] [CrossRef]
  412. Yasunari, K.; Maeda, K.; Nakamura, M.; Watanabe, T.; Yoshikawa, J.; Asada, A. Effects of carvedilol on oxidative stress in polymorphonuclear and mononuclear cells in patients with essential hypertension. Am. J. Med. 2004, 116, 460–465. [Google Scholar] [CrossRef]
  413. Kveiborg, B.; Christiansen, B.; Major-Petersen, A.; Torp-Pedersen, C. Metabolic Effects of β-Adrenoceptor Antagonists with Special Emphasis on Carvedilol. Am. J. Cardiovasc. Drugs 2006, 6, 209–217. [Google Scholar] [CrossRef] [PubMed]
  414. Yao, A.; Kohmoto, O.; Oyama, T.; Sugishita, Y.; Shimizu, T.; Harada, K.; Matsui, H.; Komuro, I.; Nagai, R.; Matsuo, H.; et al. Characteristic effects of α11,2-adrenergic blocking agent, carvedilol, on [Ca2+]i in ventricular myocytes compared with those of timolol and atenolol. Circ. J. 2003, 67, 83–90. [Google Scholar] [CrossRef] [Green Version]
  415. Heesch, C.; Marcoux, L.; Hatfield, B.; Eichhorn, E.J. Hemodynamic and energetic comparison of carvedilol and metoprolol for the treatment of congestive heart failure. Am. J. Cardiol. 1995, 75, 360–364. [Google Scholar] [CrossRef]
  416. Onay-Besikci, A.; Suzmecelik, E.; Ozcelikay, A.T. Carvedilol suppresses fatty acid oxidation and stimulates glycolysis in C2C12 cells. Can. J. Physiol. Pharmacol. 2012, 90, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
  417. Toda, N. Vasodilating β-adrenoceptor blockers as cardiovascular therapeutics. Pharmacol. Ther. 2003, 100, 215–234. [Google Scholar] [CrossRef]
  418. Grandinetti, V.; Carlos, F.P.; Antonio, E.L.; de Oliveira, H.A.; Dos Santos, L.; Yoshizaki, A.; Mansano, B.; Silva, F.A.; Porte, L.A.; Albuquerque-Pontes, G.M.; et al. Photobiomodulation therapy combined with carvedilol attenuates post-infarction heart failure by suppressing excessive inflammation and oxidative stress in rats. Sci. Rep. 2019, 9, 9425. [Google Scholar] [CrossRef] [PubMed]
  419. Toyoda, S.; Haruyama, A.; Inami, S.; Arikawa, T.; Saito, F.; Watanabe, R.; Sakuma, M.; Abe, S.; Nakajima, T.; Tanaka, A.; et al. Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure. J. Cardiol. 2020, 75, 140–147. [Google Scholar] [CrossRef]
  420. Gomes, K.M.; Bechara, L.R.; Lima, V.M.; Ribeiro, M.A.; Campos, J.C.; Dourado, P.M.; Kowaltowski, A.J.; Mochly-Rosen, D.; Ferreira, J.C. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: Benefits of Alda. Int. J. Cardiol. 2015, 179, 129–138. [Google Scholar] [CrossRef] [Green Version]
  421. Jacob, S.; Rett, K.; Wicklmayr, M.; Agrawal, B.; Augustin, H.J.; Dietze, G.J. Differential effect of chronic treatment with two b-blocking agents on insulin sensitivity: The carvedilol-metoprolol study. J. Hypertens. 1996, 14, 489–494. [Google Scholar] [CrossRef]
  422. Giugliano, D.; Acampora, R.; Marfella, R.; De Rosa, N.; Ziccardi, P.; Ragone, R.; De Angelis, L.; D’Onofrio, F. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin-dependent diabetes mellitus and hypertension. A randomized, controlled trial. Ann. Intern. Med. 1997, 126, 955–959. [Google Scholar] [CrossRef]
  423. Scolletta, S.; Biagioli, B. Energetic myocardial metabolism and oxidative stress: Let’s make them our friends in the fight against heart failure. Biomed. Pharmacother. 2010, 64, 203–207. [Google Scholar] [CrossRef] [PubMed]
