Antidiabetic Effects of Bisamide Derivative of Dicarboxylic Acid in Metabolic Disorders
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of BDDA on Serum Lipid Profile in MD
2.2. The Effect of BDDA on Blood Glucose, GTT, and Insulin in Blood Serum
2.3. The Effect of BDDA on Serum Cytokine Profile
2.4. The Effect of BDDA on Tissue Morphology
2.5. Flow Cytometric Analysis of Cells
2.6. Discussion
3. Materials and Methods
3.1. Animals
3.2. Modeling of Metabolic Disorders
3.3. Pharmacological Compound
3.4. Experimental Groups
3.5. Blood Glucose Test, Intraperitoneal Glucose Tolerance Test (GTT)
3.6. Parameters Connected with Glucose Homeostasis in the Serum
3.7. Lipid Profile Determination
3.8. Enzyme-Linked Immunosorbent Assay
3.9. Morphological Assessment of the Pancreas
3.10. Flow cytometric Analysis
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Standl, E. Aetiology and consequences of the metabolic syndrome. Eur. Heart J. 2005, 7, 10–13. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas; Brussels, Belgium, 2015, 6th ed. Available online: www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventh-edition.html (accessed on 10 May 2018).
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults. Find-ings from the Third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Vansteelandt, K.; Correll, C.U.; Mitchell, A.J.; De Herdt, A.; Sienaert, P.; Probst, M.; De Hert, M. Metabolic syndrome and metabolic abnormalities in bipolar disorder: A meta-analysis of prevalence rates and mod-erators. Am. J. Psychiatry 2013, 170, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rask-Madsen, C.; Kahn, C.R. Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease. Arter. Thromb Vasc Biol. 2012, 32, 2052–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, K.; Dzau, V.J. Mesenchymal stem cells in obesity: Insights for translational applications. Lab. Investig. Vol. 2017, 97, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Global status report on noncommunicable diseases. World Health Organization. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf?sequence=1 (accessed on 10 May 2018).
- Global report on diabetes. World Health Organization. 2016. Available online: https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257eng.pdf?sequence=1 (accessed on 10 May 2018).
- Session, R.; Kalli, K.R.; Tummon, I.S.; Damario, M.A.; Dumesic, D.A. Treatment of atypical endometrial hyperplasia with an insulin-sensitizing agent. Gynecol. Endocrinol. 2003, 17, 405–407. [Google Scholar] [CrossRef]
- Beebe-Dimmer, J.L.; Nock, N.L.; Neslund-Dudas, C.; Rundle, A.; Bock, C.H.; Tang, D.; Jankowski, M.; Rybicki, B.A. Racial differences in risk of prostate cancer associated with metabolic syndrome. Urology 2009, 74, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Eckel, R.H.; Kahn, S.E.; Ferrannini, E.; Goldfine, A.B.; Nathan, D.M.; Schwartz, M.W.; Smith, R.J.; Smith, S.R. Obesity and type 2 diabetes: What can be unified and what needs to be individualized? Diabetes Care 2011, 34, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- El-Badri, N.; Ghoneim, M.A. Mesenchymal stem cell therapy in diabetes mellitus: Progress and challenges. J. Nucleic Acids 2013, 2013, 194858. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, D.E.; Laveneziana, P.; Webb, K.; Neder, J.A. Chronic obstructive pulmonary disease: Clinical integrative physiology. Clin. Chest. Med. 2014, 35, 51–69. [Google Scholar] [CrossRef]
- Peeters, A.; Barendregt, J.J.; Willekens, F.; Mackenbach, J.P.; Al Mamun, A.; Bonneux, L. Obesity in adulthood and its consequences for life expectancy: A life-table analysis. Ann. Intern. Med. 2003, 138, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R.; Collaboration, P.S. Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Nebolsin, V.E.; Rydlovskaya, A.V.; Dygai, A.M.; Borovskaya, T.G.; Skurikhin, E.G. Bisamide Derivative of Dicarboxylic Acid as an Agent for Stimulating Tissue Regeneration and Recovery of Diminished Tissue Function. Patent WO 2016190785, 1 December 2016. [Google Scholar]
