Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea
Abstract
:1. Introduction
2. Results
2.1. Weather and Stress Condition of the Environments
2.2. Phenotypic Measurements, Analysis of Variance, and Marker Detection through Association Mapping
2.3. Overall Association of Phenotypic Traits
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. The Field Trials and Weather Conditions
4.3. Phenotypic Measurements
4.4. Phenotype Data Analysis
4.5. Association Mapping
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Chr | Chromosome |
CT | Canopy temperature |
GAPIT | Genome Association and Prediction Integrated Tool |
GBS | Genotyping by sequencing |
GLM | General linear model |
GWAS | Genome wide association study |
LD | Linkage disequilibrium |
LG | Linkage group |
MLM | Mixed linear model |
MTA | Marker-trait association |
PRI | Photochemical reflectance index |
QTL | Quantitative trait loci |
SNP | Single nucleotide polymorphism |
SPAD | Soil plant analysis development |
References
- Cousin, R. Peas (Pisum sativum L.). Field Crop. Res. 1997, 53, 111–130. [Google Scholar] [CrossRef]
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108, 3–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Guilioni, L.; Wery, J.; Tardieu, F. Heat stress-induced abortion of buds and flowers in pea: Is sensitivity linked to organ age or to relations between reproductive organs? Ann. Bot. 1997, 80, 159–168. [Google Scholar] [CrossRef]
- Bueckert, R.A.; Wagenhoffer, S.; Hnatowich, G.; Warkentin, T.D. Effect of heat and precipitation on pea yield and reproductive performance in the field. Can. J. Plant. Sci. 2015, 95, 629–639. [Google Scholar] [CrossRef]
- Guilioni, L.; Wéry, J.; Lecoeur, J. High temperature and water deficit may reduce seed number in field pea purely by decreasinf plant growth rate. Funct. Plant. Biol. 2003, 30, 1151–1164. [Google Scholar] [CrossRef]
- Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC, Climate change, contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Leila, O.; Farida, A.; Hafida, R.B.; Aissa, A. Agro-morphological diversity within field pea (Pisum sativum L.) genotypes. African J. Agric. Res. 2016, 11, 4039–4047. [Google Scholar] [CrossRef][Green Version]
- Warkentin, T.D.; Smykal, P.; Coyne, C.J.; Weeden, N.; Domoney, C.; Bing, D.; Domoney, C.; Bing, D.; Leonforte, A.; Xuxiao, Z.; et al. Pea (Pisum. sativum L.). In Grain legumes; De Ron, A.M., Ed.; Springer: New York, NY, USA, 2015; pp. 37–83. [Google Scholar]
- Sánchez, F.J.; Manzanares, M.; De Andrés, E.F.; Tenorio, J.L.; Ayerbe, L. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. influence on harvest index and canopy temperature. Eur. J. Agron. 2001, 15, 57–70. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Tafesse, E.G.; Warkentin, T.D.; Bueckert, R.A. Canopy architecture and leaf type as traits of heat resistance in pea. Field Crop. Res. 2019, 241, 107561. [Google Scholar] [CrossRef]
- Havaux, M. Increased thermal deactivation of excited pigments in pea Leaves subjected to photoinhibitory treatments. Plant. Physiol. 1989, 89, 286–292. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tafesse, E.G. Heat stress resistance in pea (Pisum sativum L.) based on canopy and leaf traits. Doctoral dissertation, University of Saskatchewan, Saskatoon, SK, Canada, 2018. [Google Scholar]
- Cerrudo, D.; Pérez, L.G.; Lugo, J.A.M.; Trachsel, S. Stay-green and associated vegetative indices to breed maize adapted to heat and combined heat-drought stresses. Remote Sens. 2017, 9, 235. [Google Scholar] [CrossRef][Green Version]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Wood, C.W.; Reeves, D.W.; Himelrick, D.G. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. Proc. Agron. Soc. New Zeal. 1993, 23, 1–9. [Google Scholar]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, 117. [Google Scholar] [CrossRef][Green Version]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Acreche, M.M.; Slafer, G.A. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crop. Res. 2011, 122, 40–48. [Google Scholar] [CrossRef]