  424. Beadle, R.M.; Frenneaux, M. Modification of myocardial substrate utilization: A new therapeutic paradigm in cardiovascular disease. Heart 2010, 96, 824–830. [Google Scholar] [CrossRef] [PubMed]
  425. Hu, H.; Li, X.; Ren, D.; Tan, Y.; Chen, J.; Yang, L.; Chen, R.; Li, J.; Zhu, P. The cardioprotective effects of carvedilol on ischemia and reperfusion injury by AMPK signaling pathway. Biomed. Pharmacother. 2019, 117, 109106. [Google Scholar] [CrossRef]
  426. Chabowski, A.; Momken, I.; Coort, S.L.; Calles-Escandon, J.; Tandon, N.N.; Glatz, J.F.; Luiken, J.J.; Bonen, A. Prolonged AMPK activation increases the expression of fatty acid transporters in cardiac myocytes and perfused hearts. Mol. Cell Biochem. 2006, 288, 201–212. [Google Scholar] [CrossRef] [PubMed]
  427. Kudo, N.; Barr, A.J.; Barr, R.L.; Desai, S.; Lopaschuk, G.D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 1995, 270, 17513–17520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  428. An, D.; Kewalramani, G.; Qi, D.; Pulinilkunnil, T.; Ghosh, S.; Abrahani, A.; Wambolt, R.; Allard, M.; Innis, S.M.; Rodrigues, B. β-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1120–E1127. [Google Scholar] [CrossRef]
  429. Bussey, C.T.; Thaung, H.P.A.; Hughes, G.; Bahn, A.; Lamberts, R.R. Cardiac b-adrenergic responsiveness of obese Zucker rats: The role of AMPK. Exp. Physiol. 2018, 103, 1067–1075. [Google Scholar] [CrossRef]
  430. Wang, J.; Song, Y.; Li, H.; Shen, Q.; Shen, J.; An, X.; Wu, J.; Zhang, J.; Wu, Y.; Xiao, H.; et al. Exacerbated cardiac fibrosis induced by β-adrenergic activation in old mice due to decreased AMPK activity. Clin. Exp. Pharmacol. Physiol. 2016, 43, 1029–1037. [Google Scholar] [CrossRef]
  431. Dubois-Deruy, E.; Gelinas, R.; Beauloye, C.; Esfahani, H.; Michel, L.Y.M.; Dessy, C.; Bertrand, L.; Balligand, J.L. β3-adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. Esc. Heart Fail 2020, 7, 920–932. [Google Scholar] [CrossRef]
Figure 1. Adrenergic pathways that affect glucose utilization in the cardiac myocyte, showing glycolysis, glucose oxidation inside the mitochondrion, and the alternative pentose phosphate pathway (PPP). AC, adenylate cyclase; ADP, adenosine diphosphate; AMPK, AMP-activated protein kinase; AR, adrenergic receptor; ATP, adenosine triphosphate; CoA, coenzyme A; cAMP, cyclic adenosine monophosphate; FAD, flavin adenine dinucleotide; GLUT, Glucose transporter; IMM, inner mitochondrial membrane; IP3, inositol triphosphate; OMM, outer mitochondrial membrane; PFK, phosphofructokinase; PKC, protein kinase C; PLC, phospholipase C; PPAR, peroxisome proliferator-activated receptor; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle.
Figure 1. Adrenergic pathways that affect glucose utilization in the cardiac myocyte, showing glycolysis, glucose oxidation inside the mitochondrion, and the alternative pentose phosphate pathway (PPP). AC, adenylate cyclase; ADP, adenosine diphosphate; AMPK, AMP-activated protein kinase; AR, adrenergic receptor; ATP, adenosine triphosphate; CoA, coenzyme A; cAMP, cyclic adenosine monophosphate; FAD, flavin adenine dinucleotide; GLUT, Glucose transporter; IMM, inner mitochondrial membrane; IP3, inositol triphosphate; OMM, outer mitochondrial membrane; PFK, phosphofructokinase; PKC, protein kinase C; PLC, phospholipase C; PPAR, peroxisome proliferator-activated receptor; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle.
