Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics
Abstract
:1. Introduction
2. Fungal Diseases
2.1. Powdery Mildew
2.2. Phytophthora Root Rot and Foliar Blight
2.3. Anthracnose or Ripe Rot of Pepper
2.4. Vascular Diseases
2.5. Rhizoctonia Solani
3. Bacterial diseases
3.1. Bacterial Spot of Pepper
3.2. Bacterial Wilt
4. Viral Diseases
4.1. Thrips-Transmitted Viruses
4.2. Aphid-Transmitted Viruses
4.2.1. Potyviruses
4.2.2. Cucumoviruses
4.3. Whitefly-Transmitted Viruses
4.3.1. Begomoviruses
4.3.2. Crinivirus
4.4. Viruses Transmitted by Contact
Tobamoviruses
4.5. Pollen Transmitted Viruses
Ilarviruses
5. Arthropods and Nematode Pests
5.1. Thrips
5.2. Tobacco Whitefly
5.3. Aphids
5.4. Lepidopterous and Leaf Miner Pests
5.5. Broad Mites
5.6. Root-knot Nematodes
6. Impact of Genomics and Future Challenges in Plant Disease Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
QTL | Quantitative Trait Locus |
NBS-LRR | Nucleotide-binding site leucine-rich repeat |
SCAR | Sequence Characterized Amplified Region |
SNP | Single Nucleotide Polymorphysms |
MAS | Marker-assisted selection |
GBS | Genotyping by sequencing |
RAPD | Random amplification of Polymorphic DNA |
RFLP | Restriction Fragment Length Polymorphism |
cM | Centimorgans |
RIL | Recombinant inbred lines |
AFLP | Amplified Fragment Length Polymorphism |
BSA | Bulked Segregant Analysis |
Xs. | Xanthomonas |
KASP | Kompetitive Allele-Specific PCR |
BW | Bacterial wilt |
TSWV | Tomato spotted wilt orthotospovirus |
CaCV | Capsicum chlorosis orthotospovirus |
PVY | Potyviruses |
TEV | Tobacco etch virus |
PepMoV | Pepper mottle virus |
TMV | Tobacco mosaic virus |
ToMV | Tomato mosaic virus |
CMV | Cucumber mosaic virus |
References
- Faostat 2018. Available online: http://www.fao.org/ (accessed on 12 March 2020).
- Sarath Babu, B.; Pandravada, S.R.; Pasada Rao, R.D.V.J.; Anitha, K.; Chakrabarty, S.K.; Varaprasad, K.S. Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Prot. 2011, 30, 389–400. [Google Scholar] [CrossRef]
- Pitrat, M. Vegetable crops in the Mediterranean Basin with an overview of virus resistance. Adv. Virus Res. 2012, 84, 1–29. [Google Scholar]
- Djian-Caporalino, C.; Palloix, A.; Fazari, A.; Marteu, N.; Barbary, A.; Abad, P.; Sage-Palloix, A.M.; Mateille, T.; Risso, S.; Lanza, R.; et al. Pyramiding, alternating or mixing: Comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biol. 2014, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Ros, C.; Lacasa, C.M.; Martínez, V.; Bielza, P.; Lacasa, A. Response of pepper rootstocks to co-infection of Meloidogyne incognita and Phytophthora spp. Eur. J. Hortic. Sci. 2014, 79, 22–28. [Google Scholar]
- Özkaynak, E.; Devran, Z.; Kahveci, E.; Doğanlar, S.; Başköylü, B.; Doğan, F.; Yüksel, M. Pyramiding multiple genes for resistance to PVY, TSWV and PMMoV in pepper using molecular markers. Eur. J. Hortic. Sci. 2014, 79, 233–239. [Google Scholar]
- Tan, M.Y.; Hutten, R.C.; Visser, R.G.; van Eck, H.J. The effect of pyramiding Phytophthora infestans resistance genes R Pi-mcd1 and R Pi-ber in potato. Theor. Appl. Genet. 2010, 121, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilet-Nayel, M.L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.C.; Fournet, S.; Durel, C.E.; Delourme, R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Front. Plant Sci. 2017, 8, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chile Database. Resistance Sources from Chile Variety Database. 2018. Available online: www.g6csy.net/chile/database.html (accessed on 12 March 2020).
- Peppers. Resistance Sources From USDA-ARS Database. 2018. Available online: http://www.ars-grin.gov/npgs/acc/ (accessed on 12 March 2020).
- AVGRIS. The Asian Vegetable Center (ARVDC) (Taiwan). 2018. Available online: http://www.avrdc.org (accessed on 12 March 2020).
- CGN. The Centre for Genetic Resources, the Netherlands (CGN) of Wageningen University. 2018. Available online: https://www.wur.nl/en/Research-Results/Statutory-research-tasks/Centre-for-Genetic-Resources-the-Netherlands-1/Expertise-areas/Plant-Genetic-Resources.htm (accessed on 12 March 2020).
- PGR Portal. National Bureau of Plant India. 2018. Available online: www.nbpgr.ernet.in/pgrportal (accessed on 12 March 2020).
- Anand, N.; Deshpande, A.A.; Sridhar, T.S. Resistance to powdery mildew in an accession of Capsicum frutescens and its inheritance pattern. Capsicum Eggplant Newsl 1987, 6, 77–78. [Google Scholar]
- De Souza, V.L.; Café-Filho, A.C. Resistance to Leveillula taurica in the genus Capsicum. Plant Pathol. 2003, 52, 613–619. [Google Scholar] [CrossRef]
- Lee, O.H.; Hwang, H.S.; Kim, J.Y.; Han, J.H.; Yoo, Y.S.; Kim, B.S. A search for sources of resistance to powdery mildew (Leveillula taurica (Lev.) Arn.) in pepper (Capsicum spp.). Korean J. Hort. Sci. Tech. 2001, 19, 7e11. [Google Scholar]
- Daubèze, A.M.; Hennart, J.W.; Palloix, A. Resistance to Leveillula taurica in pepper (Capsicum annuum) is oligogenically controlled and stable in Mediterranean regions. Plant Breed. 1995, 114, 327–332. [Google Scholar] [CrossRef]
- Lefebvre, V.; Daubèze, A.M.; Rouppe van der Voort, J.; Peleman, J.; Bardin, M.; Palloix, A. QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor. Appl. Genet. 2003, 107, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Venkatesh, J.; Han, K.; Lee, H.Y.; Choi, G.J.; Lee, H.J.; Choi, D.; Kang, B.C. Molecular mapping of PMR1, a novel locus conferring resistance to powdery mildew in pepper (Capsicum annuum). Front. Plant Sci. 2017, 8, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabor, B.K.; Just, B.J.; Huang, C.; Jones, C.M.; Vreugdenhil, D.; Kniskern, J.M.; Quijada, P.A.; Berke, T.G.; Allersma, A.P.; Xiang, W. Methods and Compositions for Producing Capsicum Plants with Powdery Mildew Resistance. U.S. Patent No 9,689,045., 2017. [Google Scholar]
- Black, L.L. Studies on Phytophthora blight in pepper. In AVRDC Report 1998; Talekar, N.S., Ed.; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1999; pp. 25–27. [Google Scholar]
- McGregor, C.; Waters, V.; Nambeesan, S.; MacLean, D.; Candole, B.L.; Conner, P. Genotypic and phenotypic variation among pepper accessions resistant to Phytophthora capsici. Hortsci. 2011, 46, 1235–1240. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Moreno, A.; Laborde, J.A. Current status of pepper breeding for resistance to Phytophthora capsici in Mexico. In Proceedings of the 4th Eucarpia Meeting on Genetics and Breeding on Capsicum & Eggplant, Wageningen (Países Bajos), The Netherlands, 14–16 October 2004; pp. 52–56. [Google Scholar]
- Smith, P.G.; Kinble, K.A.; Grogan, R.G.; Millett, A.H. Inheritance of resistance in pepper to Phytophthora root rot. Phytopathology 1967, 57, 377–379. [Google Scholar]
- Gurung, S.; Short, D.P.G.; Hu, X.; Sandoya, G.V.; Hayes, R.J.; Subbarao, K.V. Screening of wild and cultivated Capsicum germplasm reveals new sources of Verticillium wilt resistance. Plant Dis. 2015, 10, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Anaya-López, J.L.; González-Chavira, M.M.; Villordo-Pineda, E.; Rodríguez-Guerra, R.; Rodríguez-Martínez, R.; Guevara-González, R.G.; Guevara-Olvera, L.; Montero-Tavera, V.; Torres-Pacheco, I. Selection of chili pepper genotypes resistant to pathogenic wilt disease complex. Rev. Mex. Cienc. Agric. 2011, 2, 373–383. [Google Scholar]
- Montri, P.; Taylor, P.W.J.; Mongkolporn, O. Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Dis 2009, 93, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Mongkolporn, O.; Montri, P.; Supakaew, T.T.; Taylor, P.W.J. Differential reactions on mature green and ripe chili fruit infected by three Colletotrichum species. Plant Dis. 2010, 94, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E.; Finkers, R.; Sanjaya, L.; Groenwold, R. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor. Appl. Genet. 2004, 109, 1275–1282. [Google Scholar] [CrossRef]
- Pakdeevaraporn, P.; Wasee, S.; Taylor, P.W.J.; Mongkolporn, O. Inheritance of resistance to anthracnose caused by Colletotrichum capsici in Capsicum. Plant Breed. 2005, 124, 206–208. [Google Scholar] [CrossRef]
- Silva, S.A.M.; Rodrigues, R.; Goncalves, L.S.A.; Sudre, C.P.; Bento, C.S.; Carmo, M.G.F.; Medeiros, A.M. Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre- and postharvest. Trop. Plant Pathol. 2014, 39, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Rout, E.; Kumar Joshi, R. Identification of resistant sources against anthracnose disease caused by Colletotrichum truncatum and Colletotrichum gloeosporioides in Capsicum annuum L. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018. [Google Scholar] [CrossRef]
- Maruti, T.B.; Tembhurne, B.V.; Chavan, R.L.; Amaresh, Y.S. Reaction of chilli (Capsicum annuum L.) genotypes and hybrids against Fusarium wilt (Fusarium solani). J. Spices Aromat. Crops 2014, 23, 186–191. [Google Scholar]
- Singh, A.; Singh, A.K.; Singh, A. Screening of chilli germplasms against Fusarium wilt. Crop Res. 1998, 15, 132–133. [Google Scholar]
- Holdsworth, W.L.; Mazourek, M. Development of user-friendly markers for the pvr1 and Bs3 disease resistance genes in pepper. Mol. Breed. 2015, 35, 28. [Google Scholar] [CrossRef]
- Kim, D.S.; Hwang, B.K. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell death response and bacterial and oomycete proliferation. PlantJ. 2012, 72, 843–855. [Google Scholar]
- Muhyi, R.; Bosland, P.W. Evaluation of Capsicum germplasm for sources of resistance to Rhizoctonia solani. HortScience 1995, 30, 341–342. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.B.; Lacy, G.H.; Bouzar, H.; Stall, R.E.; Schaad, N.W. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 2004, 27, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Wai, K.P.; Siddique, M.I.; Mo, H.S.; Yoo, H.J.; Byeon, S.E.; Jegal, Y.; Mekuriaw, A.A.; Kim, B.S. Pathotypes of bacterial spot pathogen infecting Capsicum peppers in Korea. Plant Pathol. J. 2015, 31, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Csillery, G.; Szarka, E.; Sardi, E.; Mityko, J.; Kapitany, J.; Nagy, B.; Szarka, J. The unity of plant defense: Genetics, breeding and physiology. In Proceedings of the 12th Eucarpia Meeting on Genetics and Breeding of Capsicum and Egg-Plant, Noordwijkerhout, The Netherlands, 17–19 May 2004; pp. 147–153. [Google Scholar]
- Cook, A.A.; Stall, R.E. Inheritance of resistance in pepper to bacterial spot. Phytopathology 1963, 53, 1060–1062. [Google Scholar]
- Cook, A.A.; Guevara, Y.G. Hypersensitivity in Capsicum chacoense to race 1 of pepper. Plant Dis. 1984, 68, 329–330. [Google Scholar] [CrossRef]
- Kim, B.S.; Hartmann, R.W. Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum). Plant Dis. 1985, 69, 233–235. [Google Scholar]
- Hibberd, A.M.; Bassett, M.J.; Stall, R.E. Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 1987, 77, 1304–1307. [Google Scholar] [CrossRef]
- Lafortune, D.; Béramis, M.; Daubèze, A.M.; Boissot, N.; Palloix, A. Partial resistance of pepper to bacterial wilt is oligogenic and stable under tropical conditions. Plant Dis. 2005, 89, 501–506. [Google Scholar] [CrossRef]
- Kang, Y.J.; Ahn, Y.K.; Kim, T.K.; Jun, T.H. Resequencing of Capsicum annuum parental lines (YCM334 and Taean) for the genetic analysis of bacterial wilt resistance. BMC Plant Biol. 2016, 16, 235. [Google Scholar] [CrossRef] [Green Version]
- Lebeau, A.; Daunay, M.C.; Frary, A.; Palloix, A.; Wang, J.F.; Dintinger, J.; Chiroleu, F.; Wicker, E.; Prior, P. Bacterial wilt resistance in tomato, pepper, and eggplant: Genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 2011, 101, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Matos, F.S.A.; Lopes, C.A.; Takatsu, A. Identification of sources of resistance to Pseudomonas solanacearum in Capsicum spp. Hort. Bras. 1990, 8, 22–23. [Google Scholar]
- Eggink, P.M.; D’hoop, B.B.; Brouwer, M.; Deniau, A.X. Resistance against Leveillula taurica in pepper. U.S. Patent No 9,351,451, 2016. [Google Scholar]
- Zheng, Z.; Nonomura, T.; Appiano, M.; Pavan, S.; Matsuda, Y.; Toyoda, H.; Wolters, A.A.; Visser, R.G.F. Loss of function in MLO orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. Plos One 2013, 8, e70723. [Google Scholar] [CrossRef]
- Quirin, E.A.; Ogundiwin, E.A.; Prince, J.P.; Mazourek, M.; Briggs, M.O.; Chlada, T.S.; Kim, K.T.; Falise, M.; Kang, B.C.; Jahn, M.M. Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon in pepper. Theor. Appl. Genet. 2005, 110, 605–612. [Google Scholar] [CrossRef]
- Walker, S.J.; Bosland, P.W. Inheritance of Phytophthora root rot and foliar blight resistance in pepper. J. Am. Soc. Hortic. Sci. 1999, 124, 14–18. [Google Scholar] [CrossRef]
- Sy, O.; Steiner, R.; Bosland, P.W. Inheritance of Phytophthora stem blight resistance as compared to Phytophthora root rot and Phytophthora foliar blight resistance in Capsicum annuum L. J. Am. Hortic. Soc. 2005, 130, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Sy, O.; Steiner, R.; Bosland, P.W. Recombinant inbred line differential identifies race-specific resistance to Phytophthora root rot in Capsicum annuum. Phytopathology 2008, 98, 867–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monroy-Barbosa, A.; Bosland, P.W. Genetic analysis of Phytophthora root rot race-specific resistance in chile pepper. J. Am. Hortic. Sci. 2008, 133, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Barchenger, D.W.; Lamour, K.H.; Bosland, P.W. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front. Plant Sci. 2018, 9, 628. [Google Scholar] [CrossRef]
- Candole, B.L.; Conner, P.J.; McGregor, C.; Waters, V.; Ji, P. The disease reactions of heirloom bell pepper ‘California Wonder’ to Phytophthora Capsici. Agric. Sci. 2012, 3, 417–424. [Google Scholar]
- Barchenger, D.W.; Sheu, Z.M.; Kumar, S.; Lin, S.W.; Burlakoti, R.R.; Bosland, P.W. Race characterization of Phytophthora capsici as a basis for global anticipatory resistance breeding in Capsicum. Phytopathology 2018, 108, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Hur, J. Inheritance of resistance to bacterial spot and to Phytophthora blight in peppers. J. Korean Soc. Hort. Sci. 1990, 31, 350–357. [Google Scholar]
- Lefebvre, V.; Palloix, A. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: A case study, the interaction pepper-Phytophthora capsici Leonian. Theor. Appl. Genet. 1996, 93, 503–511. [Google Scholar] [CrossRef]
- Thabuis, A.; Palloix, A.; Pflieger, S.; Daubeze, A.M.; Caranta, C.; Lefebvre, V. Comparative mapping of Phytophthora resistance loci in pepper germplasm: Evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor. Appl. Genet. 2003, 106, 1473–1485. [Google Scholar] [CrossRef]
- Ogundiwin, E.A.; Berke, T.F.; Massoudi, M.; Black, L.L.; Huestis, G.; Choi, D.; Lee, S.; Prince, J.P. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 2005, 48, 698–711. [Google Scholar] [CrossRef]
- Minamiyama, Y.; Tsuro, M.; Kubo, T.; Hirai, M. QTL analysis for resistance to Phytophthora capsici in pepper using a high density SSR-based map. Breed. Sci. 2007, 57, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Nahm, S.H.; Lee, H.R.; Yoon, G.B.; Kim, K.T.; Kang, B.C.; Choi, D.; Kweon, O.Y.; Cho, M.C.; Kwon, J.K.; et al. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor. Appl. Genet. 2008, 118, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Sugita, T.; Yamaguchi, K.; Kinoshita, T.; Yuji, K.; Sugimura, Y.; Nagata, R.; Kawasaki, S.; Todoroki, A. QTL analysis for resistance to Phytophthora blight (Phytophthora capsici Leon.) using an intraspecific doubled-haploid population of Capsicum annuum. Breed. Sci. 2006, 56, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Truong, H.T.H.; Kim, K.T.; Kim, D.W.; Kim, S.; Chae, Y.; Park, J.H.; Oh, D.G.; Cho, M.C. Identification of isolate-specific resistance QTLs to Phytophthora root rot using an intraspecific recombinant inbred line population of pepper (Capsicum annuum). Plant Pathol. 2012, 61, 48–56. [Google Scholar] [CrossRef]
- Lu, F.H.; Kwoon, S.H.; Yoon, M.I.; Kim, K.T.; Cho, M.C.; Yoon, M.K.; Park, Y.J. SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F8 RILs of pepper (Capsicum annuum L.). Mol. Cells 2012, 34, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.Y.; Kang, J.H.; Jeong, H.S.; Choi, H.J.; Yang, H.B.; Kim, K.T.; Choi, D.; Choi, G.J.; Jahn, M.; Kang, B.C. Combined used of bulk-segregated analysis of microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor. Appl. Genet. 2014, 127, 2503–2513. [Google Scholar] [CrossRef]
- Mallard, S.; Cantet, M.; Massire, A.; Bachellez, A.; Ewert, S.; Lefebvre, V. A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthora capsici: A valuable locus for pepper breeding. Mol. Breed. 2013, 32, 349–364. [Google Scholar] [CrossRef]
- Naegele, R.P.; Ashrafi, H.; Hill, T.A.; Chin-Wo, S.R.; van Deynze, A.E.; Hausbeck, M.K. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population. Phytopathology 2014, 104, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Rehrig, W.Z.; Ashrafi, H.; Hill, T.; Prince, J.; Van Deynze, A. CaDMR1 cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome 2014, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chao, J.; Cheng, X.; Wang, R.; Sun, B.; Wang, H.; Luo, S.; Xu, X.; Wu, T.; Li, Y. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy. PLoS ONE 2016, 11, e0151401. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.K.; Baek, K.H.; Seong, E.S.; Joung, Y.H.; Choi, G.J.; Park, J.M.; Cho, H.S.; Kim, E.A.; Lee, S.; Choi, D. MsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol. 2010, 154, 245–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.L.; Jia, Q.L.; Li, D.W.; Wang, J.E.; Yin, Y.X.; Gong, Z.H. Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian. Int. J. Mol. Sci. 2013, 14, 8985–9004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Wang, L.; Guo, J.; Yang, W.; Shen, H. Molecular mapping of a gene conferring resistance to Phytophthora capsici Leonian race 2 in pepper line PI201234 (Capsicum annuum L.). Mol Breed. 2016, 36, 66. [Google Scholar] [CrossRef]
- Ridzuan, R.; Rafii, M.Y.; Ismail, S.I.; Mohammad Yusoff, M.; Miah, G.; Usman, M. Breeding for anthracnose disease resistance in chili: Progress and prospects. Int. J. Mol. Sci. 2018, 19, 3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongkolporn, O.; Taylor, P.W.J. Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathol. 2018, 67, 1255–1263. [Google Scholar] [CrossRef]
- Suwor, P.; Thummabenjapone, P.; Sanitchon, J.; Kumar, S.; Techawongstien, S. Phenotypic and genotypic responses of chili (Capsicum annuum L.) progressive lines with different resistant genes against anthracnose pathogen (Colletotrichum spp.). Eur. J. Plant Pathol. 2015, 143, 725–736. [Google Scholar] [CrossRef]
- Kim, S.; Kim, K.T.; Kim, D.H.; Yang, E.Y.; Cho, M.C.; Jamal, A.; Chae, Y.; Pae, D.H.; Oh, D.G.; Hwang, J.K. Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.) Korean, J. Hort. Sci. Technol. 2010, 28, 1014–1024. [Google Scholar]
- Sun, C.Y. Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci Hortic. 2015, 181, 81–88. [Google Scholar] [CrossRef] [Green Version]
- AVRDC Report; AVRDC-The World Vegetable Center: Shanhua, Taiwan, 1998; pp. 54–57.
- Yoon, J.B.; Yang, D.C.; Do, J.W.; Park, H.G. Overcoming two post-fertilization genetic barriers in interspecific hybridization between Capsicum annuum and C. baccatum for introgression of anthracnose resistance. Breed. Sci. 2006, 56, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Cremona, S.; Iovene, M.; Festa, G.; Conicella, C.; Parisi, M. Production of embryo rescued hybrids between the landrace ‘‘Friariello’’ (Capsicum annuum var annuum) and C baccatum var pendulum, phenotypic and cytological characterization. Euphytica 2018, 214, 129. [Google Scholar] [CrossRef]
- Mahasuk, P.; Taylor, P.W.J.; Mongkolporn, O. Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology 2009, 99, 1100–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahasuk, P.; Struss, D.; Mongkolporn, O. QTLs for resistance to anthracnose identified in two Capsicum sources. Mol Breed. 2016, 36, 10. [Google Scholar] [CrossRef]
- Mimura, Y.; Kageyama, T.; Minamiyama, Y.; Masashi, H. QTL analysis for resistance to Ralstonia solanacearum in Capsicum accession ‘LS2341’. J. Japan. Soc. Hort. Sci. 2009, 78, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Mahbou-Somo-Toukam, G. Diversité de Ralstonia Solanacearum au Cameroun et bases génétiques de la résistance chez le piment (Capsicum Annuum) et les Solanacées. Amélioration des plantes. AgroParisTech. 2010. Available online: https://pastel.archives-ouvertes.fr/pastel-00607879 (accessed on 12 March 2020).