- Fernández-Miranda, G.; Romero-Garcia, T.; Barrera-Lechuga, T.P.; Mercado-Morales, M.; Rueda, A. Impaired Activity of Ryanodine Receptors Contributes to Calcium Mishandling in Cardiomyocytes of Metabolic Syndrome Rats. Front. Physiol. 2019, 10, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, M.R.; Carbajal, H.A.; Espeche, W.G.; Aizpurúa, M.; Leiva Sisnieguez, C.E.; Leiva Sisnieguez, B.C. Use of the plasma triglyceride/high-density lipoprotein cholesterol ratio to identify cardiovascular disease in hypertensive subjects. J. Am. Soc. Hypertens. 2014, 8, 724–731. [Google Scholar] [CrossRef]
- Mari, A.; Akiren, B.; Pacini, G. Assessment of insulin secretion in relation to insulin resistance. Curr. Opin. Clin. Metab. Care 2005, 8, 529–533. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.; Mather, K.; Baron, A.; Follman, D.; Sulivan, G.; Quon, M. Quantitative insulin sensitivity check index: A Simple Accurate Method for Assessing Insulin Sensitivity in Humans. J. Clin. Endokrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Thang, S.H.; Lean, E.J.M. Metabolic syndrome. Medicine 2014, 43, 80–87. [Google Scholar] [CrossRef]
- Freitas Lima, L.C.; Braga, V.A.; do Socorro de França Silva, M.; Cruz, J.C.; Sousa Santos, S.H.; de Oliveira Monteiro, M.M.; Balarini, C.M. Adipokines, diabetes and atherosclerosis: An inflammatory association. Front. Physiol. 2015, 6, 304. [Google Scholar] [CrossRef]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin Derm. 2018, 36, 14–20. [Google Scholar] [CrossRef]
- Lee, Y.S.; Li, P.; Hub, J.Y.; Kim, J.I.; Ham, M.; Talukdar, S.; Chen, A.; Lu, W.J.; Bandyopadhyay, G.K.; Schwendener, R.; et al. Inflammation is necessary for lomg term but not short term high fat diet induced insulin resistance. Diabetes 2011, 60, 2474–2483. [Google Scholar] [CrossRef] [Green Version]
- Wernstedt, A.I.; Tao, C.; Morley, T.S.; Wang, Q.A.; Delgado-Lopez, F.; Wang, Z.V.; Scherer, P.E. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2013, 20, 103–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.I.; Huh, J.Y.; Sohn, J.H.; Choe, S.S.; Lee, Y.S.; Lim, C.Y.; Jo, A.; Park, S.B.; Han, W.; Kim, J.B. Lipid-overloaded enlarged adipocytesnprovoke insulin resistance independent of inflammation. Mol. Cell Biol. 2015, 35, 1686–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, R.; Murthy, M.; Singla, S.; Gupta, Y. Friendly Fat Theory - Explaining the Paradox of Diabetes and Obesity. Eur. Endocrinol. 2019, 15, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.K.; Flodstr¨om, M.; Sandler, S. Cytokineinduced inhibition of insulin release from mouse pancreatic β-cells deficient in inducible nitric oxide synthase. Biochem. Biophys. Res. Commun. 2001, 281, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Skurikhin, E.G.; Ermakova, N.N.; Khmelevskaya, E.S.; Pershina, O.V.; Krupin, V.A.; Ermolaeva, L.A.; Dygai, A.M. Differentiation of Pancreatic Stem and Progenitor β-Cells into Insulin Secreting Cells in Mice with Diabetes Mellitus. Bull. Exp. Biol. Med. 2014, 156, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome: A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005, 111, 1448–1454. [Google Scholar] [CrossRef] [Green Version]
- Davi, G.; Falco, A. Oxidant stress, in’ammation and atherogenesis. Lupus 2005, 14, 760–764. [Google Scholar] [CrossRef]
- Haffner, S.M. The metabolic syndrome: Inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol. 2006, 97, 3A–11A. [Google Scholar] [CrossRef]
- Laaksonen, D.E.; Niskanen, L.; Punnonen, K.; Nyyssönen, K.; Tuomainen, T.P.; Salonen, R.; Rauramaa, R.; Salonen, J.T. Sex hormones, inflammation and the metabolic syndrome: A population-based study. Eur. J. Endocrinol. 2003, 149, 601–608. [Google Scholar] [CrossRef]
- Donath, M.Y.; Böni-Schnetzler, M.; Ellingsgaard, H.; Halban, P.A.; Ehses, J.A. Cytokine production by islets in health and diabetes: Cellular origin, regulation and function. Trends Endocrinol. Metab. 2010, 21, 261–267. [Google Scholar] [CrossRef]