- Lester, D.R.; Ross, J.J.; Davies, P.J.; Reid, J. 6 Mendel’s Stem Length Gene (Le) Encodes a Gibberellin 3P-Hydroxylase; American Society of Plant Physiologists. Plant. Cell. 1997, 9, 1435–1443. [Google Scholar]
- Weeden, N.F. Genetic changes accompanying the domestication of Pisum sativum L.: Is there a common genetic basis to the “domestication syndrome” for legumes? Ann. Bot. 2007, 100, 1017–1025. [Google Scholar] [CrossRef][Green Version]
- French, R.J. The contribution of pod numbers to field pea (Pisum sativum L.) yields in a short growing-season environment. Aust. J. Agric. Res. 1990, 41, 853–862. [Google Scholar] [CrossRef]
- Huang, S.; Gali, K.K.; Tar’An, B.; Warkentin, T.D.; Bueckert, R.A. Pea phenology: Crop potential in a warming environment. Crop. Sci. 2017, 57, 1540–1551. [Google Scholar] [CrossRef][Green Version]
- Herritt, M.; Dhanapal, A.P.; Fritschi, F.B. Identification of genomic loci associated with the photochemical reflectance index by genome-wide association study in soybean. Plant Genome 2016, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant. Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-wide association studies in plants: The missing heritability is in the field. Genome Biol. 2011, 12, 232. [Google Scholar] [CrossRef][Green Version]
- Jiang, Y.; Diapari, M.; Bueckert, R.A.; Tar’an, B.; Warkentin, T.D. Population structure and association mapping of traits related to reproductive development in field pea. Euphytica 2017, 213, 215. [Google Scholar] [CrossRef]
- Dhanapal, A.P.; Ray, J.D.; Singh, S.K.; Hoyos-Villegas, V.; Smith, J.R.; Purcell, L.C.; Fritschi, F.B. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol. 2016, 16, 174. [Google Scholar] [CrossRef][Green Version]
- Gali, K.K.; Sackville, A.; Tafesse, E.G.; Lachagari, V.B.R.; McPhee, K.; Hybl, M.; Mikić, A.; Smýkal, P.; McGee, R.; Burstin, J.; et al. Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.). Front. Plant. Sci. 2019, 10, 1538. [Google Scholar] [CrossRef]
- Leonforte, A.; Sudheesh, S.; Cogan, N.O.; Salisbury, P.A.; Nicolas, M.E.; Materne, M.; Forster, J.W.; Kaur, S. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant. Biol. 2013, 13, 161. [Google Scholar] [CrossRef][Green Version]
- Sudheesh, S.; Lombardi, M.; Leonforte, A.; Cogan, N.O.; Materne, M.; Forster, J.W.; Kaur, S. Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. PMBR. 2015, 33, 1391–1403. [Google Scholar] [CrossRef]
- Klein, A.; Houtin, H.; Rond, C.; Marget, P.; Jacquin, F.; Boucherot, K.; Huart, M.; Rivière, N.; Boutet, G.; Lejeune-Hénaut, I.; et al. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor. Appl. Genet. 2014, 127, 1319–1330. [Google Scholar] [CrossRef]
- Gizaw, S.A.; Godoy, J.G.V.; Garland-Campbell, K.; Carter, A.H. Using spectral reflectance indices as proxy phenotypes for genome-wide association studies of yield and yield stability in pacific northwest winter wheat. Crop. Sci. 2018, 58, 1232–1241. [Google Scholar] [CrossRef]
- Cheng, P.; Holdsworth, W.; Ma, Y.; Coyne, C.J.; Mazourek, M.; Grusak, M.A.; Fuchs, S.; McGee, R.J. Association mapping of agronomic and quality traits in USDA pea single-plant collection. Mol. Breed. 2015, 35, 75. [Google Scholar] [CrossRef]
- Desgroux, A.; L’Anthoëne, V.; Roux-Duparque, M.; Rivière, J.P.; Aubert, G.; Tayeh, N.; Moussart, A.; Mangin, P.; Vetel, P.; Piriou, C.; et al. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Diapari, M.; Sindhu, A.; Warkentin, T.D.; Bett, K.; Tar’an, B. Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol. Breed. 2015, 35, 30. [Google Scholar] [CrossRef]
- Ahmad, S.; Kaur, S.; Lamb-Palmer, N.D.; Lefsrud, M.; Singh, J. Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content. Crop. J. 2015, 3, 238–245. [Google Scholar] [CrossRef][Green Version]
- Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farroq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food Legumes and Rising Temperatures: Effects, adaptive functional mechanisms Specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant. Sci. 2017, 8, 1658. [Google Scholar] [CrossRef][Green Version]
- Kreplak, J.; Madoui, M.-A.; Capal, P.; Novak, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genetics 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thornsberry, J.M.; Buckler, E.S. Structure of Linkage Disequilibrium in Plants. Annu. Rev. Plant. Biol. 2003, 54, 357–374. [Google Scholar] [CrossRef][Green Version]
- Siol, M.; Jacquin, F.; Chabert-Martinello, M.; Smýkal, P.; Le Paslier, M.C.; Aubert, G.; Burstin, J. Patterns of genetic structure and linkage disequilibrium in a large collection of pea germplasm. G3 Genes, Genomes, Genet. 2017, 7, 2461–2471. [Google Scholar] [CrossRef][Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Talukder, S.K.; Babar, M.A.; Vijayalakshmi, K.; Poland, J.; Prasad, P.V.V.; Bowden, R.; Fritz, A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 2014, 15, 1–13. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bell, A.; Moreau, C.; Chinoy, C.; Spanner, R.; Dalmais, M.; Le Signor, C.; Bendahmane, A.; Klenell, M.; Domoney, C. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L. Plant. Mol. Biol. 2015, 89, 539–558. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Havaux, M.; Bonfils, J.P.; Lütz, C.; Niyogi, K.K. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant. Physiol. 2000, 124, 273–284. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, X.B.; Goodwin, S.M.; Boroff, V.L.; Liu, X.L.; Jenks, M.A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and WAX production. Plant. Cell. 2003, 5, 1170–1185. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Li, D.L.; Liu, S.Z.; Ma, X.L.; Dietrich, C.R.; Hu, H.C.; Zhang, G.S.; Liu, Z.Y.; Zheng, J.; Wang, G.Y.; et al. The Maize glossy13 Gene, Cloned via BSR-Seq and Seq-Walking Encodes a Putative ABC Transporter Required for the Normal Accumulation of Epicuticular Waxes. PLoS ONE 2013, 8, e82333. [Google Scholar] [CrossRef][Green Version]
- Goldenberg, J.B. “afila” a new mutation in pea (Pisum sativum L.). Biol. Genet. 1965, 1, 27–31. [Google Scholar]
- Tar’an, B.; Warkentin, T.; Somers, D.J.; Miranda, D.; Vandenberg, A.; Blade, S.; Woods, S.; Bing, D.; Xue, A.; DeKoeyer, D.; et al. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor. Appl. Genet. 2003, 107, 1482–1491. [Google Scholar] [CrossRef]
- Reinecke, D.M.; Wickramarathna, A.D.; Ozga, J.A.; Kurepin, L.V.; Jin, A.L.; Good, A.G.; Pharis, R.P. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant. Physiol. 2013, 163, 929–945. [Google Scholar] [CrossRef][Green Version]
- Ingram, T.J.; Reid, J.B.; Murfet, I.C.; Gaskin, P.; Willis, C.L.; MacMillan, J. Internode length in Pisum. Planta 1984, 160, 455–463. [Google Scholar] [CrossRef]
- Benlloch, R.; Berbel, A.; Ali, L.; Gohari, G.; Millán, T.; Madueño, F. Genetic control of inflorescence architecture in legumes. Front. Plant. Sci. 2015, 6, 1–14. [Google Scholar] [CrossRef][Green Version]
- Jiang, Y.; Lahlali, R.; Karunakaran, C.; Kumar, S.; Davis, A.R.; Bueckert, R.A. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant. Cell. Environ. 2015, 38, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Levene, H. Robust tests for equality of variances. In Contributions to probability and statistics; Olkin, I., Ed.; Stanford Univ. Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Wang, N.; Chen, B.; Xu, K.; Gao, G.; Li, F.; Qiao, J.; Yan, G.; Li, J.; Li, H.; Wu, X. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front. Plant. Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, 1–10. [Google Scholar] [CrossRef][Green Version]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef][Green Version]
Environment | Seeding Date | Growth and Development Stage | Number of Days Spent in the Growth and Development Stage | Daily Maximum Mean Temp. (°C) | Daily Minimum Mean Temp. (°C) | Daily 24 h Mean Temp. (°C) | Number of Days when Temp. was > 28 °C | Total Precipitation (mm) | Stress Situation |
---|---|---|---|---|---|---|---|---|---|
2015 Saskatoon | 24-Apr | Germination to late vegetative stage | 58 | 20.4b | 5.3b | 13.1b | 7 | 23.1 | Drought |
2016 Rosthern | 06-May | 46 | 20.8ab | 6.4ab | 14.4ab | 3 | 75.8 | Control | |
2016 Saskatoon | 26-Apr | 50 | 21.5ab | 6.1ab | 14.6ab | 8 | 63.7 | Control | |
2017 Rosthern | 21-May | 44 | 22.3ab | 7.4a | 15.9a | 5 | 62.1 | Control | |
2017 Saskatoon | 30-Apr | 51 | 22.7a | 6.2ab | 14.7ab | 9 | 58.5 | Control | |
2015 Saskatoon | Beginning of flowering to maturity | 42 | 27.1a | 14.0a | 20.0a | 18 | 41.3 | Heat, drought | |
2016 Rosthern | 52 | 23.1d | 13.4a | 18.5b | 4 | 126.2 | Control | ||
2016 Saskatoon | 48 | 24.4cd | 11.9b | 18.2b | 3 | 86.2 | Control | ||
2017 Rosthern | 46 | 25.6bc | 10.3c | 18.3b | 9 | 46.7 | Drought | ||
2017 Saskatoon | 44 | 25.9ab | 10.4c | 18.6b | 16 | 42.6 | Heat, drought |
Source | SPAD | PRI | Canopy Temperature | Reproductive Stem Length | Internode Length | Pod Number | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variance | % of Total | Variance | % of Total | Variance | % of Total | Variance | % of Total | Variance | % of Total | Variance | % of Total | |
Genotype (G) | 19.88 *** | 67.9 | 0.0000171 *** | 4.8 | 0.095 *** | 1.7 | 189.12 *** | 63.4 | 1.69 *** | 43.0 | 2.33 *** | 36.6 |
Environment (E) | 0.64 *** | 2.2 | 0.000067 *** | 18.7 | 4.70 *** | 85.3 | 22.52 *** | 7.6 | 0.19 ** | 4.8 | 0.79 *** | 12.4 |
REP | 0.05 ** | 0.2 | 0 ns | 0.0 | 0.006 ns | 0.1 | 8.72 | 2.9 | 0.11 ** | 2.7 | 0.00 ns | 0.0 |
G × E | 1.47 *** | 5.0 | 0.00041 *** | 11.4 | 0.00 ns | 0.0 | 7.58 ** | 2.5 | 0 ns | 0.0 | 0.07 | 1.1 |
Error | 7.25 | 24.7 | 0.000233 | 65.1 | 0.71 | 12.9 | 145 | 23.6 | 1.94 | 49.5 | 3.18 | 49.9 |
Total | 29.29 | 0.00036 | 5.51 | 298.19 | 3.93 | 6.36 | ||||||
(H2) | 0.95 | 0.35 | 0.57 | 0.92 | 0.90 | 0.88 |
Trait | Environment | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
SPAD | 2015 Saskatoon | 27.3 | 57.6 | 42.5 | 4.7 |
2016 Rosthern | 30.0 | 67.5 | 45.0 | 6.7 | |
2016 Saskatoon | 31.0 | 61.1 | 43.7 | 4.8 | |
2017 Rosthern | 32.5 | 56.8 | 42.9 | 5.0 | |
2017 Saskatoon | 26.6 | 55.7 | 42.6 | 5.2 | |
Photochemical reflectance index (PRI) | 2015 Saskatoon | −0.039 | 0.028 | 0.000 | 0.012 |
2016 Rosthern | −0.032 | 0.028 | 0.001 | 0.012 | |
2016 Saskatoon | −0.116 | 0.024 | −0.019 | 0.024 | |
2017 Rosthern | −0.031 | 0.02 | −0.006 | 0.01 | |
2017 Saskatoon | −0.037 | 0.026 | −0.003 | 0.013 | |
Canopy temperature (°C) | 2015 Saskatoon | 28.0 | 31.0 | 29.6 | 0.5 |
2016 Rosthern | 21.4 | 26.9 | 24.2 | 1.0 | |
2016 Saskatoon | 22.3 | 28.4 | 24.6 | 1.2 | |
2017 Rosthern | 23.5 | 26.9 | 25.1 | 0.6 | |
2017 Saskatoon | 24.5 | 29.1 | 26.4 | 0.8 | |
Reproductive stem length (cm) | 2015 Saskatoon | 13.2 | 90.7 | 37.9 | 15.0 |
2016 Rosthern | 16.0 | 117 | 48.9 | 19.7 | |
2016 Saskatoon | 14.4 | 101 | 42.9 | 17.6 | |
2017 Rosthern | 18.3 | 104 | 42.0 | 15.3 | |
2017 Saskatoon | 14.6 | 99 | 36.0 | 15.1 | |
Internode length (cm) | 2015 Saskatoon | 1.6 | 10.7 | 4.7 | 1.6 |
2016 Rosthern | 2.0 | 14.7 | 5.8 | 2.1 | |
2016 Saskatoon | 1.9 | 14.7 | 5.1 | 2.0 | |
2017 Rosthern | 2.4 | 14.9 | 6.0 | 2.0 | |
2017 Saskatoon | 1.9 | 11.3 | 4.9 | 1.7 | |
Pod number | 2015 Saskatoon | 3.0 | 13.0 | 7.8 | 1.8 |
2016 Rosthern | 3.5 | 18.5 | 9.8 | 2.8 | |
2016 Saskatoon | 3.0 | 17.5 | 9.9 | 2.6 | |
2017 Rosthern | 4.0 | 15.0 | 8.6 | 2.0 | |
2017 Saskatoon | 4.5 | 18.5 | 8.3 | 2.4 |
Trait | SNP Marker | Environment | p.value | R Square of Model with SNP | R Square of Marker † | Average R Square of Marker |
---|---|---|---|---|---|---|
SPAD | Chr5LG3_150942510 | 2016 Rosthern | 3.77 × 10−4 | 0.39 | 0.08 | |
2016 Saskatoon | 6.80 × 10−4 | 0.45 | 0.06 | |||
2017 Saskatoon | 2.15 × 10−4 | 0.42 | 0.09 | 0.08 | ||
Chr5LG3_446272814 | 2016 Saskatoon | 1.89 × 10−4 | 0.46 | 0.08 | ||
2017 Rosthern | 2.46 × 10−4 | 0.48 | 0.07 | |||
2017 Saskatoon | 4.68 × 10−4 | 0.41 | 0.08 | 0.08 | ||
Chr5LG3_449362407 | 2015 Saskatoon | 1.39 × 10−4 | 0.42 | 0.09 | ||
2016 Rosthern | 6.66 × 10−5 | 0.41 | 0.1 | |||
2016 Saskatoon | 3.27 × 10−5 | 0.48 | 0.09 | |||
2017 Rosthern | 1.24 × 10−6 | 0.54 | 0.13 | |||
2017 Saskatoon | 6.61 × 10−6 | 0.46 | 0.13 | 0.11 | ||
Chr5LG3_566189589 | 2015 Saskatoon | 5.00 × 10−7 | 0.56 | 0.15 | ||
2016 Rosthern | 4.33 × 10−6 | 0.45 | 0.14 | |||
2016 Saskatoon | 1.23 × 10−5 | 0.49 | 0.1 | |||
2017 Rosthern | 9.83 × 10−6 | 0.52 | 0.11 | 0.13 | ||
Chr5LG3_569788697 | 2015 Saskatoon | 1.22 × 10−4 | 0.42 | 0.09 | ||
2016 Rosthern | 5.03 × 10−4 | 0.39 | 0.08 | |||
2016 Saskatoon | 9.70 × 10−4 | 0.45 | 0.06 | |||
2017 Rosthern | 9.00 × 10−4 | 0.47 | 0.06 | 0.07 | ||
Chr5LG3_572899434 | 2015 Saskatoon | 4.76 × 10−4 | 0.41 | 0.08 | ||
2016 Rosthern | 3.17 × 10−4 | 0.39 | 0.08 | |||
2016 Saskatoon | 5.09 × 10−4 | 0.45 | 0.06 | |||
2017 Rosthern | 2.98 × 10−4 | 0.48 | 0.07 | 0.07 | ||
PRI | Chr6LG2_469101917 | 2016 Rosthern | 8.99 × 10−4 | 0.3 | 0.08 | |
2017 Rosthern | 8.85 × 10−5 | 0.3 | 0.11 | |||
2017 Saskatoon | 3.39 × 10−3 | 0.16 | 0.07 | 0.09 | ||
Chr7LG7_263964018 | 2016 Rosthern | 8.99 × 10−4 | 0.3 | 0.08 | ||
2017 Rosthern | 8.85 × 10−5 | 0.3 | 0.11 | |||
2017 Saskatoon | 3.39 × 10−3 | 0.16 | 0.07 | 0.09 | ||
Canopy temperature | Chr4LG4_415994869 | 2015 Saskatoon | 1.16 × 10−3 | 0.52 | 0.05 | |
2016 Rosthern | 1.08 × 10−3 | 0.5 | 0.06 | |||
2016 Saskatoon | 2.22 × 10−4 | 0.44 | 0.08 | 0.06 | ||
Chr5LG3_309595819 | 2015 Saskatoon | 4.88 × 10−4 | 0.53 | 0.06 | ||
2016 Rosthern | 5.11 × 10−3 | 0.48 | 0.04 | |||
2016 Saskatoon | 4.39 × 10−4 | 0.43 | 0.07 | 0.06 | ||
Reproductive stem length | Chr3LG5_18678117 | 2015 Saskatoon | 2.18 × 10−4 | 0.63 | 0.06 | |
2016 Saskatoon | 3.60 × 10−4 | 0.62 | 0.05 | |||
2017 Rosthern | 6.62 × 10−4 | 0.7 | 0.04 | |||
2017 Saskatoon | 8.42 × 10−5 | 0.5 | 0.08 | 0.06 | ||
Chr4LG4_29062302 | 2015 Saskatoon | 5.85 × 10−4 | 0.62 | 0.05 | ||
2016 Rosthern | 2.58 × 10−3 | 0.59 | 0.03 | |||
2016 Saskatoon | 2.09 × 10−3 | 0.61 | 0.04 | |||
2017 Rosthern | 8.96 × 10−4 | 0.7 | 0.03 | |||
2017 Saskatoon | 3.11 × 10−3 | 0.46 | 0.04 | 0.04 | ||
Chr5LG3_566189271 | 2015 Saskatoon | 1.72 × 10−4 | 0.63 | 0.06 | ||
2016 Rosthern | 3.71 × 10−4 | 0.61 | 0.05 | |||
2016 Saskatoon | 1.14 × 10−4 | 0.63 | 0.06 | |||
2017 Rosthern | 1.43 × 10−4 | 0.71 | 0.04 | 0.05 | ||
Chr5LG3_572669963 | 2015 Saskatoon | 1.06 × 10−3 | 0.62 | 0.05 | ||
2016 Saskatoon | 1.03 × 10−4 | 0.63 | 0.06 | |||
2017 Rosthern | 2.53 × 10−4 | 0.71 | 0.04 | 0.05 | ||
Chr7LG7_20086906 | 2015 Saskatoon | 6.08 × 10−4 | 0.62 | 0.05 | ||
2016 Rosthern | 4.27 × 10−3 | 0.59 | 0.03 | |||
2016 Saskatoon | 8.52 × 10−4 | 0.61 | 0.04 | |||
2017 Rosthern | 4.00 × 10−3 | 0.69 | 0.03 | 0.04 | ||
Chr7LG7_23295474 | 2015 Saskatoon | 8.25 × 10−4 | 0.62 | 0.05 | ||
2016 Saskatoon | 4.84 × 10−4 | 0.62 | 0.05 | |||
2017 Rosthern | 3.82 × 10−4 | 0.7 | 0.03 | 0.05 | ||
Chr7LG7_96157380 | 2015 Saskatoon | 2.72 × 10−4 | 0.63 | 0.06 | ||
2016 Rosthern | 2.15 × 10−3 | 0.59 | 0.04 | |||
2016 Saskatoon | 6.82 × 10−4 | 0.62 | 0.05 | |||
2017 Rosthern | 2.68 × 10−4 | 0.71 | 0.04 | 0.05 | ||
Internode length | Chr4LG4_62461234 | 2015 Saskatoon | 8.58 × 10−3 | 0.49 | 0.04 | |
2016 Saskatoon | 3.83 × 10−4 | 0.48 | 0.07 | |||
2017 Saskatoon | 3.18 × 10−4 | 0.39 | 0.08 | 0.06 | ||
Chr4LG4_63111072 | 2015 Saskatoon | 3.86 × 10−4 | 0.52 | 0.06 | ||
2017 Rosthern | 3.54 × 10−3 | 0.62 | 0.04 | |||
2017 Saskatoon | 3.68 × 10−4 | 0.39 | 0.08 | 0.06 | ||
Chr4LG4_80759704 | 2016 Rosthern | 3.50 × 10−3 | 0.36 | 0.05 | ||
2016 Saskatoon | 2.28 × 10−4 | 0.49 | 0.03 | |||
2017 Rosthern | 7.64 × 10−3 | 0.62 | 0.08 | 0.06 | ||
Chr5LG3_566189271 | 2015 Saskatoon | 1.22 × 10−5 | 0.55 | 0.09 | ||
2016 Rosthern | 8.23 × 10−4 | 0.38 | 0.07 | |||
2016 Saskatoon | 4.72 × 10−5 | 0.5 | 0.09 | |||
2017 Rosthern | 2.29 × 10−3 | 0.63 | 0.04 | |||
2017 Saskatoon | 2.85 × 10−3 | 0.36 | 0.05 | 0.07 | ||
Chr6LG2_420562729 | 2015 Saskatoon | 3.76 × 10−4 | 0.52 | 0.06 | ||
2016 Saskatoon | 3.87 × 10−3 | 0.46 | 0.05 | |||
2017 Rosthern | 8.96 × 10−4 | 0.63 | 0.04 | 0.05 | ||
Chr7LG7_197862543 | 2015 Saskatoon | 4.69 × 10−4 | 0.52 | 0.06 | ||
2016 Saskatoon | 9.72 × 10−3 | 0.45 | 0.05 | |||
2017 Saskatoon | 1.39 × 10−3 | 0.37 | 0.06 | 0.06 | ||
Pod number | Chr2LG1_4359822 | 2015 Saskatoon | 8.14 × 10−4 | 0.24 | 0.08 | |
2016 Rosthern | 1.75 × 10−3 | 0.27 | 0.07 | |||
2016 Saskatoon | 3.00 × 10−3 | 0.16 | 0.08 | 0.08 | ||
Chr2LG1_105547608 | 2015 Saskatoon | 3.98 × 10−4 | 0.25 | 0.09 | ||
2016 Saskatoon | 3.01 × 10−3 | 0.16 | 0.08 | |||
2017 Saskatoon | 9.05 × 10−4 | 0.22 | 0.09 | 0.09 | ||
Chr2LG1_370541780 | 2015 Saskatoon | 2.08 × 10−4 | 0.26 | 0.1 | ||
2016 Saskatoon | 7.58 × 10−4 | 0.18 | 0.1 | |||
2017 Saskatoon | 4.68 × 10−3 | 0.19 | 0.06 | 0.09 | ||
Chr2LG1_385949935 | 2015 Saskatoon | 3.11 × 10−4 | 0.26 | 0.1 | ||
2016 Saskatoon | 8.17 × 10−5 | 0.21 | 0.13 | |||
2017 Saskatoon | 1.20 × 10−3 | 0.18 | 0.05 | 0.10 | ||
Chr2LG1_389336188 | 2015 Saskatoon | 4.96 × 10−4 | 0.25 | 0.09 | ||
2016 Saskatoon | 2.71 × 10−3 | 0.16 | 0.08 | |||
2017 Saskatoon | 4.60 × 10−4 | 0.23 | 0.1 | 0.09 | ||
Chr2LG1_402022079 | 2015 Saskatoon | 3.58 × 10−3 | 0.22 | 0.06 | ||
2016 Rosthern | 1.16 × 10−3 | 0.27 | 0.07 | |||
2016 Saskatoon | 5.15 × 10−4 | 0.18 | 0.1 | |||
2016 Saskatoon | 5.15 × 10−4 | 0.18 | 0.1 | 0.08 | ||
Chr3LG5_216337201 | 2015 Saskatoon | 4.75 × 10−3 | 0.22 | 0.07 | ||
2016 Rosthern | 3.54 × 10−3 | 0.26 | 0.06 | |||
2017 Saskatoon | 3.49 × 10−4 | 0.23 | 0.1 | 0.08 | ||
Chr5LG3_530537682 | 2015 Saskatoon | 3.32 × 10−3 | 0.22 | 0.06 | ||
2016 Rosthern | 3.80 × 10−3 | 0.26 | 0.06 | |||
2016 Saskatoon | 5.81 × 10−4 | 0.18 | 0.1 | 0.07 | ||
Sc04062_32372 | 2015 Saskatoon | 4.27 × 10−4 | 0.25 | 0.09 | ||
2016 Rosthern | 8.51× 10−3 | 0.25 | 0.06 | |||
2016 Saskatoon | 7.23 × 10−3 | 0.14 | 0.06 | |||
2017 Saskatoon | 1.70 × 10−5 | 0.28 | 0.15 | 0.09 |
Traita | SNP Marker | Gene_ID | Protein Names | Gene Names | Organismb | Gene Ontology IDs | Gene Ontology (GO) |
---|---|---|---|---|---|---|---|
SPAD | chr5LG3_446272814 | Psat5g221440 | Amidohydrolase ytcj-like protein (Fragment) | L195_g035501 | Tp | GO:0016810 | hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds [GO:0016810] |
chr5LG3_449362407 | Psat5g224400 | cysteine-rich receptor-like protein kinase 25 | LOC101505680 | Ca | GO:0004672; GO:0005524; GO:0016021 | integral component of membrane [GO:0016021]; ATP binding [GO:0005524]; protein kinase activity [GO:0004672] | |
Psat5g224360 | Pentatricopeptide repeat-containing protein at1g11290-like protein | L195_g006458 | Tp | GO:0008270 | zinc ion binding [GO:0008270] | ||
Psat5g224280 | Pentatricopeptide repeat-containing protein at1g11290-like protein | L195_g022714 | Tp | GO:0008270 | zinc ion binding [GO:0008270] | ||
chr5LG3_566189589 | Psat5g299080 | Kinesin-related protein 4-like | L195_g011972 | Tp | |||
Psat5g299040 | PPR containing plant-like protein (Putative tetratricopeptide-like helical domain-containing protein) | 11431556 MTR_2g102210 MtrunA17_Chr2g0331911 | Mt (Mtr) | ||||
chr5LG3_569788697 | Psat5g301440 | Embryo-specific 3 (Fragment) | L195_g051812 | Tp | |||
Psat5g301400 | Nuclear pore protein | LOC101492584 | Ca | GO:0005643; GO:0015031; GO:0016020; GO:0017056; GO:0051028 | membrane [GO:0016020]; nuclear pore [GO:0005643]; structural constituent of nuclear pore [GO:0017056]; mRNA transport [GO:0051028]; protein transport [GO:0015031] | ||
chr5LG3_572899434 | Psat5g303880 | Putative sterile alpha motif/pointed domain-containing protein (SAM domain protein) | 11433470 MTR_2g102140 MtrunA17_Chr2g0331871 | Mt (Mtr) | GO:0045892 | negative regulation of transcription, DNA-templated [GO:0045892] | |
Psat5g303840 | putative gamma-glutamylcyclotransferase At3g02910 | LOC101506022 | Ca | GO:0016740; GO:0061929 | gamma-glutamylaminecyclotransferase activity [GO:0061929]; transferase activity [GO:0016740] | ||
Psat5g303800 | protein NUCLEAR FUSION DEFECTIVE 4 | LOC101504533 | Ca | GO:0016021 | integral component of membrane [GO:0016021] | ||
Psat5g303760 | Uncharacterized protein | L195_g009520 | Tp | ||||
PRI | chr6LG2_469101917 | Psat6g234040 | Putative GTP 3′,8-cyclase (EC 4.1.99.22) | MtrunA17_Chr1g0212051 | Mt (Mtr) | GO:0006777 | Mo-molybdopterin cofactor biosynthetic process [GO:0006777] |
Psat6g234000 | Riboflavin biosynthesis protein ribF | L195_g000443 | Tp | GO:0003919; GO:0009231 | FMN adenylyltransferase activity [GO:0003919]; riboflavin biosynthetic process [GO:0009231] | ||