- Caranta, C.; Lefebvre, V.; Palloix, A. Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol. Plant Microbe Int. 1997, 10, 872–878. [Google Scholar] [CrossRef]
- Quenouille, J.; Paulhiac, E.; Moury, B.; Palloix, A. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: A rational basis for sustainable resistance breeding in plants. Heredity 2014, 112, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Chaim, A.; Grube, R.C.; Lapidot, M.; Jahn, M.; Paran, I. Identification of quantitative trait loci associated with resistance to Cucumber mosaic virus in Capsicum Annum. Theor. Appl. Genet. 2001, 102, 1213–1220. [Google Scholar] [CrossRef]
- Caranta, C.; Pflieger, S.; Lefebvre, V.; Daubèze, A.M.; Thabuis, A.; Palloix, A. QTLs involved in the restriction of Cucumber mosaic virus (CMV) long-distance movement in pepper. Theor. Appl. Genet. 2002, 104, 586–591. [Google Scholar] [CrossRef]
- Yao, M.; Li, N.; Wang, F.; Ye, Z. Genetic analysis and identification of QTLs for resistance to Cucumber mosaic virus in chili pepper (Capsicum annuum L.). Euphytica 2013, 193, 135–145. [Google Scholar] [CrossRef]
- Eun, M.H.; Han, J.; Yoon, J.B.; Lee, J. QTL mapping of resistance to the Cucumber mosaic virus P1 strain in pepper using a genotyping-by-sequencing analysis. Hortic. Env. Biotechnol. 2016, 57, 589–597. [Google Scholar] [CrossRef]
- Guo, G.J.; Wang, S.B.; Liu, J.B.; Pan, B.G.; Diao, W.P.; Ge, W.; Gao, C.Z.; Snyder, J.C. Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens). Theor. Appl. Genet. 2017, 130, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yin, Y.; Wang, F.; Yao, M. Construction of a high-density genetic map and identification of QTLs for Cucumber mosaic virus resistance in pepper (Capsicum annuum L.) using specific length amplified fragment sequencing (SLAF-seq). Breed. Sci. 2018, 68, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maharijaya, A.; Vosman, B.; Steenhuis-Broers, G.; Pelgrom, K.; Purwito, A.; Visser, R.G.; Voorrips, R.E. QTL mapping of thrips resistance in pepper. Theor. Appl. Genet. 2015, 128, 1945–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbary, A.; Djian-Caporalino, C.; Marteu, N.; Fazari, A.; Caromel, B.; Castagnone-Sereno, P.; Palloix, A. Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs. Front. Plant Sci. 2016, 7, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goicoechea, N. Verticillium-induced wilt in pepper: Physiological disorders and perspectives for controlling the disease. Plant Pathol. J. 2006, 5, 258–265. [Google Scholar]
- González-Salán, M.; Bosland, P. Sources of resistance to Verticillium wilt in Capsicum. Euphytica 1992, 59, 49–53. [Google Scholar]
- Barchenger, D.W.; Rodriguez, K.; Jiang, L.; Hanson, S.F.; Bosland, P.W. Allele-specific CAPS marker in a Ve1 homolog of Capsicum annuum for improved selection of Verticillium dahliae resistance. Mol. Breed. 2017, 37, 134. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Z.; Seidl, M.F.; Majer, A.; Jakse, J.; Javornik, B.; Thomma, B.P. Broad taxonomic characterization of Verticillium wilt resistance genes reveals an ancient origin of the tomato Ve1 immune receptor. Mol. Plant Pathol. 2017, 18, 195–209. [Google Scholar] [CrossRef]
- Loganathan, M.; Venkataravanappa, V.; Saha, S.; Sharma, B.K.; Tirupathi, S.; Verma, M.K. Morphological, cultural and molecular characterizations of Fusarium wilt infecting tomato and chilli. Paper presented at National Symposium on Abiotic and Biotic Stress Management in Vegetable Crops. Indian Society of Vegetable Science, IIVR. 2013; 12–14. [Google Scholar]
- Lomas-Cano, T.; Palmero-Llamas, D.; de Cara, M.; García Rodríguez, C.; Boix-Ruiz, A.; Camacho-Ferre, F.; Tello-Marquina, T.C. First report of Fusarium oxysporum on sweet pepper seedlings in Almería, Spain. Plant Dis. 2014, 98, 1435. [Google Scholar] [CrossRef]
- Miller, S.A.; Rowe, R.C.; Riedel, R.M. Fusarium and Verticillium wilts of tomato, potato, pepper and eggplant. Ohio State Univ. Exten. Fact. Hyg. 1996, 96, 3122. [Google Scholar]
- Rahin, A.A.; Sharif, F.M. A study of pepper wilt in northern Iraq. In Ecology and Management of Soilborne Plant Pathogens; Parker, C.A., Rovira, A.D., Moore, K.J., Wong, P.T.W., Kollmorgen, J.F., Eds.; American Phytopathological Society: Saint Paul, MN, USA, 1985; pp. 59–62. [Google Scholar]
- Rivelli, V.C. A wilt of pepper incited by Fusarium oxysporum f. sp. capsici forma specialis nova. M. Sc. Dissertation, Louisiana State University, Baton Rouge, LA, USA, 1989. [Google Scholar]
- Naik, M.K.; Devika Rani, G.S.; Madhukar, H.M. Identification of resistance sources against wilt of chilli (Capsicum annuum L.) resistance caused by Fusarium solani (Mart.) Sacc. J. Mycopathol. Res. 2008, 46, 93–96. [Google Scholar]
- Shobha, F.; Tembhurne, B.V.; Naik, M.K.; Khan, H.; Patil, B.V. Screening of M4 mutants of chilli (Capsicum annuum L.) against Fusarium wilt (Fusarium solani) resistance. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 879–884. [Google Scholar]
- Manu, D.G.; Tembhurne, B.V.; Kisan, B.; Aswathnarayana, D.S.; Diwan, J.R. Inheritance of Fusarium wilt and qualitative and quantitative characters in chilli (Capsicum annuum L). J. Agr. Env. Sci. 2014, 3, 433–444. [Google Scholar]
- Nayeema, J.; Ahmed, N.; Tanki, M.I.; Das, G.M. Screening of hot pepper germplasm for resistance to Fusarium wilt [F. pallidoroseum (Cook) Sacc.]. Capsicum Egg. Plant Newslett. 1995, 14, 68–71. [Google Scholar]
- Ahmed, N.; Tanki, M.I.; Mir, N.M. Screening of advance breeding lines of chilli and sweet and hot pepper cultivars against Fusarium wilt. Plant Dis.Res. 1994, 9, 153–154. [Google Scholar]
- Mannai, S.; Jabnoun-Khiareddine, H.; Nasraoui, B.; Daami-Remadi, M. Rhizoctonia root rot of pepper (Capsicum annuum): Comparative pathogenicity of causal agent and biocontrol attempt using fungal and bacterial agents. J. Plant Pathol. Microbiol. 2018, 9, 431. [Google Scholar]
- Sahin, F.; Miller, S.A. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Dis. 1998, 82, 794–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, T.; Dahlbeck, D.; Stall, R.E.; Peleman, J.; Staskawicz, B.J. High-resolution genetic and physical mapping of the region containing the Bs2 resistance gene of pepper. Theor. Appl. Genet. 1999, 99, 1201–1206. [Google Scholar] [CrossRef]
- Pierre, M.; Noel, L.; Lahaye, T.; Ballvora, A.; Veuskens, J.; Ganal, M.; Bonas, U. High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv vesicatoria AvrBs3 protein. Theor. Appl. Genet. 2000, 101, 255–263. [Google Scholar] [CrossRef]
- Romer, P.; Jordan, T.; Lahaye, T. Identification and application of a DNA-based marker that is diagnostic for the pepper (Capsicum annuum) bacterial spot resistance gene Bs3. Plant Breed. 2010, 129, 737–740. [Google Scholar] [CrossRef]
- Vallejos, C.E.; Jones, V.; Stall, R.E.; Jones, J.B.; Minsavage, G.V.; Schultz, D.C.; Rodrigues, R.; Olsen, L.E.; Mazourek, M. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor. Appl. Genet. 2010, 121, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.W.; Kim, Y.J.; Lee, S.C.; Hong, J.K.; Hwang, B.K. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol. 2007, 145, 890–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elphinstone, J.G.; Allen, C.; Prior, P.; Hayward, A.C. The current bacterial wilt situation: A global overview. In Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex; American Phytopathological Society: St Paul, MN, USA, 2005; pp. 9–28. [Google Scholar]
- Grimault, V.; Prior, P. Invasiveness of Pseudomonas solanacearum in tomato, eggplant and pepper: A comparative study. Eur. J. Plant Pathol. 1994, 100, 259–267. [Google Scholar] [CrossRef]
- Safni, I.; Cleenwerck, I.; De Vos, P.; Fegan, M.; Sly, L.; Kappler, U. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Micr. 2014, 64, 3087–3103. [Google Scholar]
- Genin, S.; Denny, T.P. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 2012, 50, 67–89. [Google Scholar] [CrossRef]
- Buddenhagen, I.; Sequeira, L.; Kelman, A. Designation of races in Pseudomonas solanacearum. Phytopathology 1962, 52, 726. [Google Scholar]
- Hayward, A.C. Encyclopedia of Microbiology, 2nd ed.; Lederberg, J., Alexander, M., Bloom, B.R., Eds.; Academic Press: Cambridge, MA, USA, 2000; Volume 4. [Google Scholar]
- Hashimoto, N.; Matsumoto, S.; Yoshikawa, M.; Horita, M.; Tsuchiya, K. Varietal resistance among red pepper and sweet pepper cultivars to Ralstonia solanacearum isolated in Kyoto Prefecture. Jpn. J. Phytopathol. 2001, 67, 201–202. [Google Scholar]
- Mou, S.L.; Liu, Z.Q.; Gao, F.; Yang, S.; Su, M.X.; Shen, L.; Wu, Y.; He, S.L. CaHDZ27, a Homeodomain-Leucine Zipper I (HD-Zip I) protein, positively regulates the resistance to Ralstonia solanacearum Infection in pepper. Mol. Plant-Microbe Interact. 2017, 30, 960–973. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, L.; Kumar, S.; Tsai, W.S.; Hughes, J.d.A. Virus Diseases of Peppers (Capsicum spp.) and Their Control. Adv. Virus Res. 2014, 90, 297–354. [Google Scholar]
- Pappu, H.R.; Jones, R.A.C.; Jain, R.K. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 2009, 141, 219–236. [Google Scholar] [CrossRef]
- Moury, B.; Verdin, E. Viruses of pepper crops in the Mediterranean basin: A remarkable stasis. Adv. Virus Res. 2012, 84, 127–162. [Google Scholar] [PubMed]
- Krishnareddy, M.; Usha Rani, R.; Anil Kumar, K.S.; Madhavi Reddy, K.; Pappu, H.R. Capsicum chlorosis virus (Genus Tospovirus) infecting chili pepper (Capsicum annuum) in India. Plant Dis. 2008, 92, 1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orfanidou, C.G.; Boutsika, A.; Tsiolakis, G.; Winter, S.; Katis, N.I.; Maliogka, V.I. Capsicum Chlorosis Virus: A new viral pathogen of pepper in Greece. Plant Dis. 2019, 103, 379. [Google Scholar] [CrossRef]
- Webster, C.G.; Frantz, G.; Reitz, S.R.; Funderburk, J.E.; Mellinger, H.C.; McAvoy, E.; Turechek, W.W.; Marshall, S.H.; Tantiwanich, Y.; McGrath, M.T.; et al. Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology 2015, 105, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Boiteux, L.S.; De Avila, A.C. Inheritance of a resistance specific to Tomato spotted wilt tospovirus in Capsicum chinense ‘PI 159236’. Euphytica 1994, 75, 139–142. [Google Scholar] [CrossRef]
- Boiteux, L.S. Allelic relationships between genes for resistance to Tomato spotted wilt tospovirus in Capsicum chinense. Theor. Appl. Genet. 1995, 90, 146–149. [Google Scholar] [CrossRef]
- Moury, B.; Palloix, A.; Selassie, K.G.; Marchoux, G. Hypersensitive resistance to Tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 1997, 94, 45–52. [Google Scholar] [CrossRef]
- Jahn, M.; Paran, I.; Hoffmann, K.; Radwanski, E.R.; Livingstone, K.D.; Grube, R.C.; Aftergoot, E.; Lapidot, M.; Moyer, J. Genetic mapping of the Tsw locus for resistance to the Tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw5 gene for resistance to the same pathogen in tomato. Mol. Plant Micr. Interact. 2000, 13, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Moury, B.; Pflieger, S.; Blattes, A.; Lefebvre, V.; Palloix, A. A CAPS marker to assist selection of Tomato spotted wilt virus (TSWV) resistance in pepper. Genome 2000, 43, 137–142. [Google Scholar] [CrossRef]
- Moury, B.; Selassie, K.G.; Marchoux, G.; Daubeze, A.M.; Palloix, A. High temperature effects on hypersensitive resistance to Tomato spotted wilt Tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Eur. J. Plant Pathol. 1998, 104, 489–498. [Google Scholar] [CrossRef]
- Kim, S.B.; Kang, W.H.; Huy, H.N.; Yeom, S.I.; An, J.T.; Kim, S.; Kang, M.Y.; Kim, H.J.; Jo, Y.D.; Ha, Y.; et al. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. New Phytol. 2017, 213, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Hoang, N.; Yang, H.B.; Kang, B.C. Identification and inheritance of a new source of resistance against Tomato spotted wilt virus (TSWV) in Capsicum. Sci. Hortic. 2013, 161, 8–14. [Google Scholar] [CrossRef]
- Di Dato, F.; Parisi, M.; Cardi, T.; Tripodi, P. Genetic diversity and assessment of markers linked to resistance and pungency genes in Capsicum germplasm. Euphytica. 2015, 204, 103–119. [Google Scholar] [CrossRef]
- Cebolla-Cornejo, J.; Soler, S.; Gomar, B.; Soria, M.D.; Nuez, F. Screening Capsicum germplasm for resistance to Tomato spotted wilt virus (TSWV). Ann. Appl. Biol. 2003, 143, 143–152. [Google Scholar] [CrossRef]
- Turina, M.; Tavella, L.; Ciuffo, M. Advances in Virus Research; Chapter 12; Loebenstein, G., Lecoq, H., Eds.; Academic Press: San Diego, CA, USA, 2012; Volume 84. [Google Scholar]
- Turina, M.; Kormelink, R.; Resende, R.O. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and molecular aspects. Annu. Rev. Phytopathol. 2016, 54, 347–371. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, Y.; Sun, L.; Wang, B.; Zhu, M.; Li, J.; Huang, C.; Liu, Y.; Li, F.; Liu, Y. Occurrence and diversity of Tomato spotted wilt virus isolates breaking the Tsw resistance gene of Capsicum chinense in Yunnan, Southwest China. Plant Pathol. 2016, 6, 980–989. [Google Scholar] [CrossRef]
- Macedo, M.A.; Rojas, M.R.; Gilbertson, R.L. First report of a resistance-breaking strain of Tomato spotted wilt orthotospovirus infecting sweet pepper with the Tsw resistance gene in California, U.S.A. Plant Dis. 2019, 103, 1048. [Google Scholar] [CrossRef]
- Aramburu, J.; Galipienso, L.; Soler, S.; Rubio, L.; López, C. A severe symptom phenotype in pepper cultivars carrying the Tsw resistance gene is caused by a mixed infection between resistance-breaking and non-resistance-breaking isolates of Tomato spotted wilt virus. Phytoparasitica 2015, 43, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Parisi, M.; Di Dato, F.; Minutolo, M.; Festa, G.; Alioto, D. Screening Capsicum spp. for tolerance to a resistance-breaking strain of Tomato spotted wilt virus by artificial inoculation. Plant Pathol. 2015, 2015 (Suppl. 97), S57. [Google Scholar]
- Almási, A.; Csilléry, G.; Salánki, K.; Nemes, K.; Palkovics, L.; Tóbiás, I. Comparison of wild type and resistance-breaking isolates of Tomato spotted wilt virus and searching for resistance on pepper. In Proceedings of the 15th EUCARPIA Capsicum and Eggplant Working Group Meeting, Kecskemét, Hungary, 12–14 September 2016; pp. 574–578. [Google Scholar]
- Soler, S.; Debreczeni, D.E.; Vidal, E.; Aramburu, J.; López, C.; Galipienso, L.; Rubio, L. A new Capsicum baccatum accession shows tolerance to wild-type and resistance-breaking isolates of Tomato spotted wilt virus. Ann. Appl. Biol. 2015, 167, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Persley, D.M.; McGrath, D.; Sharman, M.; Walker, I.O. Breeding for tospovirus resistance in a package of disease resistances for Capsicum and tomato. J. Insect Sci. 2009, 141, 36–37. [Google Scholar]
- Widana Gamage, S.M.; McGrath, D.J.; Persley, D.M.; Dietzgen, R.G. Transcriptome analysis of Capsicum chlorosis virus-induced hypersensitive resistance response in bell Capsicum. PLoS ONE 2016, 11, e0159085. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, H.Y.; Seo, S.; Lee, J.H.; Choi, D. RNA-Dependent RNA Polymerase (NIb) of the Potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334. PLoS ONE 2015, 10, e0119639. [Google Scholar]
- Janzac, B.; Fabre, M.F.; Palloix, A.; Moury, B. Characterization of a new potyvirus infecting pepper crops in Ecuador. Arch. Virol. 2008, 153, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Kyle, M.M.; Palloix, A. Proposed revision of nomenclature for potyvirus resistance genes in Capsicum. Euphytica 1997, 97, 183–188. [Google Scholar] [CrossRef]
- Yeam, I.; Kang, B.C.; Lindeman, W.; Frantz, J.D.; Faber, N.; Jahn, M.M. Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theor. Appl. Genet. 2005, 112, 178–186. [Google Scholar] [CrossRef]
- Ruffel, S.; Dussault, M.H.; Palloix, A.; Moury, B.; Bendahmane, A.; Robaglia, C.; Caranta, C. A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 2002, 32, 1067–1075. [Google Scholar] [CrossRef]
- Kang, B.C.; Yeam, I.; Frantz, J.D.; Murphy, J.F.; Jahn, M.M. The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J. 2005, 42, 392–405. [Google Scholar] [CrossRef]
- Ibiza, V.P.; Cañizares, J.; Nuez, F. EcoTILLING in Capsicum species: Searching for new virus resistances. Bmc Genom. 2010, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Luis-Arteaga, M.; Gil-Ortega, R. Biological characterization of PVY as isolated from pepper in Spain. In Proceedings of the VI Meeting on Capsicum and Eggplant, Zaragoza, Spain, 21–24 October 1986; pp. 183–188. [Google Scholar]
- Caranta, C.; Thabuis, A.; Palloix, A. Development of a CAPS marker for the Pvr4 locus: A tool for pyramiding potyvirus resistance genes in pepper. Genome 1999, 42, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Andrés, A.; Luis Arteaga, M.; Gil Ortega, R. New genes related to PVY resistance in C. annuum L. ‘Serrano Criollo de Morelos-334’. In Proceedings of the XIIth EUCARPIA Meeting on genetics and breeding of Capsicum and eggplant, Noordwijkerhout, The Netherlands, 17–19 May 2004; Voorrips, R.E., Ed.; Pubblisher Plant Research International: Wageningen UR, The Netherlands; pp. 134–138. [Google Scholar]
- Venkatesh, J.; An, J.; Kang, W.-H.; Jahn, M.; Kang, B.C. Fine mapping of the dominant potyvirus resistance gene Pvr7 reveals a relationship with Pvr4 in Capsicum annuum. Phytopathology 2018, 108, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caranta, C.; Palloix, A.; Lefebvre, V.; Daubéze, A.M. QTLs for a component of partial resistance to Cucumber mosaic virus in pepper: Restriction of virus installation in host-cells. Theor. Appl. Genet. 1997, 94, 431–438. [Google Scholar] [CrossRef]
- Palloix, A.; Ayme, V.; Moury, B. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol. 2009, 183, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Arnedo-Andrés, M.; Gil-Ortega, R.; Luis-Arteaga, M.; Hormaza, I. Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.). Theor. Appl. Genet. 2002, 105, 1067–1074. [Google Scholar]
- Rubio, M.; Caranta, C.; Palloix, A. Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS-PCR. Genome 2008, 51, 767–777. [Google Scholar] [CrossRef]
- Tamisier, L.; Szadkowski, M.; Nemouchi, G.; Lefebvre, V.; Szadkowski, E.; Duboscq, R.; Santoni, S.; Sarah, G.; Sauvage, C.; Palloix, A.; et al. Genome-wide association mapping of QTLs implied in potato virus Y population sizes in pepper: Evidence for widespread resistance QTL pyramiding. Mol. Plant Pathol. 2020, 21, 3–16. [Google Scholar] [CrossRef]
- Lee, H.R.; An, H.J.; You, Y.G.; Lee, J.; Kim, H.J.; Kang, B.C.; Harn, C.H. Development of a novel codominant molecular marker for Chili veinal mottle virus resistance in Capsicum annuum L. Euphytica 2013, 193, 197–205. [Google Scholar] [CrossRef]
- Devran, Z.; Kahveci, E.; Özkaynak, E.; Studholme, D.J.; Tör, M. Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing. Mol. Breed. 2015, 35, 101. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; An, J.T.; Siddique, M.I.; Han, K.; Choi, S.; Kwon, J.K.; Kang, B.C. Identification and molecular genetic mapping of Chili veinal mottle virus (ChiVMV) resistance genes in pepper (Capsicum annuum). Mol. Breed. 2017, 37, 121. [Google Scholar] [CrossRef]
- Avilla, C.; Collar, J.L.; Duque, M.; Pérez, P.; Fereres, A. Impact of floating rowcovers on bell pepper yield and virus incidence. Hortsci. 1997, 32, 882–883. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.F.; Bowen, K.L. Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper Mottle Virus. Phytopathol. 2006, 96, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerini, M.N.; Murphy, J.F. Resistance of Capsicum annuum ‘Avelar’ to Pepper mottle potyvirus and alleviation of this resistance by co-infection with Cucumber mosaic cucumovirus are associated with virus movement. J. Gen. Virol. 1999, 80, 2785–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, W.-H.; Hoang, N.; Yang, H.B.; Kwon, J.K.; Jo, S.H.; Seo, J.K.; Kim, K.H.; Choi, D.; Kang, B.C. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor. Appl. Genet. 2010, 120, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Lee, J.H.; Ahn, H.I.; Yoon, J.Y.; Her, N.H.; Choi, J.K.; Choi, G.S.; Kim, D.-S.; Ryu, G.-H. Identification and sequence analysis of RNA3 of a resistance-breaking Cucumber mosaic virus isolate on Capsicum annuum. Plant Pathol. J. 2006, 22, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lee, J.H.; Kang, W.H.; Kim, J.; Huy, H.N.; Park, S.W.; Son, E.H.; Kwon, J.K.; Kang, B.C. Identification of Cucumber mosaic resistance 2 (cmr2) that confers resistance to a new Cucumber mosaic virus isolate P1 (CMV-P1) in pepper (Capsicum spp.). Front. Plant Sci. 2018, 9, 1106. [Google Scholar] [CrossRef]
- Suzuki, K.; Kuroda, T.; Miura, Y.; Murai, J. Screening and field trials of virus resistant sources in Capsicum spp. Plant Dis. 2003, 87, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Nono-Womdim, R.; Gèbre-Selassie, K.; Palloix, A.; Pochard, E.; Marchoux, G. Study of multiplication of Cucumber mosaic virus in susceptible and resistant Capsicum annuum lines. Ann. Appl. Biol. 1993, 122, 49–56. [Google Scholar] [CrossRef]
- Nono-Womdim, R.; Palloix, A.; Gèbre-Selassie, K.; Marchoux, G. Partial resistance of bell pepper to Cucumber mosaic virus movement within plants: Field evaluation of its efficiency in southern France. J. Phytopathol. 1993, 37, 125–132. [Google Scholar] [CrossRef]
- Grube, R.C.; Zhang, Y.; Murphy, J.F.; Loaiza-Figueroa, F.; Lackney, V.K.; Provvidenti, R.; Jahn, M.K. New source of resistance to Cucumber mosaic virus in Capsicum frutescens. Plant Dis. 2000, 84, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ruiz, H.; Murphy, J.F. Age-related resistance in bell pepper to Cucumber mosaic virus. Ann. Appl. Biol. 2001, 139, 307–317. [Google Scholar] [CrossRef]
- Thakur, H.; Jindal, S.K.; Sharma, A.; Dhaliwal, M.S. Chilli leaf curl virus disease: A serious threat for chilli cultivation. J. Plant Dis. Prot. 2018, 125, 239–249. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Singh, M.; Singh, A.K.; Rai, M. Identification of host plant resistance to Pepper leaf curl virus in chilli (Capsicum species). Sci. Hortic. 2006, 110, 359–361. [Google Scholar] [CrossRef]
- Kil, E.-J.; Byun, H.-S.; Kim, S.; Kim, J.; Park, J.; Cho, S.; Yang, D.C.; Lee, K.Y.; Choi, H.S.; Kim, J.K. Sweet pepper confirmed as a reservoir host for Tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation. Arch. Virol. 2014, 159, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Gharsallah Chouchane, S.; Gorsane, F.; Nakhla, M.K.; Maxwell, D.P.; Marrakchi, M.; Fakhfakh, H. First report of Tomato yellow leaf curl virus-Israel species infecting tomato, pepper and bean in Tunisia. J. Phytopathol. 2007, 155, 236–240. [Google Scholar] [CrossRef]
- Comes, S.; Fanigliulo, A.; Pacella, R. & Crescenzi, A. Pepper leaf curl disease caused by Tomato yellow leaf curl Sardinia virus on pepper in Southern Italy. J. Plant Pathol. 2009, 91, S42. [Google Scholar]
- Juárez, M.; Rabadán, M.P.; Martínez, L.D.; Tayahi, M.; Grande-Pérez, A.; Gómez, P. Natural hosts and genetic diversity of the emerging Tomato Leaf Curl New Delhi Virus in Spain. Front. Microbiol. 2019, 10, 140. [Google Scholar] [CrossRef]
- Luigi, M.; Bertin, S.; Manglii, A.; Troiano, E.; Davino, S.; Tomassoli, L.; Parrella, G. First report of Tomato Leaf Curl New Delhi Virus causing Yellow Leaf Curl of pepper in Europe. Plant Dis. 2019, 103, 2970. [Google Scholar] [CrossRef]
- Singh, A.K.; Kushwaha, N.; Chakraborty, S. Synergistic interaction among Begomoviruses leads to the suppression of host defense-related gene expression and breakdown of resistance in chilli. Appl. Microbiol. Biotechnol. 2016, 100, 4035–4049. [Google Scholar] [CrossRef]
- Rai, V.P.; Rai, A.C.; Kumar, S.; Kumar, R.; Kumar, S.; Singh, M.; Rai, A.B.; Singh, S.P. Emergence of new variant of Chilli leaf curl virus in North India. Veg. Sci. 2010, 37, 124–128. [Google Scholar]
- Rai, V.P.; Kumar, R.; Singh, S.P.; Kumar, S.; Kumar, S.; Singh, M.; Rai, M. Monogenic recessive resistance to Pepper leaf curl virus in an interspecific cross of Capsicum. Sci. Hortic. 2014, 172, 34–38. [Google Scholar] [CrossRef]
- Rai, V.P.; Rai, A.; Kumar, R.; Kumar, S.; Kumar, S.; Singh, M.; Singh, S.P. Microarray analyses for identifying genes conferring resistance to Pepper leaf curl virus in chilli pepper (Capsicum spp.). Genom. Data 2016, 9, 140–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchenger, D.; Jeeatid, N.; Yule, S.; Lin, S.W.; Wang, Y.W.; Kenyon, L. Novel sources of resistance to Pepper leaf curl virus disease (Begomovirus). In Proceedings of the 17th Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, Avignon, France, 11–13 September 2019; Lefebvre, V., Editor Daunay, M.C., Eds.; Institut National de la Recherche Agronomique (INRA): Avignon, France, 2019. RS-P/14. pp. 78–79. [Google Scholar]
- Trujillo-Aguirre, J.; Díaz-Plaza, R. Obtención de cultivares de chile habanero con resistencia a virosis transmitida por mosca blanca. IV.; Zamorano, Honduras: Taller latino americano sobre moscas blancas y gemini virus. 1995. [Google Scholar]
- Hernández-Verdugo, S.; Guevara-González, R.G.; Rivera-Bustamante, R.F.; Oyama, K. Screening wild plants of Capsicum annuum for resistance to Pepper huasteco virus (PHV): Presence of viral DNA and differentiation among populations. Euphytica 2001, 122, 31–36. [Google Scholar] [CrossRef]
- Retes-Manjarrez, J.E.; Hernández-Verdugo, S.; Pariaud, B.; Hernández-Espinal, L.A.; Parra-Terraza, S.; Trejo-Saavedra, D.L.; Rivera-Bustamante, R.F.; Garzón-Tiznado, J.A. Resistance to Pepper huasteco yellow vein virus and its heritability in wild genotypes of Capsicum annuum. Bot. Sci. 2018, 96, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Garcìa-Neria, M.A.; Rivera-Bustamante, R.F. Characterization of geminivirus resistance in an accession of Capsicum chinense Jacq. Mol. Plant Microbe. 2011, 24, 172–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, L.; Simon, B.; Janssen, D.; Cenis, J.L. Incidences and progression of Tomato chlorosis virus disease and Tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. Ann. Appl. Biol. 2008, 153, 335–344. [Google Scholar] [CrossRef]
- Wintermantel, W.M.; Wisler, G.C. Vector specificity, host range, and genetic diversity of Tomato Chlorosis Virus. Plant Dis. 2006, 90, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Black, L.L.; Hobbs, H.A.; Gatti, J.M. Tomato spotted wilt virus resistance in Capsicum chinense PI152225 and 159236. Plant Dis. 1991, 75, 863. [Google Scholar] [CrossRef]
- Green, S.K.; Kim, J.S. Source of resistance to viruses of pepper (Capsicum spp.): A catalog. Tech. Bull. Avrdc. 1994, 20, 5–64. [Google Scholar]
- Parrella, G.; Ruffel, S.; Moretti, A.; Morel, C.; Palloix, A.; Caranta, C. Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor. Appl. Genet. 2002, 105, 855–861. [Google Scholar] [CrossRef]
- Bento, C.S.; Rodrigues, R.; Gonçalves, L.S.; Oliveira, H.S.; Santos, M.H.; Pontes, M.C.; Sudré, C.P. Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum. Genet. Mol. Res. 2013, 12, 1074–1082. [Google Scholar] [CrossRef]
- Caranta, C.; Palloix, A.; Gebre-Selassie, G.; Lefebvre, V.; Moury, B.; Daubeze, A.M. A complementation of two genes originating from susceptible Capsicum annuum lines confers a new and complete resistance to Pepper veinal mottle virus. Phytopathology 1996, 86, 739–743. [Google Scholar] [CrossRef]
- Dogimont, C.; Palloix, A.; Daubèze, A.M.; Marchoux, G.; Gèbre-Selassie, K.; Pochard, E. Genetic analysis of broad spectrum resistance to potyviruses using doubled haploid lines of pepper (Capsicum annuum L.). Euphytica 1996, 88, 231–239. [Google Scholar] [CrossRef]
- Grube, R.C.; Blauth, J.R.; Arnedo Andrés, M.S.; Caranta, C.; Jahn, M.K. Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor. Genet. 2000, 101, 852–859. [Google Scholar] [CrossRef]
- Srivastava, A.; Mangal, M.; Saritha, R.K.; Kalia, P. Screening of chilli pepper (Capsicum spp.) lines for resistance to the begomoviruses chilli leaf curl disease in India. Crop Prot. 2017, 100, 177–185. [Google Scholar] [CrossRef]
- Tomita, R.; Sekine, K.T.; Mizumoto, H.; Sakamoto, M.; Murai, J.; Kiba, A.; Hikichi, Y.; Suzuki, K.; Kobayashi, K. Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol. Plant Micr. Interact. 2011, 24, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Sawada, H.; Takeuchi, S.; Hamada, H.; Kiba, A.; Matsumoto, M.; Hikichi, Y. A new tobamovirus-resistance gene, L-1a, of sweet pepper (Capsicum annuum L.). J. Jpn. Soc. Hortic. Sci. 2004, 73, 552–557. [Google Scholar] [CrossRef]
- Genda, Y.; Sato, K.; Nunomura, O.; Hirabayashi, T.; Tsuda, S. Immunolocalization of Pepper mild mottle virus in developing seeds and seedlings of Capsicum Annu. J. Gen. Plant Pathol. 2011, 77, 201–208. [Google Scholar] [CrossRef]
- Rast, A.T.B. Pepper tobamoviruses and pathotypes used in resistance breeding. Capsicum Newsl. 1988, 7, 20–23. [Google Scholar]
- Boukema, I.W. Allelism of genes controlling resistance to TMV in Capsicum, L. Euphytica 1980, 29, 433–439. [Google Scholar] [CrossRef]
- Matsumoto, K.; Sawada, H.; Matsumoto, K.; Hamada, H.; Yoshimoto, E.; Ito, T.; Takeuchi, S.; Tsuda, S.; Suzuki, K.; Kobayashi, K.; et al. The coat protein gene of tobamovirus P (0) pathotype is a determinant for activation of temperature-insensitive L (1a)-gene-mediated resistance in Capsicum plants. Arch. Virol. 2008, 153, 645–650. [Google Scholar] [CrossRef]
- Hamada, H.; Takeuchi, S.; Morita, Y.; Sawada, H.; Kiba, A.; Hikichi, Y. Amino acid changes in Pepper mild mottle virus coat protein that affect L3 gene-mediated resistance in pepper. J. Gen. Plant Pathol. 2002, 68, 155–162. [Google Scholar] [CrossRef]