Ijms 22 05783 g001
Figure 2. Adrenergic Receptor Regulation of Fatty Acid Metabolism in the Cardiac Myocyte. AC, adenylate cyclase; ADP, adenosine diphosphate; AMPK, AMP-activated protein kinase; AR, adrenergic receptor; ATP, adenosine triphosphate; CoA, coenzyme A; cAMP, cyclic adenosine monophosphate; CPT, carnitine palmitoyltransferase; FAD, flavin adenine dinucleotide; FATP1, Fatty acid transport protein 1; FFA, free fatty acid; IMM, inner mitochondrial membrane; NAD, nicotinamide adenine dinucleotide; OMM, outer mitochondrial membrane; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle.
Figure 2. Adrenergic Receptor Regulation of Fatty Acid Metabolism in the Cardiac Myocyte. AC, adenylate cyclase; ADP, adenosine diphosphate; AMPK, AMP-activated protein kinase; AR, adrenergic receptor; ATP, adenosine triphosphate; CoA, coenzyme A; cAMP, cyclic adenosine monophosphate; CPT, carnitine palmitoyltransferase; FAD, flavin adenine dinucleotide; FATP1, Fatty acid transport protein 1; FFA, free fatty acid; IMM, inner mitochondrial membrane; NAD, nicotinamide adenine dinucleotide; OMM, outer mitochondrial membrane; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle.
Ijms 22 05783 g002
Table 1. Properties of the AR Subtypes in the Cardiovascular System.
Table 1. Properties of the AR Subtypes in the Cardiovascular System.
SubtypeSignal TransductionTissue DistributionPhysiological Function
α1AGq/G11/PLC/PKC/
DAG/IP3/Ca+2
Cardiac myocyte
Vascular smooth muscle
Positive inotropy, chronotropy, cardiac hypertrophy, contraction smooth muscle, blood pressure
α1BGq/G11/PLC/PKC/
DAG/IP3/Ca+2
Cardiac myocyte
Vascular smooth muscle
Negative inotropy, cardiac hypertrophy, contraction smooth muscle, blood pressure
α1DGq/G11/PLC/PKC/
DAG/IP3/Ca+2
Coronary arteries
Vascular smooth muscle
Contraction smooth muscle, blood pressure
α2A
α2B
α2C
Gi/inhibit AC/
cAMP/PKA
Not in any cardiac tissue
Vascular smooth muscle
NE release- Sympathetic nerve endings
β1Gs/AC/cAMP/PKA
Ca+2 channel
Cardiac myocytePositive inotropy, chronotropy, cardiac hypertrophy
β2Gs/AC/cAMP/PKA
Ca+2 channel
Gi/inhibit AC/
cAMP/PKA
Cardiac myocyte
Vascular smooth muscle
Cardiac hypertrophy
Relaxation smooth muscle
β3Gs/Gi/AC/cAMP/PKA
NO
Cardiac myocyteNegative inotropy
AC, adenylate cyclase; Ca+2, calcium; cAMP, cyclic adenosine monophosphate; DAG, diacylglycerol; IP3, inositol triphosphate; NE, norepinephrine; NO, nitric oxide; PKA, protein kinase A; PLC, phospholipase C.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Perez, D.M. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int. J. Mol. Sci. 2021, 22, 5783. https://doi.org/10.3390/ijms22115783

AMA Style

Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. International Journal of Molecular Sciences. 2021; 22(11):5783. https://doi.org/10.3390/ijms22115783

Chicago/Turabian Style

Perez, Dianne M. 2021. "Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure" International Journal of Molecular Sciences 22, no. 11: 5783. https://doi.org/10.3390/ijms22115783

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop