A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment
Abstract
:1. Introduction
2. The Mechanisms of E-Cigarette Action
3. The Effects of Exposure on E-Liquid Ingredients
4. In Vitro Studies on E-Liquid Exposure to Cells
5. In Vivo Studies on E-Cigarette Liquid Exposure in Animal Models
6. In Vivo Studies on E-Cigarette Liquid Exposure on Human Organisms
7. E-Cigarette Vapor vs. Cigarette Smoke
8. Environmental Impact of E-Cigarettes
9. Conclusions
Funding
Conflicts of Interest
References
- Kaur, G.; Pinkston, R.; McLemore, B.; Dorsey, W.C.; Batra, S. Immunological and toxicological risk assessment of e-cigarettes. Eur. Respir. Rev. 2018, 27, 170119. [Google Scholar] [CrossRef]
- Grana, R.; Benowitz, N.; Glantz, S.A. E-cigarettes: A scientific review. Circulation 2014, 129, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Avino, P.; Manigrasso, M.; Vivaldi, V.; Perna, F.; Valeriani, F.; Vitali, M. Environmental Electronic Vape Exposure from Four Different Generations of Electronic Cigarettes: Airborne Particulate Matter Levels. Int. J. Environ. Res. Public Health 2018, 15, 2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll Chapman, S.L.; Wu, L.T. E-cigarette prevalence and correlates of use among adolescents versus adults: A review and comparison. J. Psychiatr. Res. 2014, 54, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgman, A.; Perfetti, T. The Chemical Components of Tobacco and Tobacco Smoke; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- WHO Report on the Global Tobacco Epidemic 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/255874/9789241512824-eng.pdf;jsessionid=AEE770B121C55D3353B9BD383AFAF65E?sequence=1 (accessed on 20 November 2019).
- Ghosh, S.; Drummond, M.B. Electronic cigarettes as smoking cessation tool: Are we there? Curr. Opin. Pulm. Med. 2017, 23, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Hartmann-Boyce, J.; Begh, R.; Aveyard, P. Electronic cigarettes for smoking cessation. BMJ 2016, 360, 5543. [Google Scholar] [CrossRef]
- Pesch, B.; Kendzia, B.; Gustavsson, P.; Jöckel, K.H.; Johnen, G.; Pohlabeln, H.; Olsson, A.; Ahrens, W.; Gross, I.M.; Brüske, I.; et al. Cigarette smoking and lung cancer-relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int. J. Cancer 2012, 131, 1210–1219. [Google Scholar] [CrossRef]
- Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: An epigenetic overview. Int. J. Mol. Sci. 2013, 14, 21087–21113. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: What we know, what we need to know and the path forward. Nat. Rev. Cancer 2017, 17, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Durham, A.L.; Adcock, I.M. The relationship between COPD and lung cancer. Lung Cancer 2015, 90, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brusselle, G.G.; Joos, G.F.; Bracke, K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011, 378, 1015–1026. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreck, R.; Albermann, K.; Baeuerle, P.A. Nuclear factor kappa B: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic. Res. Commun. 1992, 17, 221–237. [Google Scholar] [CrossRef]
- Hanna, S.T. Nicotine effect on cardiovascular system and ion channels. J. Cardiovasc. Pharmacol. 2006, 47, 348–358. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Burbank, A.D. Cardiovascular Toxicity of Nicotine: Implications for Electronic Cigarette Use. Trends Cardiovasc. Med. 2016, 26, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Behar, R.Z.; Luo, W.T.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 2018, 8, 8288. [Google Scholar] [CrossRef] [Green Version]
- St Helen, G.; Dempsey, D.A.; Havel, C.M.; Jacob, P.; Benowitz, N.L. Impact of e-liquid flavors on nicotine intake and pharmacology of e-cigarettes. Drug Alcohol. Depend. 2017, 178, 391–398. [Google Scholar] [CrossRef]
- Wölkart, G.; Kollau, A.; Stessel, H.; Russwurm, M.; Koesling, D.; Schrammel, A.; Schmidt, K.; Mayer, B. Effects of flavoring compounds used in electronic cigarette refill liquids on endothelial and vascular function. PLoS ONE 2019, 14, e0222152. [Google Scholar] [CrossRef] [Green Version]
- Hutzler, C.; Paschke, M.; Kruschinski, S.; Henkler, F.; Hahn, J.; Luch, A. Chemical hazards present in liquids and vapors of electronic cigarettes. Arch. Toxicol. 2014, 88, 1295–1308. [Google Scholar] [CrossRef]
- Bahl, V.; Lin, S.; Xu, N.; Davis, B.; Wang, Y.H.; Talbot, P. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models. Reprod. Toxicol. 2012, 34, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behar, R.Z.; Davis, B.; Wang, Y.; Bahl, V.; Lin, S.; Talbot, P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. In Vitro 2014, 28, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervellati, F.; Muresan, X.M.; Sticozzi, C.; Gambari, R.; Montagner, G.; Forman, H.J.; Torricelli, C.; Maioli, E.; Valacchi, G. Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicol. In Vitro 2014, 28, 999–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavvalakis, M.P.; Stivaktakis, P.D.; Tzatzarakis, M.N.; Kouretas, D.; Liesivuori, J.; Alegakis, A.K.; Vynias, D.; Tsatsakis, A.M. Multicomponent analysis of replacement liquids of electronic cigarettes using chromatographic techniques. J. Anal. Toxicol. 2015, 39, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Lisko, J.G.; Tran, H.; Stanfill, S.B.; Blount, B.C.; Watson, C.H. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH, and Selected Flavors in E-Cigarette Cartridges and Refill Solutions. Nicotine Tob. Res. 2015, 17, 1270–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadet, J.; Wagner, J.R. DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harb. Perspect. Biol. 2013, 5, a012559. [Google Scholar] [CrossRef]
- Kaur, G.; Muthumalage, T.; Rahman, I. Mechanisms of toxicity and biomarkers of flavoring and flavor enhancing chemicals in emerging tobacco and non-tobacco products. Toxicol. Lett. 2018, 288, 143–155. [Google Scholar] [CrossRef]
- Pryor, W.A.; Prier, D.G.; Church, D.F. Electron-spin resonance study of mainstream and sidestream cigarette smoke: Nature of the free radicals in gas-phase smoke and in cigarette tar. Environ. Health Perspect. 1983, 47, 345–355. [Google Scholar] [CrossRef]
- Lim, H.B.; Kim, S.H. Inhallation of e-Cigarette Cartridge Solution Aggravates Allergen-induced Airway Inflammation and Hyper-responsiveness in Mice. Toxicol. Res. 2014, 30, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, N.; Rojanasakul, Y.; Vallyathan, V. Inflammation and lung cancer: Roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; Sisler, J.D.; Shaffer, J.; Leonard, S.S.; Morris, A.M.; Qian, Y.; Bello, D.; Demokritou, P. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. J. Hazard. Mater. 2018, 344, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Majeste, A.; Hanus, J.; Wang, S. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells. Toxicol. Sci. 2016, 154, 332–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganapathy, V.; Manyanga, J.; Brame, L.; McGuire, D.; Sadhasivam, B.; Floyd, E.; Rubenstein, D.A.; Ramachandran, I.; Wagener, T.; Queimado, L. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS ONE 2017, 12, e0177780. [Google Scholar] [CrossRef] [Green Version]
- Gerloff, J.; Sundar, I.K.; Freter, R.; Sekera, E.R.; Friedman, A.E.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts. Appl. In Vitro Toxicol. 2017, 3, 28–40. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Watson, R.M.; Elder, A.; Jones, R.; Done, D.; Kurtzman, R.; Ossip, D.J.; Robinson, R.; McIntosh, S.; et al. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols. Environ. Pollut. 2015, 198, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Sundar, I.K.; Javed, F.; Romanos, G.E.; Rahman, I. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget 2016, 7, 77196–77204. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.; Teixeira, A.L.; Coelho, A.; Araújo, A.; Medeiros, R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol. 2014, 816, 1–23. [Google Scholar] [CrossRef]
- King, P.T. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin. Transl. Med. 2015, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, P.S.; Bals, R. Basic science of electronic cigarettes: Assessment in cell culture and in vivo models. Respir. Res. 2016, 17, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, V.K.; Kim, K.H.; Samaddar, P.; Kumar, S.; Aggarwal, M.L.; Chacko, K.M. Review on metallic components released due to the use of electronic cigarettes. Environ. Eng. Res. 2017, 22, 131–140. [Google Scholar] [CrossRef]
- Gaur, S.; Agnihotri, R. Health Effects of Trace Metals in Electronic Cigarette Aerosols-a Systematic Review. Biol. Trace Elem. Res. 2019, 188, 295–315. [Google Scholar] [CrossRef]
- Adogu, P.; Abuah, O.; Enye, J.C.; Chineke, H.N.; Egenti, B.N. Evaluation of the presence of the heavy metal nickel in samples of tobacco snuff (Nicotiana Tabacum) in Nigeria. Int. J. Pharm. Pharm. Sci. 2015, 7, 233–236. [Google Scholar]
- Taiwo, O.A. Diffuse parenchymal diseases associated with aluminum use and primary aluminum production. J. Occup. Environ. Med. 2014, 56 (Suppl. 5), S71–S72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvez, D.; Chen, Y.; Yunus, M.; Olopade, C.; Segers, S.; Slavkovich, V.; Argos, M.; Hasan, R.; Ahmed, A.; Islam, T.; et al. Arsenic Exposure and Impaired Lung Function. Findings from a Large Population-based Prospective Cohort Study. Am. J. Respir. Crit. Care Med. 2013, 188, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Xun, P.; Nishijo, M.; He, K. Cadmium exposure and risk of lung cancer: A meta-analysis of cohort and case-control studies among general and occupational populations. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 437–444. [Google Scholar] [CrossRef]
- Beaver, L.M.; Stemmy, E.J.; Schwartz, A.M.; Damsker, J.M.; Constant, S.L.; Ceryak, S.M.; Patierno, S.R. Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure. Environ. Health Perspect. 2009, 117, 1896–1902. [Google Scholar] [CrossRef]
- Rice, T.M.; Clarke, R.W.; Godleski, J.J.; Al-Mutairi, E.; Jiang, N.F.; Hauser, R.; Paulauskis, J.D. Differential ability of transition metals to induce pulmonary inflammation. Toxicol. Appl. Pharmacol. 2001, 177, 46–53. [Google Scholar] [CrossRef]
- Wittczak, T.; Dudek, W.; Krakowiak, A.; Walusiak, J.; Pałczyński, C. Occupational asthma due to manganese exposure: A case report. Int. J. Occup. Med. Environ. Health 2008, 21, 81–83. [Google Scholar] [CrossRef]
- Edelman, D.A.; Roggli, V.L. The accumulation of nickel in human lungs. Environ. Health Perspect. 1989, 81, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Boskabady, M.H.; Afshari, R.; Dadpour, B.; Behforouz, A.; Javidi, M.; Abbasnezhad, A.; Moradi, V.; Tabatabaie, S.S. Respiratory symptoms and pulmonary function testes in lead exposed workers. Iran. Red Crescent Med. J. 2012, 14, 737–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninsontia, C.; Phiboonchaiyanan, P.P.; Chanvorachote, P. Zinc induces epithelial to mesenchymal transition in human lung cancer H460 cells via superoxide anion-dependent mechanism. Cancer Cell Int. 2016, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- FDA. Substances Generally Recognized as Safe 2015. Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 20 November 2019).
- Wang, P.; Chen, W.; Liao, J.; Matsuo, T.; Ito, K.; Fowles, J.; Shusterman, D.; Mendell, M.; Kumagai, K. A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents. PLoS ONE 2017, 12, e0169811. [Google Scholar] [CrossRef]
- Mathur, N.; Rastogi, S.K. Respiratory effects due to occupational exposure to formaldehyde: Systematic review with meta-analysis. Indian J. Occup. Environ. Med. 2007, 11, 26–31. [Google Scholar] [CrossRef]
- Chen, D.; Fang, L.; Li, H.; Jin, C. The effects of acetaldehyde exposure on histone modifications and chromatin structure in human lung bronchial epithelial cells. Environ. Mol. Mutagen. 2018, 59, 375–385. [Google Scholar] [CrossRef]
- Bein, K.; Leikauf, G.D. Acrolein-a pulmonary hazard. Mol. Nutr. Food Res. 2011, 55, 1342–1360. [Google Scholar] [CrossRef]
- McGwin, G., Jr.; Lienert, J.; Kennedy, J.I., Jr. Formaldehyde Exposre and Asthma in Children: A Systematic Review. Environ. Health Perspect. 2010, 118, 313–317. [Google Scholar] [CrossRef] [Green Version]
- DeCastro, B.R. Acrolein and asthma attack prevalence in a representative sample of the United States adult population 2000–2009. PLoS ONE 2014, 9, e96926. [Google Scholar] [CrossRef]
- Golden, R.; Holm, S. Indoor Air Quality and Asthma. Has Unrecognized Exposure to Acrolein Confounded Results of Previous Studies? Dose-Response 2017, 15, 1559325817691159. [Google Scholar] [CrossRef] [Green Version]
- Prieto, L.; Gutiérrez, V.; Cervera, A.; Liñana, J. Airway obstruction induced by inhaled acetaldehyde in asthma: Repeatability relationship to adenosine 5′-monophosphate responsiveness. J. Investig. Allergol. Clin. Immunol. 2002, 12, 91–98. [Google Scholar] [PubMed]
- Lechasseur, A.; Jubinville, É.; Routhier, J.; Bérubé, J.C.; Hamel-Auger, M.; Talbot, M.; Lamothe, J.; Aubin, S.; Paré, M.È.; Beaulieu, M.J.; et al. Exposure to electronic cigarette vapors affects pulmonary and systemic expression of circadian molecular clock genes. Physiol. Rep. 2017, 5, e13440. [Google Scholar] [CrossRef] [PubMed]
- Cotta, K.; Stephen, C.D.; Mohammad, N.U. A Review on the Safety of Inhalation of Propylene Glycol in E-cigarettes. Glob. J. Pharm. Pharm. Sci. 2017, 2, 555584. [Google Scholar] [CrossRef]
- Davis, B.; Dang, M.; Kim, J.; Talbot, P. Nicotine concentrations in electronic cigarette refill and do-it-yourself fluids. Nicotine Tob. Res. 2015, 17, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tribollet, E.; Bertrand, D.; Raggenbass, M. Role of neuronal nicotinic receptors in the transmission and processing of information in neurons of the central nervous system. Pharmacol. Biochem. Behav. 2001, 70, 457–466. [Google Scholar] [CrossRef]
- Mishra, A.; Chaturvedi, P.; Datta, S.; Sinukumar, S.; Joshi, P.; Garg, A. Harmful effects of nicotine. Indian J. Med. Paediatr. Oncol. 2015, 36, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Thunnissen, F.B. Acetylcholine receptor pathway and lung cancer. J. Thorac. Oncol. 2009, 4, 943–946. [Google Scholar] [CrossRef] [Green Version]
- Moran, V.E. Cotinine: Beyond that Expected, More than a Biomarker of Tobacco Consumption. Front. Pharmacol. 2012, 3, 173. [Google Scholar] [CrossRef] [Green Version]