- Berzal-Herranz, A.; De La Cruz, A.; Tenllado, F.; Diaz-Ruiz, J.R.; Lopez, L.; Sanz, A.I.; Vaquero, C.; Serra, M.T.; Garcia-Luque, I. The Capsicum L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein. Virology 1995, 209, 498–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genda, Y.; Kanda, A.; Hamada, H.; Sato, K.; Ohnishi, J.; Tsuda, S. Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene mediated resistance in Capsicum spp. Phytopathology 2007, 97, 787–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, V.; Pflieger, S.; Thabuis, A.; Caranta, C.; Blattes, A.; Chauvet, J.C.; Daubeze, A.M.; Palloix, A. Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 2002, 45, 839–854. [Google Scholar] [CrossRef]
- Livingstone, K.D.; Lackney, V.K.; Blauth, J.R.; Van Wijk, R.; Jahn, M.K. Genome mapping in Capsicum and the evolution of genome structure in the solanaceae. Genetics 1999, 152, 1183–1202. [Google Scholar] [PubMed]
- Matsunaga, H.; Saito, T.; Hirai, M.; Nunome, T.; Yoshida, T. DNA markers linked to Pepper mild mottle virus (PMMoV) resistant locus (L4) in Capsicum. J. Jpn. Soc. Hortic. Sci. 2003, 72, 218–220. [Google Scholar] [CrossRef]
- Yang, H.; Liu, W.Y.; Kang, W.; Jahn, M.; Kang, B.C. Development of SNP markers linked to the L locus in Capsicum spp. by a comparative genetic analysis. Mol. Breed. 2009, 24, 433. [Google Scholar] [CrossRef]
- Tomita, R.; Murai, J.; Miura, Y.; Ishihara, H.; Liu, S.; Kubotera, Y.; Honda, A.; Hatta, R.; Kuroda, T.; Hamada, H.; et al. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Appl. Genet. 2008, 117, 1107–1118. [Google Scholar] [CrossRef] [Green Version]
- Yoo, E.Y.; Kim, S.; Kim, Y.H.; Lee, C.J.; Kim, B.D. Construction of a deep coverage BAC library from Capsicum annuum, ‘CM334’. Theor. Appl. Genet. 2003, 107, 540–543. [Google Scholar] [CrossRef]
- Yang, H.-B.; Liu, W.-Y.; Kang, W.-H.; Kim, J.-H.; Cho, H.; Yoo, J.-H. Development and validation of L allele-specific markers in Capsicum. Mol. Breed. 2012, 30, 819–829. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, C.-J.; Huh, S.U.; Choi, L.M.; Lee, G.L.; Kim, Y.J.; Paek, K.-H. Capsicum annuum WRKYb transcription factor that binds to the CaPR-10 promoter functions as a positive regulator in innate immunity upon TMV infection. Biochem. Biophys. Res. Commun. 2011, 411, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.H.; Choi, L.M.; Lee, G.J.; Kim, J.Y.; Paek, K.-H. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci. 2012, 197, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.H.; Kim, K.-J.; Paek, K.-H. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem. Biophys. Res. Commun. 2012, 417, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Gracia, O.; Feldman, J.M. Tobacco streak virus in pepper. J. Phytopathol. 1974, 80, 313–323. [Google Scholar] [CrossRef]
- Jain, R.K.; Bag, S.; Awasthi, L.P. First report of natural infection of Capsicum annuum by Tobacco streak virus in India. Plant Pathol. 2005, 54, 257. [Google Scholar] [CrossRef]
- Janssen, D.; Sáez, E.; Segundo, E.; Martín, G.; Gil, F.; Cuadrado, I.M. Capsicum annuum - a new host of Parietaria mottle vírus in Spain. Plant Pathol. 2005, 54, 567. [Google Scholar] [CrossRef]
- Parrella, G.; Greco, B.; Troiano, E. Severe symptoms of mosaic and necrosis in bell pepper associated with Parietaria mottle virus in Italy. Plant Dis. 2016, 100, 151. [Google Scholar] [CrossRef]
- Dey, P.K.; Sarkar, P.K.; Somchoudhury, A.K. Efficacy of different treatment schedules of profenofos against major pests of chilli. Pestol. 2001, 25, 26–29. [Google Scholar]
- Capinera, J.L. Order Thysanoptera-thrips. In Handbook of Vegetable Pests, 1st ed.; Capinera, J.L., Ed.; Academic Press: San Diego, CA, USA, 2007; pp. 535–550. [Google Scholar]
- Tommasini, M.; Maini, S. Frankliniella occidentalis and other thrips harmful to vegetable and ornamental crops in Europe. In Biological Control of Thrips Pests, 1st ed.; Van Lenteren, J., Loomans, A.J.M., Tommasini, M.G., Maini, S., Ruidavets, J., Eds.; Wageningen University Papers: Wageningen, The Netherland, 1995; Volume 95, pp. 1–42. [Google Scholar]
- Zhang, Z.J.; Wu, Q.; Li, X.F.; Zhang, Y.J.; Xu, B.Y.; Zhu, G.R. Life history of western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae), on five different vegetable leaves. J. Appl. Entomol. 2007, 131, 347–354. [Google Scholar] [CrossRef]
- Maris, P.C.; Joosten, N.N.; Goldbach, R.W.; Peters, D. Restricted spread of Tomato spotted wilt virus in thrips-resistant pepper. Phytopathology 2003, 93, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Fery, R.L.; Schalk, J.M. Resistance in pepper (Capsicum annuum L.) to western flower thrips [Frankliniella occidentalis (Pergande)]. HortScience 1991, 26, 1073–1074. [Google Scholar] [CrossRef] [Green Version]
- Maris, P.C.; Joosten, N.N.; Peters, D.; Goldbach, R.W. Thrips resistance in pepper and its consequences for the acquisition and inoculation of Tomato spotted wilt virus by the western flower thrips. Phytopathology 2002, 93, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visschers, I.G.S.; Peters, J.L.; van de Vondervoort, J.A.H.; Hoogveld, R.H.M.; van Dam, N.M. Thrips resistance screening is coming of age: Leaf position and ontogeny are important determinants of leaf-based resistance in pepper. Front. Plant Sci. 2019, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.J. Tropical whitefly IPM project. Adv. Virus Res. 2007, 69, 249–311. [Google Scholar] [PubMed]
- Roditakis, E.; Grispou, M.; Morou, E.; Kristoffersen, J.B.; Roditakis, N.; Nauen, R. Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Manag. Sci. 2009, 65, 313–322. [Google Scholar] [CrossRef]
- Firdaus, S.; Van Heusden, A.; Harpenas, A.; Supena, E.D.J.; Visser, G.F.; Vosman, B. Identification of silverleaf whitefly resistance in pepper. Plant Breed. 2011, 130, 708–714. [Google Scholar] [CrossRef]
- Jeevanandham, N.; Marimuthu, M.; Natesan, S.; Gandhi, K.; Appachi, S. Plant resistance in chillies Capsicum spp. against whitefly, Bemisia tabaci under field and greenhouse condition. J. Entomol. Zool. Stud. 2018, 6, 1904–1914. [Google Scholar]
- Pantoja, K.F.C.; Rocha, K.C.G.; Melo, A.M.; Marubayashi, J.M.; Baldin, E.L.L.; Bentivenha, J.P.F.; Gioria, R.; Kobori, R.F.; Pavan, M.A.; Krause-Sakate, R. Identification of Capsicum accessions tolerant to Tomato severe rugose virus and resistant to Bemisia tabaci Middle East-Asia Minor 1 (MEAM1). Trop. Plant Pathol. 2018, 43, 138. [Google Scholar] [CrossRef]
- Weintraub, P.G. Integrated control of pests in tropical and subtropical sweet pepper production. Pest Manag. Sci. 2007, 63, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Bosland, P.W.; Ellington, J.J. Comparison of Capsicum annuum and C. pubescens for antixenosis as a means of aphid resistance. HortScience 1996, 31, 1017–1018. [Google Scholar] [CrossRef]
- Sun, M.; Voorrips, R.E.; Steenhuis-Broers, G.; Van’t Westende, W.; Vosman, B. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biol. 2018, 18, 138. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Voorrips, R.E.; Vosman, B. Aphid populations showing differential levels of virulence on Capsicum Access. Insect Sci. 2019, 27, 336–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daryanto, A.; Syukur, M.; Hidayat, P.; Maharijaya, A. Antixenosis and antibiosis-base resistance of chili pepper to melon aphid. J. Appl. Hort. 2017, 19, 147–151. [Google Scholar]
- Sannino, L.; Espinosa, B.; Caponero, A. Helicoverpa armigera (Hübner) harmful to pepper crops in Italy. Inf. Fitopatol. 2004, 54, 23–25. [Google Scholar]
- Shivaramu, K.; Kulkarni, K.A. Screening of chilli germplasm for resistance to Helicoverpa armigera (Hübner) in chilli. Pest Manag. Hort. Ecosyst. 2008, 14, 59–66. [Google Scholar]
- Berny-Mier y Teran, J.C.; Abdala-Roberts, L.; Duran-Yanez, A.; Tut-Pech, F. Variation in insect pest and virus resistance among Habanero peppers (Capsicum chinense Jacq.) in Yucatán, México. Agrociencia 2013, 47, 471–482. [Google Scholar]
- Kashiwagi, T.; Horibata, Y.; Mekuria, D.B.; Tebayashi, S.-I.; Kim, C.-S. Ovipositional deterrent in the sweet pepper, Capsicum annuum, at the mature stage against Liriomyza trifolii (Burgess). Biosci. Biotechnol. Biochem. 2005, 69, 1831–1835. [Google Scholar] [CrossRef]
- Maharijaya, A.; Vosman, B.; Steenhuis-Broers, G.; Harpenas, A.; Purwito, A.; Visser, R.G.F.; Voorrips, R.E. Screening of pepper accessions for resistance against two thrips species (Frankliniella occidentalis and Thrips parvispinus). Euphytica 2011, 177, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Tatagar, M.H.; Prabhu, S.T.; Jagadeesha, R.C. Screening chilli genotypes for resistance to thrips, Scirtothrips dorsalis (Hood) and mite, Polyphagotarsonemus latus (Banks). Pest Manag. Hort. Ecosyst. 2001, 7, 113–116. [Google Scholar]
- Latha, S.; Hunumanthraya, L. Screening of chilli genotypes against chilli thrips (Scirtothrips dorsalis Hood) and yellow mite [Polyphagotarsonemus latus (Banks)]. J. Entomol. Zool. Stud. 2018, 6, 2739–2744. [Google Scholar]
- Desai, H.R.; Bandhania, K.A.; Patel, A.J.; Patel, M.B.; Rai, A.B. Screening of chilli varieties/germplasms for resistance to yellow mite, Polyphagotarsonemus latus (Banks) in South Gujarat. Pest Manag. Hort. Ecosyst. 2006, 12, 55–62. [Google Scholar]
- Di Vito, M.; Saccardo, F.; Zaccheo, G. Response of lines of Capsicum spp. to italian populations of four species of Meloidogyne. Nematol. Mediterr. 1991, 19, 1. [Google Scholar]
- Di Vito, M.; Saccardo, F.; Errico, A.; Zema, V.; Zaccheo, G. Genetics of resistance to root-knot nematodes (Meloidogyne spp.) in Capsicum chacoense, C. chinense and C. frutescens. J. Gen. Breed. 1993, 47, 23–26. [Google Scholar]
- Thies, J.A.; Mueller, J.D.; Fery, R.L. Effectiveness of resistance to southern root-knot nematode in ‘Carolina Cayenne’ pepper (Capsicum annuum L.) in greenhouse, microplot, and field tests. J. Am. Soc. Hort. Sci. 1997, 122, 200–204. [Google Scholar] [CrossRef]
- Fazari, A.; Palloix, A.; Wang, L.; Yan Hua, M.; Sage-Palloix, A.M.; Zhang, B.X.; Djian-Caporalino, C. The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed. 2012, 131, 665–673. [Google Scholar] [CrossRef]
- Djian-Caporalino, C.; Fazari, A.; Arguel, M.J.; Vernie, T.; Van de Casteele, C.; Faure, I.; Brunoud, G.; Pijarowski, L.; Palloix, A.; Lefebvre, V.; et al. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor. Appl. Genet. 2007, 114, 473–476. [Google Scholar] [CrossRef]
- Chen, R.; Li, H.; Zhang, L.; Zhang, J.; Xiao, J.; Ye, Z. CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Rep. 2007, 26, 895–905. [Google Scholar] [CrossRef]
- Khan, A.A.; Khan, M.W. Suitability of some cultivars of pepper as hosts for Meloidogyne javanica and races of m. incognita. Nematol. Mediterr. 1991, 19, 1. [Google Scholar]
- Fery, R.L.; Thies, J.A. Genetic analysis of resistance to the southern root-knot nematode in Capsicum chinense Jacq. J. Amer. Soc. Hort. Sci. 1998, 126, 1008–1011. [Google Scholar] [CrossRef] [Green Version]
- Hendy, H.; Pochard, E.; Dalmasso, A. Transmission héréditaire de la résistance aux nématodes Meloidogyne chitwood (Tylenchida) portée par 2 lignées de Capsicum annuum L: Étude de descendances homozygotes issues d’androgenèse. Agronomie 1985, 5, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Thies, J.A.; Fery, R.L. Characterization of Capsicum chinense cultigens for resistance to Meloidogyne arenaria, M. hapla, and M. Javanica. Plant Dis. 2001, 85, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Barbary, A.; Djian-Caporalino, C.; Palloix, A.; Castagnone-Sereno, P. Host genetic resistance to root-knot nematodes, Meloidogyne spp.; in Solanaceae: From genes to the field. Pest. Manag. Sci. 2015, 71, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.L.S.; Chadud, J.V.G.; Oliveira, M.F.; Nascimento, A.R.; Rocha, M.R. Identification of chili pepper genotypes (Capsicum spp.) resistant to Meloidogyne Enterolobii. J. Agric. Sci. 2019, 11, 165–175. [Google Scholar] [CrossRef]
- Gonçalves, L.S.A. Resistance to root-knot nematode (Meloidogyne enterolobii) in Capsicum spp. accessions. Braz. J. Agr. Sci. 2014, 9, 1. [Google Scholar] [CrossRef]
- Thies, J.A.; Fery, R.L. Heat stability ofresistance to southern root-knot nematode inbell pepper genotypes homozygous and hetero-zygous for the N gene. J. Amer. Soc. Hort. Sci. 2002, 127, 371–375. [Google Scholar] [CrossRef]
- Moosavi, M.R. Damage of the root-knot nematode Meloidogyne javanica to bell pepper, Capsicum Annu. J. Plant Dis. Prot. 2015, 122, 244–249. [Google Scholar] [CrossRef]
- Pinheiro, J.B.; Boiteux, L.S.; Almeida, M.R.A.; Pereira, R.B.; Galhardo, L.C.S.; Carneiro, R.M.D.G. First report of Meloidogyne enterolobii in Capsicum rootstocks carrying the Me1 and Me3/Me7 genes in Central Brazil. Nematropica 2015, 45, 184–188. [Google Scholar]
- Castagnone-Sereno, P.; Danchin, E.G.J.; Perfus-Barbeoch, L.; Abad, P. Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic era. Annu. Rev. Phytopathol. 2013, 51, 203–220. [Google Scholar] [CrossRef]
- Ros-Ibáñez, C.; Robertson, L.; Martínez-Lluch, M.C.; Cano-García, A.; Lacasa-Plasencia, A. Development of virulence to Meloidogyne incognita on resistant pepper rootstocks. Span. J. Agric. Res. 2014, 12, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Castagnone-Sereno, P.; Bongiovanni, M.; Wajnberg, E. Selection and parasite evolution: A reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne Incogn. Evol. Ecol. 2007, 21, 259–270. [Google Scholar] [CrossRef]
- Djian-Caporalino, C.; Pijarowski, L.; Fazari, A.; Samson, M.; Gaveau, L.; O’Byrne, C.; Lefebvre, V.; Caranta, C.; Palloix, A.; Abad, P. High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor. Appl. Genet. 2001, 103, 592–600. [Google Scholar] [CrossRef]
- Thies, J.A.; Ariss, J.J. Comparison between the N and Me3 genes conferring resistance to the root-knot nematode (Meloidogyne incognita) in genetically different pepper lines (Capsicum annuum). Eur. J. Plant Pathol. 2009, 125, 545. [Google Scholar] [CrossRef]
- Mao, Z.; Zhu, P.; Liu, F.; Huang, Y.; Ling, J.; Chen, G.; Yang, Y.; Feng, D.; Xie, B. Cloning and functional analyses of pepper CaRKNR involved in Meloidogyne incognita resistance. Euphytica 2015, 205, 903–913. [Google Scholar] [CrossRef]
- Uncu, A.T.; Celik, I.; Devran, Z.; Özkaynak, E.; Frary, A.; Frary, A.; Doganlar, S. Development of a SNP-based CAPS assay for the Me1 gene conferring resistance to root knot nematode in pepper. Euphytica 2015, 206, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Sogut, M.A.; Özkaynak, E.; Doganlar, S.; Frary, A. Physical mapping of NBS-coding resistance genes to the Me-gene cluster on chromosome P9 reveals markers tightly linked to the N gene for root-knot nematode resistance in pepper. Mol. Breed. 2016, 36, 137. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fazari, A.; Cao, Y.; Zhang, Z.; Palloix, A.; Mao, S.; Zhang, B.; Caporalino, C.; Wang, L. Fine mapping of the root-knot nematode resistance gene Me1 in pepper (Capsicum annuum L.) and development of markers tightly linked to Me1. Mol. Breed. 2018, 38, 39. [Google Scholar] [CrossRef]
- Jo, J.; Purushotham, P.M.; Han, K.; Lee, H.R.; Nah, G.; Kang, B.C. Development of a genetic map for onion (Allium cepa L.) using reference-free genotyping-by-sequencing and SNP assays. Front. Plant Sci. 2017, 14, 1606. [Google Scholar] [CrossRef]
- Kiran, K.; Rawal, H.C.; Dubey, H.; Jaswal, R.; Bhardwaj, S.C.; Prasad, P.; Pal, D.; Devanna, B.N.; Sharma, T.T. Dissection of genomic features and variations of three pathotypes of Puccinia striiformis through whole genome sequencing. Sci. Rep. 2017, 7, 42419. [Google Scholar] [CrossRef] [Green Version]
Disease Name | Species | Sources of Resistance/Tolerance | ||
---|---|---|---|---|
Accessions/Lines/Genotypes | Species | References | ||
Fungal diseases | ||||
Powdery mildew | Leveillula taurica | H3, H-V-12 [H3’ x ‘Vania’ (susceptible)], 4638 | C. annuum | [14] |
CNPH36, CNPH38, CNPH50, CNPH52, CNPH279, CNPH288, KC604, KC605, KC608 | C. baccatum | [15,16] | ||
IHR 703 | C. frutescens | [15] | ||
KC616 | C. chinense | [16] | ||
KC638, KC640, KC641, KC642, KC643, KC644 | C. pubescens | [16] | ||
PI 6440507 | n.a. | [20] | ||
Phytophthoraroot rot | Phytophthora capsici | PI 201234 | C. annuum | [21] |
PI 201232, PI 201237, PI 640532 | C. annuum | [22] | ||
PBC137 | C. annuum | [21] | ||
PBC602 | C. annuum | [21] | ||
Serrano Criollo de Morelos (CM334) | C. annuum | [23] | ||
AC2258 | C. annuum | [24] | ||
Perennial | C. annuum | [23] | ||
Grif 9073, PI 439297 | C. annuum | [25] | ||
BG102, BG107 | C. annuum | [26] | ||
Antrachnose fruit rot | Colletotrichum truncatum | PBC80, PBC81, CA1422 | C. baccatum | [27,28] |
PBC932, CO4714 | C. chinense | [27,28] | ||
Colletotrichum scovillei | PBC80, PBC81 | C. baccatum | [27,28] | |
PRI95030 | C. chinense | [29,30] | ||
UENF 1718, UENF 1797 | C. baccatum var. pendulum | [31] | ||
Colletotrichum siamense | CO4714 | C. chinense | [28] | |
Jinda, Bangchang, 83–168 | C. annuum | [28] | ||
Khee Noo, Karen | C. frutescens | [28] | ||
Both C. truncatum and C. siamense | Acchar lanka, CA-4, Pant C-1, Punjab Lal, Bhut Jolokia, BS-35 | C. annuum | [32] | |
Verticilliumwilt | Verticillium dahliae | Grif 9073, PI 281396, PI 281397, PI 438666, PI 439292, PI 439297, PI 555616, PI 594125 | C. annuum | [25] |
Fusariumwilt | Fusarium solani | P3, JNA2 × ACB1 × 9608D, Rajaput × P3 | C. annuum | [33] |
Fusarium oxysporum f.sp. capsici | Punjab Lal, Solan Red, Pachhad Yellow, Solan Yellow, Pant C-1 | C. annuum | [34] | |
Fusarium verticilloides and F. pallidoroseum | Masalawadi, SC-120, Phule C-5, SC-335, SC-415, SC-1 07, SC-348, SC-108, LCA-304 Arka Lohit, Pusa Jwala, Pant C-2 | C. annuum | [35,36] | |
Rhizoctoniaroot rot | Rhizoctonia solani | PI 439410, PI 5556119 | C. baccatum | [37] |
Long Chili, PI 167061 | C. annuum | [37] | ||
Bacterial diseases | ||||
Bacterial leaf spot | Xanthomonas spp | PI 260435 | C. chacoense | [38,39,40,41,42,43,44] |
PI 235047 | C. pubescens | |||
PI 163192, PI 271322, Pep13, PI 163192 | C. annuum | |||
UNEF1556 | C. baccatum var. pendulum | |||
Bacterial wilt | Ralstonia solanacearum | Perennial, Narval, MC4, CA8, PI 322719, LS2341, PM687, YCM334 | C. annuum | [45,46,47] |
Heiser 6240, LS 2390 | C. frutescens | [48] | ||
LS1716, PBC385, PBC066, BC204, PBC1347, CNPH143 (MC4), CNPH14 (MC5),CNPH145 (HC10) | C. baccatum | [48] |
Disease Name | Species | Mapping Population | Resistant Parent | Susceptible Parent | Individuals | Linkage Map# | N° of Markers | N° of QTLs /[gene] | Chr Location* | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Powdery Mild | Leveillula taurica | Double Haploid | C. annuum ‘H3’ | C. annuum ‘Vania’ | 101 | AFLP, RAPD, RFLP | 134 | 5 | 5, 6, 9, 10, 12 | [18] |
Powdery Mild | Leveillula taurica | F2:3 | C. annuum ‘VK515R’ | C. annuum ‘VK515S’ | 102 | SNPs | 96 | [PMR1] | 4 | [19] |
Powdery Mild | Leveillula taurica | F2 | C. annuum ‘PM Singang’ | C. annuum ‘Bukang’ | 80 | |||||
Powdery Mild | Leveillula taurica | Patented | C. annuum PBC167 (PI640507) | na | na | na | na | na | 1, 8 | [49] |
Powdery Mild | Leveillula taurica | BC1F2 | C. annuum PBC167 (PI640507) | C. annuum SBY 99–1179 | 96 | SNPs | na | na | 4 | [20] |
Phytophthora root rot | Phytophthora capsici | Double Haploid | C. annuum “Vania with introgression from PI201234” | C. annuum ‘H3’ | 101 | AFLP, RAPD, RFLP | 135 | 13 | 3, 5, 7, 10, 11, 12 | [61] |
Phytophthora root rot | Phytophthora capsici | Double Haploid | C. annuum ‘Perennial’ | C. annuum ‘Yolo wonder’ | 114 | AFLP, RAPD, RFLP | 154 | 11 | 2, 5, 10 | [61] |
Phytophthora root rot | Phytophthora capsici | F2 | C. annuum ‘Criollo de morelos CM334’ | C. annuum ‘Yolo wonder’ | 151 | AFLP, RAPD, RFLP | 64 | 20 | 1, 4, 5, 6, 11, 12 | [61] |
Phytophthora root rot | Phytophthora capsici | RIL | C. annuum ‘PI201234’ | C. annuum ‘PSP-11’ | na | AFLP, RAPD, SSR, SCAR | 144 | 16 | na | [62] |
Phytophthora root rot | Phytophthora capsici | F2 | C. annuum ‘CM334’ | C. annuum ‘Joe E. Parker’ | na | AFLP, RAPD, SSR, SCAR | 113 | 5 | na | [62] |