chr7LG7_263964018 | Psat7g148080 | TATA-binding-like protein | L195_g000140 | Tp | GO:0005524 | ATP binding [GO:0005524] | |
CT | chr4LG4_415994869 | Psat4g203800 | ethylene-responsive transcription factor-like protein At4g13040 | LOC105851094 | Ca | GO:0003677; GO:0003700; GO:0005634 | nucleus [GO:0005634]; DNA binding [GO:0003677]; DNA-binding transcription factor activity [GO:0003700] |
Psat4g203760 | NA | NA | NA | NA | NA | ||
chr5LG3_309595819 | Psat5g169800 | ABC transporter C family member 3-like isoform X1 | LOC101491790 | Ca | GO:0005524; GO:0016021; GO:0042626 | integral component of membrane [GO:0016021]; ATP binding [GO:0005524]; ATPase activity, coupled to transmembrane movement of substances [GO:0042626] | |
Psat5g169760 | Retrovirus-related Pol polyprotein from transposon TNT 1-94 | KK1_037587 | Cc (Ci) | GO:0000943; GO:0003676; GO:0015074 | retrotransposon nucleocapsid [GO:0000943]; nucleic acid binding [GO:0003676]; DNA integration [GO:0015074] | ||
RSL | chr3LG5_18678117 | Psat3g006600 | uncharacterized protein LOC101515092 | LOC101515092 | Ca | GO:0016021 | integral component of membrane [GO:0016021] |
Psat3g006560 | L-allo-threonine aldolase-like protein (Putative aldehyde-lyase) (EC 4.1.2.-) | 25499717 MTR_7g115690 MtrunA17_Chr7g0274621 | Mt (Mtr) | GO:0006520; GO:0016829 | lyase activity [GO:0016829]; cellular amino acid metabolic process [GO:0006520] | ||
chr4LG4_29062302 | Psat4g020520 | Alkaline-phosphatase-like protein (Putative Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase) | 25494146 MTR_4g123557 MtrunA17_Chr4g0069621 | Mt (Mtr) | GO:0006506; GO:0016021; GO:0051377 | integral component of membrane [GO:0016021]; mannose-ethanolamine phosphotransferase activity [GO:0051377]; GPI anchor biosynthetic process [GO:0006506] | |
chr5LG3_566189271 | Psat5g299080 | Kinesin-related protein 4-like | L195_g011972 | Tp | |||
Psat5g299040 | PPR containing plant-like protein (Putative tetratricopeptide-like helical domain-containing protein) | 11431556 MTR_2g102210 MtrunA17_Chr2g0331911 | Mt (Mtr) | ||||
chr5LG3_572669963 | Psat5g303680 | Putative sterile alpha motif/pointed domain-containing protein (SAM domain protein) | 11430703 MTR_2g104230 MtrunA17_Chr2g0333351 | Mt (Mtr) | |||
chr7LG7_20086906 | Psat7g013080 | aldehyde dehydrogenase family 2 member C4-like | LOC101493969 | Ca | GO:0016620 | oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor [GO:0016620] | |
Psat7g013040 | Cst complex subunit ctc1-like protein | L195_g004297 | Tp | GO:0000723 | telomere maintenance [GO:0000723] | ||
chr7LG7_23295474 | Psat7g015240 | Ribosomal L7Ae/L30e/S12e/Gadd45 family protein | L195_g030323 | Tp | |||
Psat7g015200 | Tesmin/TSO1-like CXC domain protein | 11408106 MTR_8g103320 | Mt (Mtr) | ||||
Psat7g015160 | NA | NA | NA | NA | NA | ||
chr7LG7_96157380 | Psat7g057080 | tRNA (Cytosine(34)-C(5))-methyltransferase-like protein | 25501876 MTR_8g089980 | Mt (Mtr) | GO:0003723; GO:0016428 | RNA binding [GO:0003723]; tRNA (cytosine-5-)-methyltransferase activity [GO:0016428] | |
Psat7g057040 | tRNA (Cytosine(34)-C(5))-methyltransferase-like protein | 25501876 MTR_8g089980 | Mt (Mtr) | GO:0003723; GO:0016428 | RNA binding [GO:0003723]; tRNA (cytosine-5-)-methyltransferase activity [GO:0016428] | ||
IL | chr4LG4_63111072 | Psat4g039600 | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | LOC101499912 | Ca | GO:0001732; GO:0003743; GO:0005852; GO:0016282; GO:0031369; GO:0033290 | eukaryotic 43S preinitiation complex [GO:0016282]; eukaryotic 48S preinitiation complex [GO:0033290]; eukaryotic translation initiation factor 3 complex [GO:0005852]; translation initiation factor activity [GO:0003743]; translation initiation factor binding [GO:0031369]; formation of cytoplasmic translation initiation complex [GO:0001732] |
chr4LG4_80759704 | Psat4g047680 | NA | NA | NA | NA | NA | |
Psat4g047640 | Ras GTPase-activating protein-binding protein 1-like | L195_g006539 | Tp | GO:0003723 | RNA binding [GO:0003723] | ||