- Boffetta, P.; Clark, S.; Shen, M.; Gislefoss, R.; Peto, R.; Andersen, A. Serum cotinine level as predictor of lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 1184–1188. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S. Tobacco smoke carcinogens and breast cancer. Carcinogenesis 2002, 23, 907–922. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, H.; Montesano, R. Relevance of nitrosamines to human cancer. Carcinogenesis 1984, 5, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Park, S.H.; Weng, M.W.; Wang, H.T.; Huang, W.C.; Lepor, H.; Wu, X.R.; Chen, L.C.; Tang, M.S. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc. Natl. Acad. Sci. USA 2018, 115, E1560–E1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, J.L.; Zubair, M.; John, K.; Poirier, M.C.; Martin, F.L. Carcinogens and DNA damage. Biochem. Soc. Trans. 2018, 46, 1213–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.C.; Wang, S.C.; Haque, M.M.; Lin, W.H.; Lin, L.C.; Chen, C.H.; Liu, Y.W. The interaction of arsenic and N-butyl-N-(4-hydroxybutyl)nitrosamine on urothelial carcinogenesis in mice. PLoS ONE 2017, 12, e0186214. [Google Scholar] [CrossRef] [Green Version]
- Gordon, W.; Galitovskiy, V.; Edwards, R.; Andersen, B.; Grando, S.A. The tobacco carcinogen nitrosamine induces a differential gene expression response in tumour susceptible A/J and resistant C3H mouse lungs. Eur. J. Cancer 2013, 49, 725–733. [Google Scholar] [CrossRef] [Green Version]
- West, K.A.; Brognard, J.; Clark, A.S.; Linnoila, I.R.; Yang, X.; Swain, S.M.; Harris, C.; Belinsky, S.; Dennis, P.A. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J. Clin. Investig. 2003, 111, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, L.; Turner, J.; Roberts, A.; Soar, K. Vaping profiles and preferences: An online survey of electronic cigarette users. Addiction 2013, 108, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Tierney, P.A.; Karpinski, C.D.; Brown, J.E.; Luo, W.; Pankow, J.F. Flavour chemicals in electronic cigarette fluids. Tob. Control. 2016, 25, e10–e15. [Google Scholar] [CrossRef] [Green Version]
- Klager, S.; Vallarino, J.; MacNaughton, P.; Christiani, D.C.; Lu, Q.; Allen, J.G. Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environ. Sci. Technol. 2017, 51, 10806–10813. [Google Scholar] [CrossRef]
- Barrington-Trimis, J.L.; Samet, J.M.; McConnell, R. Flavorings in Electronic Cigarettes An Unrecognized Respiratory Health Hazard? JAMA 2014, 312, 2493–2494. [Google Scholar] [CrossRef] [Green Version]
- Park, H.R.; O’Sullivan, M.; Vallarino, J.; Shumyatcher, M.; Himes, B.E.; Park, J.A.; Christiani, D.C.; Allen, J.; Lu, Q. Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Sci. Rep. 2019, 9, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreiss, K. Work-related spirometric restriction in flavoring manufacturing workers. Am. J. Ind. Med. 2014, 57, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.G.; Flanigan, S.S.; LeBlanc, M.; Vallarino, J.; MacNaughton, P.; Stewart, J.H.; Christiani, D.C. Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes. Environ. Health Perspect. 2016, 124, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Zaccone, E.J.; Thompson, J.A.; Ponnoth, D.S.; Cumpston, A.M.; Goldsmith, W.T.; Jackson, M.C.; Kashon, M.L.; Frazer, D.G.; Hubbs, A.F.; Shimko, M.J.; et al. Popcorn flavoring effects on reactivity of rat airways in vivo and in vitro. J. Toxicol. Environ. Health 2013, 76, 669–689. [Google Scholar] [CrossRef] [Green Version]
- Farsalinos, K.E.; Kistler, K.A.; Gillman, G.; Voudris, V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob. Res. 2015, 17, 168–174. [Google Scholar] [CrossRef]
- Sapkota, M.; Wyatt, T.A. Alcohol, Aldehydes, Adducts and Airways. Biomolecules 2015, 5, 2987–3008. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I. The role of oxidative stress in the pathogenesis of COPD: Implications for therapy. Treat. Respir. Med. 2005, 4, 175–200. [Google Scholar] [CrossRef]
- Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663–2670. [Google Scholar] [CrossRef]
- Dinakar, C.; O’Connor, G. The Health Effects of Electronic Cigarettes. N. Engl. J. Med. 2016, 375, 1372–1381. [Google Scholar] [CrossRef]
- Mangal, D.; Vudathala, D.; Park, J.H.; Lee, S.H.; Penning, T.M.; Blair, I.A. Analysis of 7,8-dihydro-8-oxo-2′-deoxyguanosine in cellular DNA during oxidative stress. Chem. Res. Toxicol. 2009, 22, 788–797. [Google Scholar] [CrossRef]
- Hans, E.; Krokan, H.E.; Bjørås, M. Base Excision Repair. Cold Spring Harb. Perspect. Biol. 2013, 5, a012583. [Google Scholar] [CrossRef]
- Nohmi, T.; Kim, S.R.; Yamada, M. Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Mutat. Res. 2005, 591, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Gelhaus, S.; Vedantam, S.; Oliva, A.L.; Batra, A.; Blair, I.A.; Troxel, A.B.; Field, J.; Penning, T.M. The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem. Res. Toxicol. 2008, 21, 1039–1049. [Google Scholar] [CrossRef]
- Li, D.; Firozi, P.F.; Zhang, W.; Shen, J.; DiGiovanni, J.; Lau, S.; Evans, D.; Friess, H.; Hassan, M.; Abbruzzese, J.L. DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutat. Res. 2002, 513, 37–48. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Yao, H.; Gerloff, J.; Ossip, D.J.; McIntosh, S.; Robinson, R.; Rahman, I. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS ONE 2015, 10, e0116732. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Lugg, S.T.; Aldridge, K.; Lewis, K.E.; Bowden, A.; Mahida, R.Y.; Grudzinska, F.S.; Dosanjh, D.; Parekh, D.; Foronjy, R.; et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 2018, 73, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Arcos, I.; Geraghty, P.; Baumlin, N.; Campos, M.; Dabo, A.J.; Jundi, B.; Cummins, N.; Eden, E.; Grosche, A.; Salathe, M.; et al. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax 2016, 71, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jiang, D.; Minor, M.; Chu, H.W. Electronic Cigarette Liquid Increases Inflammation and Virus Infection in Primary Human Airway Epithelial Cells. PLoS ONE 2014, 9, e108342. [Google Scholar] [CrossRef] [Green Version]
- Kiraly, O.; Gong, G.; Olipitz, W.; Muthupalani, S.; Engelward, B.P. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet. 2015, 11, e1004901. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.K. DNA Damage, Mutagenesis and Cancer. Int. J. Mol. Sci. 2018, 19, 970. [Google Scholar] [CrossRef] [Green Version]
- Aug, A.; Altraja, S.; Kilk, K.; Porosk, R.; Soomets, U.; Altraja, A. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells. PLoS ONE 2015, 10, e0142053. [Google Scholar] [CrossRef] [PubMed]
- Muthumalage, T.; Prinz, M.; Ansah, K.O.; Gerloff, J.; Sundar, I.K.; Rahman, I. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and Flavored e-Liquids without Nicotine. Front. Physiol. 2018, 8, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapp, P.W.; Lavrich, K.S.; van Heusden, C.A.; Lazarowski, E.R.; Carson, J.L.; Jaspers, I. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L470–L486. [Google Scholar] [CrossRef] [PubMed]
- Aufderheide, M.; Emura, M. Phenotypical changes in a differentiating immortalized bronchial epithelial cell line after exposure to mainstream cigarette smoke and e-cigarette vapor. Exp. Toxicol. Pathol. 2017, 69, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Solleti, S.K.; Bhattacharya, S.; Ahmad, A.; Wang, Q.; Mereness, J.; Rangasamy, T.; Mariani, T.J. MicroRNA expression profiling defines the impact of electronic cigarettes on human airway epithelial cells. Sci. Rep. 2017, 7, 1081. [Google Scholar] [CrossRef]