Phytophthora root rot | Phytophthora capsici | Double Haploid | C. annuum ‘AC2258’ | C. annuum ’K9-11’ | 176 | AFLP, RAPD, RFLP, SCAR, CAPS | 518 | 3 | 1, 5, 11 | [65] |
Phytophthora root rot | Phytophthora capsici | F2 | C. chinense ’PI 159234’ | C. annuum ‘Numex Rnaky’ | 75 | RAPD, SCAR | 300 | 1 | 5 | [51] |
Phytophthora root rot | Phytophthora capsici | F2 | C. annuum ‘Criollo de morelos CM334’ | C. annuum ‘Numex Rnaky’ | 94 | RAPD, SCAR | 300 | |||
Phytophthora root rot | Phytophthora capsici | Double Haploid | C. annuum ‘Criollo de morelos CM334’ | C. annuum ‘Manganji’ | 96 | SSR | 118 | 2 | 3, 5 | [63] |
Phytophthora root rot | Phytophthora capsici | F2 | C. annuum ‘Criollo de morelos CM334’ | C. annuum ‘Chilsungcho’ | 100 | RFLP, SSR, WKRY | 241 | 7 | 5, 6, 8, 9 | [64] |
Phytophthora root rot | Phytophthora capsici | RILs_F8 | C. annuum ‘YCM334’ | C. annuum ‘Tean’ | 126 | AFLP, CAP, SSR | 249 | 15 | 5, 10, 11 | [66] |
Phytophthora root rot | Phytophthora capsici | RILs_F8 | C. annuum ‘YCM334’ | C. annuum ‘Tean’ | 126 | HRM | 41 | 4 | 4, 5 | [67] |
Phytophthora root rot | Phytophthora capsici | RILs_F6 | C. annuum ‘YCM334’ | C. annuum ‘Early jalapeno’ | 63 | SPP (single position polym) | 3814 | 10 | 2, 3, 4, 5, 6 | [70] |
Phytophthora root rot | Phytophthora capsici | RILs_F7 | C. annuum ‘YCM334’ | C. annuum ‘Early jalapeno’ | 66 | SNP array | 3887 | CaDMR1 | 5 | [71] |
Phytophthora root rot | Phytophthora capsici | Two BC1; one F2 | C. annuum ‘Criollo de morelos CM334’ | NMCA10399 | 222, 372; 259 | SLAF seq | >40,000 | PhR10 | 10 | [72] |
Antrachnose disease | Colletotrichum gloeosporioides and C. capsici | F2 | C. chinense ’PRI95030’ | C. annuum ‘Jatilaba’ | 346 | AFLP, SSR | 266 | 4 | na | [29] |
Antrachnose disease | Colletotrichum acutatum | F2 | C. baccatum var. pendulum | C.baccatum ‘Golden-aji’ | 126 | AFLP, SRAP, SSR | 327 | 19 | 3, 4, 5, 6, 7, 8. 9 | [79] |
Antrachnose disease | Colletotrichum acutatum | BC1 | C. chinense ’PBC932’ | C. annuum ‘77013’ | 186 | CAPS, INDEL, SSR | 385 | 12 | 3, 5, 7, 10, 12 | [80] |
Bacterial Wilt | Ralstonia solanacearum | Double Haploid | C. annuum ’LS2341’ | C. annuum ‘California wonder’ | 94 | AFLP, SSR | 359 | 1 | 1 | [86] |
Bacterial Wilt | Ralstonia solanacearum | Double Haploid | C. annuum PM687 (PI322719) | C. annuum ‘Yolo wonder’ | 117 | AFLP | 117 | 6 | 2, 4, 6, 9, 10, 11 | [87] |
Potyviruses | PVY and potyviruses | Double Haploid | C. annuum ‘Perennial’ | C. annuum ‘Yolo wonder’ | 94 | RAPD, RFLP | 172 | 11 | 3, 4, 7, 9, 11 | [88] |
Potyviruses | PVY | Double Haploid | C. annuum ‘Perennial’ | C. annuum ‘Yolo wonder’ | 350 | AFLP, SNPs, SSCP, SSR | 236 | 4 | 1, 3, 6, 9 | [89] |
Cucumoviruses | CMV | Double Haploid | C. annuum ‘Perennial’ | C. annuum ‘Yolo wonder’ | 94 | RAPD, RFLP | 138 | 7 | 3, 11, 12 | [88] |
Cucumoviruses | CMV | F3 families | C. annuum ‘Perennial’ | C. annuum ‘Maor’ | 180 | AFLP, RAPD, RFLP | 177 | 4 | 4, 6, 11 | [90] |
Cucumoviruses | CMV | Double Haploid | C. annuum ’Vania’ | C. annuum ‘XJ0630’ | 101 | AFLP, RAPD, RFLP | 184 | 6 | 5, 11, 12 | [91] |
Cucumoviruses | CMV (HB) | F2 and BC | C. annuum “BJ0747” | C. annuum ‘H3’ | 334 | ISSR, SSR | 137 | 5 | 5, 7, 11 | [92] |
Cucumoviruses | CMV (P1) | F3 | C. annuum ‘A1’ | C. annuum ‘2602’ | 174 | GBS | 906 | 2 | 5, 10 | [93] |
Cucumoviruses | CMV (FNY) | F2 | C. frutescens ‘PBC688’ | C. frutescens ‘G29’ | 190 | SLAF | 36.847 | 1/[CA02g19570] | 11/2 | [94] |
Cucumoviruses | CMV (HB-jz) | F2 | C. annuum ‘BJ0747’ | C. annuum ‘XJ0630’ | 195 | SLAF | 14,601 | 3 | 11, 12 | [95] |
Thrips | Frankliniella occidentalis | F2 | C. chinense ‘4661’ | C. annuum ‘AC 1979’ | 196 | AFLP, SNP, SSR | 171 | 1 | 6 | [96] |
Root-knot nematodes | Meloidogyne incognita, M. arenaria, M. javanica | F2:3 | C. annuum ‘Yolo wonder’ | C. annuum ‘Doux Longd es Landes’ | 130 | SCAR, SNP, SSR | 326 | 4 | 1, 9 | [97] |
Species | Sources of Resistance/Tolerance | ||
---|---|---|---|
Accessions/Lines/Genotypes | Species | Reference | |
Genus: Orthotospovirus | |||
Tomato spotted wilt orthotospovirus (TSWV) | PI 152225, PI 159234, PI 159236, 7204, CNPH-275, AC09-207, 7204, PI -15, C00943, ECU-973 | C. chinense | [133,140,142,201] |
PIM26-1, C-153 | C. baccatum | [150] | |
PI 264281 | C. annuum | [201] | |
Capsicum chlorosis orthotospovirus (CaCV) | PI 90972 | C. chinense | [151] |
Genus: Potyvirus | |||
Pepper mottle virus (PepMoV) | Tabasco (CGN 21546) | C. frutescens | [202] |
Avelar, 9093 | C. annuum | [163,203] | |
Pepper yellow mosaic virus (PepYMV) | UENF 1624, UENF 1732, UENF 1764, UENF 1770 | C. baccatum var. pendulum | [204] |
Potato virus Y (PVY) | Perennial (partially resistant) | C. annuum | [205] |
Pen 3.4, CGN 17015 (Amarjllo) | C. baccatum | [202] | |
Potato virus Y pathotype 0 (PVY-0); Tobacco etch virus (TEV); Pepper mottle virus (PepMoV) | PI 159236, PI 152225 | C. chinense | [155] |
Potato virus Y pathotype 0 (PVY-0) | Yolo Y | C. annuum | [157] |
Potato virus Y pathotypes 0 and 1 (PVY-0-1); Tobacco etch virus (TEV) | PI 264281, SC46252, Florida VR2 | C. annuum | [155] |
Potato virus Y pathotypes 0, 1 and 2 (PVY-0-1); Pepper mottle virus (PepMoV) | CM334 | C. annuum | [155,206] |
Tobacco etch virus (TEV) | Agronomico 10C-5, Delray Bell, VR4 | C. annuum | [202] |
Chilli veinal mottle virus (ChiVMV) | Perennial | C. annuum | [205] |
Genus: Cucumovirus | |||
Cucumber mosaic virus (CMV) | Perennial, Bukang, Lam32, Vania, Sapporo-oonaga, Nanbu-oonaga, BJ0747 | C. annuum | [91,92,164,175,177,178] |
BG2814-6, Tabasco (CGN 21546), LS1839-2-4 | C. frutescens | [202,207] | |
PI 439381-1-3 | C. baccatum | [178] | |
Genus: Begomovirus | |||
Pepper leaf curl virus (PepLCV) | BS-35, GKC-29, Bhut Jolokia, | C. annuum | [192] |
Chilli leaf curl virus (ChiLCV) | DLS-Sel-10, WBC-Sel-5, PBC-142, PBC-535 | C. annuum | [208] |
Pepper yellow mosaic virus (PepYMV) | PP1037-7644-1, PBC148, PBC149, PBC502, PBC518, PBC601, PP99 | n.a. | [194] |
Pepper huastego yellow vein virus (PHYVV) | UAS12 | C.annuum | [197] |
Pepper golden mosaic virus (PepGMV) | BG-3821 | C. chinense | [198] |
Genus: Tobamovirus | PI 315008, PI 315023, PI 315024, PI 159236, PI 152225, KC667 | C. chinense | [198,209] |
Bruinsma Wonder, Verbeterde Glas, KC780, Nanbu-Ohnaga | C. annuum | [209,210] | |
Tabasco | C. frutescens | [209] | |
PI 260429. | C. chacoense | [209] | |
PI 439381-1-3 | C. baccatum | [209] |
Disease name | Species | Sources of resistance/tolerance | ||
---|---|---|---|---|
Accessions/Lines/Genotypes | Species | References | ||
Insects | ||||
The south east Asian pest thrips and Western flower thrips | Thrips parvispinus and Frankliniella occidentalis | AC 1979, Bisbas, Keystone Resistant Giant, CM 331, | C. annuum | [254] |
1553, Aji Blanco Christal | C. baccatum | [254] | ||
Western flower thrips | Frankliniella occidentalis | CPRO-1 | n.a. | [238] |
Chilli thrips | Scirtothrips dorsalis | Pant C-1, LCA-304, LCA-31 | C. annuum | [255] |
DCC-3, DCC-185, DCC-109, DCC-89 | n.a. | [256] | ||
Tobacco whitefly | Bemisia tabaci | CM331, Seranno, California Wonder 300 | C. annuum | [242] |
P2, P4, ACC1, ACC12 | n.a. | [243] | ||
IAC-1544 | C. frutescens | [244] | ||
IAC-1545 | C. chinense | [244] | ||
IAC-1579 | C. annuum | [245] | ||
Green peach aphid | Myzus persicae | PB2013071, PB2013062, PB2012022 | C. baccatum | [246] |
Cotton aphid | Aphis gossypii | IPB C20 | C.annuum | [249] |
Cotton bollworm | Heliotis armigera | SL-37, Arka Lohith, Purired, Devarhippargi, TC-1, Button, H.C.-28 | n.a. | [251] |
American serpentine leafminer | Liriomyza trifolii | G84, G110, G37 | C. chinense | [252] |
Sakigake 2-go | C. annuum var angulosum | [253] | ||
Broad mites | Polyphagotarsonemus latus | Jwala, RHRC, Errect, AGC-77 , | C. annuum | [257] |
Pant C-1, LCA-304, LCA-31 | C. annuum | [255] | ||
DCC-3, DCC-185, DCC-109, DCC-89 | n.a. | [256] | ||
Nematodes | ||||
Root-knot nematodes | Meloidogyne incognita | 528-8, 529-8, 46-530/7 | C. chacoense | [258,259] |
PA-353, PA-398, PA-426, 201-26, 547-7, 56-547/7 | C. chinense | [258,260] | ||
586-12, 28-201, Santanka XS, White Kandhari | C. frutescens | [259,261] | ||
Pusa Jwala, Carolina Cayenne, PM687, PM217, PR205, PM702 | C. annuum | [262,263,264,265,266] | ||
Peanut root-knot nematode | Meloidogyne arenaria | 530-8, 213-8 | C. chacoense | [258] |
201-8, 550-10, 559-18, 546-6, PA-353, PA-398, PA-426 | C. chinense | [258,267] | ||
589-20, Santanka XS | C. frutescens | [258,260] | ||
PM217, PM687, PM702 | C. annuum | [262] | ||
Sugarcane eelworm | Meloidogyne javanica | 530-8 | C. chacoense | [258] |
201-16, 201-21, 550-10, PA-353, PA-398, PA-426 | C. chinense | [258,267] | ||
589-20, Santanka XS | C. frutescens | [258,268] | ||
PM217, PM687, PM702 | C. annuum | [262] | ||
Pacara earpod tree root-knot nematode | Meloidogyne enterolobii | UENF 1730, UFGCH 24 | C. chinense | [269,270] |
UFGFR 05 | C. frutescens | [269] | ||
Northern root-knot nematode | Meloidogyne hapla | PI 441641, 201-16, 201-21 | C. chinense | [259,271] |
PI 439381, PI267729 | C. baccatum | [271] | ||
589-20 | C. frutescens | [258] | ||
Columbia root-knot nematode | Meloidogyne chitwoodi | PM217, PM702 | C. annuum | [262] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, M.; Alioto, D.; Tripodi, P. Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int. J. Mol. Sci. 2020, 21, 2587. https://doi.org/10.3390/ijms21072587
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. International Journal of Molecular Sciences. 2020; 21(7):2587. https://doi.org/10.3390/ijms21072587
Chicago/Turabian StyleParisi, Mario, Daniela Alioto, and Pasquale Tripodi. 2020. "Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics" International Journal of Molecular Sciences 21, no. 7: 2587. https://doi.org/10.3390/ijms21072587
APA StyleParisi, M., Alioto, D., & Tripodi, P. (2020). Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. International Journal of Molecular Sciences, 21(7), 2587. https://doi.org/10.3390/ijms21072587