Psat4g047600 | Uncharacterized protein | L195_g056003 | Tp | GO:0005739 | mitochondrion [GO:0005739] | ||
chr5LG3_566189271 | Psat5g299080 | Kinesin-related protein 4-like | L195_g011972 | Tp | |||
Psat5g299040 | PPR containing plant-like protein (Putative tetratricopeptide-like helical domain-containing protein) | 11431556 MTR_2g102210 MtrunA17_Chr2g0331911 | Mt (Mtr) | ||||
chr6LG2_420562729 | Psat6g211160 | Transmembrane amino acid transporter family protein | 25485307 MTR_1g105980 | Mt (Mtr) | GO:0016021 | integral component of membrane [GO:0016021] | |
chr7LG7_197862543 | Psat7g120120 | Uncharacterized protein | 11443456 MTR_4g087360 MtrunA17_Chr4g0045601 | Mt (Mtr) | |||
PN | chr2LG1_105547608 | Psat2g060680 | Uncharacterized protein | L195_g033306 | Tp | GO:0003676; GO:0008270 | nucleic acid binding [GO:0003676]; zinc ion binding [GO:0008270] |
chr2LG1_370541780 | Psat2g144160 | Pectin acetylesterase (EC 3.1.1.-) | LOC101497691 | Ca | GO:0005576; GO:0005618; GO:0016021; GO:0016787; GO:0071555 | cell wall [GO:0005618]; extracellular region [GO:0005576]; integral component of membrane [GO:0016021]; hydrolase activity [GO:0016787]; cell wall organization [GO:0071555] | |
chr2LG1_385949935 | Psat2g155280 | 60S ribosomal protein l8-like | L195_g013966 | Tp | GO:0003735; GO:0005840; GO:0006412 | ribosome [GO:0005840]; structural constituent of ribosome [GO:0003735]; translation [GO:0006412] | |
chr2LG1_389336188 | Psat2g157440 | Putative ATPase, AAA-type, core, AAA-type ATPase domain-containing protein (p-loop nucleoside triphosphate hydrolase superfamily protein) | 11412855 MTR_5g020990 MtrunA17_Chr5g0404661 | Mt (Mtr) | GO:0005524; GO:0016787 | ATP binding [GO:0005524]; hydrolase activity [GO:0016787] | |
chr2LG1_402022079 | Psat2g166600 | probable serine/threonine-protein kinase At1g01540 isoform X1 | LOC101489894 | Ca | GO:0004672; GO:0005524; GO:0016021 | integral component of membrane [GO:0016021]; ATP binding [GO:0005524]; protein kinase activity [GO:0004672] | |
Psat2g166560 | PI-PLC X domain-containing protein At5g67130 | LOC101489369 | Ca | GO:0006629; GO:0008081 | phosphoric diester hydrolase activity [GO:0008081]; lipid metabolic process [GO:0006629] | ||
Psat2g166520 | Putative rapid ALkalinization Factor (RALF) | 11409897 MTR_5g017160 MtrunA17_Chr5g0402121 | Mt (Mtr) | ||||
chr2LG1_4359822 | Psat2g005000 | Nup133/Nup155-like nucleoporin | 11434873 MTR_5g097260 | Mt (Mtr) | GO:0005623; GO:0017056 | cell [GO:0005623]; structural constituent of nuclear pore [GO:0017056] | |
Psat2g004960 | Cation-transporting ATPase plant (Putative calcium-transporting ATPase) (EC 3.6.3.8) | 11434874 MTR_5g097270 MtrunA17_Chr5g0447521 | Mt (Mtr) | GO:0000166; GO:0016021 | integral component of membrane [GO:0016021]; nucleotide binding [GO:0000166] | ||
chr3LG5_216337201 | Psat3g111000 | Phosphomannomutase (EC 5.4.2.8) | 11436930 MTR_7g076670 | Mt (Mtr) | GO:0004615; GO:0005737; GO:0009298 | cytoplasm [GO:0005737]; phosphomannomutase activity [GO:0004615]; GDP-mannose biosynthetic process [GO:0009298] | |
Psat3g110960 | bifunctional protein FolD 4, chloroplastic | LOC101496397 | Ca | GO:0004488 | methylenetetrahydrofolate dehydrogenase (NADP+) activity [GO:0004488] | ||
chr5LG3_530537682 | Psat5g270480 | Heat shock protein 70 (HSP70)-interacting protein, putative | 25487616 MTR_2g090135 | Mt (Mtr) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafesse, E.G.; Gali, K.K.; Lachagari, V.B.R.; Bueckert, R.; Warkentin, T.D. Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea. Int. J. Mol. Sci. 2020, 21, 2043. https://doi.org/10.3390/ijms21062043
Tafesse EG, Gali KK, Lachagari VBR, Bueckert R, Warkentin TD. Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea. International Journal of Molecular Sciences. 2020; 21(6):2043. https://doi.org/10.3390/ijms21062043
Chicago/Turabian StyleTafesse, Endale G., Krishna K. Gali, V.B. Reddy Lachagari, Rosalind Bueckert, and Thomas D. Warkentin. 2020. "Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea" International Journal of Molecular Sciences 21, no. 6: 2043. https://doi.org/10.3390/ijms21062043