- Shen, Y.; Wolkowicz, M.J.; Kotova, T.; Fan, L.; Timko, M.P. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci. Rep. 2016, 6, 23984. [Google Scholar] [CrossRef] [Green Version]
- Bahmed, K.; Lin, C.R.; Simborio, H.; Karim, L.; Aksoy, M.; Kelsen, S.; Tomar, D.; Madesh, M.; Elrod, J.; Messier, E.; et al. The role of DJ-1 in human primary alveolar type II cell injury induced by e-cigarette aerosol. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L475–L485. [Google Scholar] [CrossRef]
- Crotty Alexander, L.E.; Drummond, C.A.; Hepokoski, M.; Mathew, D.; Moshensky, A.; Willeford, A.; Das, S.; Singh, P.; Yong, Z.; Lee, J.H.; et al. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R834–R847. [Google Scholar] [CrossRef] [Green Version]
- Kaisar, M.A.; Sivandzade, F.; Bhalerao, A.; Cucullo, L. Conventional and electronic cigarettes dysregulate the expression of iron transporters and detoxifying enzymes at the brain vascular endothelium: In vivo evidence of a gender-specific cellular response to chronic cigarette smoke exposure. Neurosci. Lett. 2018, 682, 1–9. [Google Scholar] [CrossRef]
- Otręba, M.; Kośmider, L.; Knysak, J.; Warncke, J.D.; Sobczak, A. E-cigarettes: Voltage- and concentration-dependent loss in human lung adenocarcinoma viability. J. Appl. Toxicol. 2018, 38, 1135–1143. [Google Scholar] [CrossRef]
- Chung, S.; Baumlin, N.; Dennis, J.S.; Moore, R.; Salathe, S.F.; Whitney, P.L.; Sabater, J.; Abraham, W.M.; Kim, M.D.; Salathe, M. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. Am. J. Respir. Crit. Care Med. 2019, 200, 1134–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, R.E.; Makena, P.; Prasad, G.L.; Cormet-Boyaka, E. Cigarette and ENDS preparations differentially regulate ion channels and mucociliary clearance in primary normal human bronchial 3D cultures. Am. J. Physiol. Cell Mol. Physiol. 2019, 317, L295–L302. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, S.; Bates, S.E.; Behar, R.Z.; Talbot, P.; Besaratinia, A. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro. Lung Cancer 2017, 112, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Leverette, R.D.; Cooper, B.T.; Bennett, M.B.; Brown, S.E. Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols. Int. J. Environ. Res. Public Health 2014, 11, 11325–11347. [Google Scholar] [CrossRef] [PubMed]
- Vasanthi Bathrinarayanan, P.; Brown, J.E.P.; Marshall, L.J.; Leslie, L.J. An investigation into E-cigarette cytotoxicity in-vitro using a novel 3D differentiated co-culture model of human airways. Toxicol. In Vitro 2018, 52, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Neilson, L.; Mankus, C.; Thorne, D.; Jackson, G.; DeBay, J.; Meredith, C. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicol. In Vitro 2015, 29, 1952–1962. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, S.; Dieken, H.; Krischenowski, O.; Förster, C.; Branscheid, D.; Aufderheide, M. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells. Int. J. Environ. Res. Public Health 2015, 12, 3915–3925. [Google Scholar] [CrossRef] [Green Version]
- Lin, V.Y.; Fain, M.D.; Jackson, P.L.; Berryhill, T.F.; Wilson, L.S.; Mazur, M.; Barnes, S.J.; Blalock, J.E.; Raju, S.V.; Rowe, S.M. Vaporized E-Cigarette Liquids Induce Ion Transport Dysfunction in Airway Epithelia. Am. J. Respir. Cell. Mol. Biol. 2019, 61, 162–173. [Google Scholar] [CrossRef]