- Matsuzawa, Y. The metabolic syndrome and adipocytokines. FEBS Letters 2006, 580, 2917–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Guan, Y.; Yang, J. Cytokines in the Progression of Pancreatic β-Cell Dysfunction. Int. J. Endocrinol. 2010, 2010, 515136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurikhin, E.G.; Pakhomova, A.V.; Pershina, O.V.; Ermolaeva, L.A.; Krupin, V.A.; Ermakova, N.N.; Pan, E.S.; Kudryashova, A.I.; Rybalkina, O.Y.; Pavlovskaya, T.B.; et al. Regenerative Potential of Spermatogonial Stem Cells, Endothelial Progenitor Cells, and Epithelial Progenitor Cells of C57BL/6 Male Mice with Metabolic Disorders. Bull. Exp. Biol. Med. 2017, 163, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Betik, A.C.; Aguila, J.; McConell, G.K.; McAinch, A.J.; Mathai, M.L. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats. PLoS ONE 2016, 11, 0152562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurikhin, E.G.; Pershina, O.V.; Ermolaeva, L.A.; Krupin, V.A.; Pakhomova, A.V.; Pan, E.S.; Zeuner, M.T.; Widera, D.; Khmelevskaya, E.S.; Fisenko, V.P.; et al. Polytherapy with Reserpine and Glucagon-like Peptide-1 (GLP-1) Improves the Symptoms in Streptozotocin-Induced Type-1 Diabetic Mice by Reducing Inflammation and Inducting Beta Cell Regeneration. Stem Cell Res. Ther. 2018, 8, 434. [Google Scholar] [CrossRef]
- Kayser, K.; Borkenfeld, S.; Kayser, G. Digital Image Content and Context Information in Tissue-based Diagnosis. Diagn. Pathol. 2018, 4, 2018. [Google Scholar]
- Eltony, S.A.; Elmottaleb, N.A.; Gomaa, A.M.; Anwar, M.M.; El-Metwally, T.H. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat. Anat. Rec. (Hoboken) 2016, 299, 334–351. [Google Scholar] [CrossRef] [Green Version]
- Skurikhin, E.G.; Pakhomova, A.V.; Epanchintsev, A.A.; Stronin, O.V.; Ermakova, N.N.; Pershina, O.V.; Ermolaeva, L.A.; Krupin, V.A.; Kudryashova, A.I.; Zhdanov, V.V.; et al. Role of β Cell Precursors in the Regeneration of Insulin Producing Pancreatic β Cells under the Influence of Glucagon-Like Peptide 1. Bull. Exp. Biol. Med. 2018, 165, 644–648. [Google Scholar] [CrossRef]
Intact Control | Metabolic Disorders | Mice with Metabolic Disorders Treated with BDDA | |
---|---|---|---|
Males | group 1 (n = 20) | group 2 (n = 20) | group 3 (n = 20) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhomova, A.V.; Nebolsin, V.E.; Pershina, O.V.; Krupin, V.A.; Sandrikina, L.A.; Pan, E.S.; Ermakova, N.N.; Vaizova, O.E.; Widera, D.; Grimm, W.-D.; et al. Antidiabetic Effects of Bisamide Derivative of Dicarboxylic Acid in Metabolic Disorders. Int. J. Mol. Sci. 2020, 21, 991. https://doi.org/10.3390/ijms21030991
Pakhomova AV, Nebolsin VE, Pershina OV, Krupin VA, Sandrikina LA, Pan ES, Ermakova NN, Vaizova OE, Widera D, Grimm W-D, et al. Antidiabetic Effects of Bisamide Derivative of Dicarboxylic Acid in Metabolic Disorders. International Journal of Molecular Sciences. 2020; 21(3):991. https://doi.org/10.3390/ijms21030991
Chicago/Turabian StylePakhomova, Angelina Vladimirovna, Vladimir Evgenievich Nebolsin, Olga Victorovna Pershina, Vyacheslav Andreevich Krupin, Lubov Alexandrovna Sandrikina, Edgar Sergeevich Pan, Natalia Nicolaevna Ermakova, Olga Evgenevna Vaizova, Darius Widera, Wolf-Dieter Grimm, and et al. 2020. "Antidiabetic Effects of Bisamide Derivative of Dicarboxylic Acid in Metabolic Disorders" International Journal of Molecular Sciences 21, no. 3: 991. https://doi.org/10.3390/ijms21030991
APA StylePakhomova, A. V., Nebolsin, V. E., Pershina, O. V., Krupin, V. A., Sandrikina, L. A., Pan, E. S., Ermakova, N. N., Vaizova, O. E., Widera, D., Grimm, W. -D., Kravtsov, V. Y., Afanasiev, S. A., Morozov, S. G., Kubatiev, A. A., Dygai, A. M., & Skurikhin, E. G. (2020). Antidiabetic Effects of Bisamide Derivative of Dicarboxylic Acid in Metabolic Disorders. International Journal of Molecular Sciences, 21(3), 991. https://doi.org/10.3390/ijms21030991