- Moses, E.; Wang, T.; Corbett, S.; Jackson, G.R.; Drizik, E.; Perdomo, C.; Perdomo, C.; Kleerup, E.; Brooks, D.; O’Connor, G.; et al. Molecular Impact of Electronic Cigarette Aerosol Exposure in Human Bronchial Epithelium. Toxicol. Sci. 2017, 155, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Ween, M.P.; Whittall, J.J.; Hamon, R.; Reynolds, P.N.; Hodge, S.J. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages. Physiol. Rep. 2017, 5, e13370. [Google Scholar] [CrossRef]
- Leigh, N.J.; Lawton, R.I.; Hershberger, P.A.; Goniewicz, M.L. Flavourings significantly affect inhalation toxicity of aerosol generated from electronic nicotine delivery systems (ENDS). Tob. Control. 2016, 25, ii81–ii87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husari, A.; Shihadeh, A.; Talih, S.; Hashem, Y.; El Sabban, M.; Zaatari, G. Acute Exposure to Electronic and Combustible Cigarette Aerosols: Effects in an Animal Model and in Human Alveolar Cells. Nicotine Tob. Res. 2016, 18, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, L.; Suri, R.; Dearing, E.; Mudway, I.; Dove, R.E.; Neill, D.R.; Van Zyl-Smit, R.; Kadioglu, A.; Grigg, J. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur. Respir. J. 2018, 51, 1701592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengalli, R.; Ferri, E.; Labra, M.; Mantecca, P. Lung Toxicity of Condensed Aerosol from E-CIG Liquids: Influence of the Flavor and the In Vitro Model Used. Int. J. Environ. Res. Public Health 2017, 14, 1254. [Google Scholar] [CrossRef]
- Leslie, L.J.; Vasanthi Bathrinarayanan, P.; Jackson, P.; Mabiala Ma Muanda, J.A.; Pallett, R.; Stillman, C.J.P.; Marshall, L.J. A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro. Inhal. Toxicol. 2017, 29, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Ong, S.G.; Zhou, Y.; Tian, L.; Bae, H.R.; Baker, N.; Whitlatch, A.; Mohammadi, L.; Guo, H.; Nadeau, K.C.; et al. Modeling Cardiovascular Risks of E-Cigarettes With Human-Induced Pluripotent Stem Cell-Derived Endothelial Cells. J. Am. Coll. Cardiol. 2019, 73, 2722–2737. [Google Scholar] [CrossRef] [Green Version]
- Behar, R.Z.; Wang, Y.; Talbot, P. Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. Tob. Control. 2017, 27, 325–333. [Google Scholar] [CrossRef]
- Carson, J.L.; Zhou, L.; Brighton, L.; Mills, K.H.; Zhou, H.; Jaspers, I.; Hazucha, M. Temporal structure/function variation in cultured differentiated human nasal epithelium associated with acute single exposure to tobacco smoke or E-cigarette vapor. Inhal. Toxicol. 2017, 29, 137–144. [Google Scholar] [CrossRef]
- Rowell, T.R.; Reeber, S.L.; Lee, S.L.; Harris, R.A.; Nethery, R.C.; Herring, A.H.; Glish, G.L.; Tarran, R. Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L52–L66. [Google Scholar] [CrossRef]
- Putzhammer, R.; Doppler, C.; Jakschitz, T.; Heinz, K.; Förste, J.; Danzl, K.; Messner, B.; Bernhard, D. Vapours of US and EU Market Leader Electronic Cigarette Brands and Liquids Are Cytotoxic for Human Vascular Endothelial Cells. PLoS ONE 2016, 11, e0157337. [Google Scholar] [CrossRef]
- Lerner, C.A.; Rutagarama, P.; Ahmad, T.; Sundar, I.K.; Elder, A.; Rahman, I. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts. Biochem. Biophys. Res. Commun. 2016, 477, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Higham, A.; Rattray, N.J.W.; Dewhurst, J.A.; Trivedi, D.K.; Fowler, S.J.; Goodacre, R.; Singht, D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir. Res. 2016, 17, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willershausen, I.; Wolf, T.; Weyer, V.; Sader, R.; Ghanaati, S.; Willershausen, B. Influence of E-smoking liquids on human periodontal ligament fibroblasts. Head Face Med. 2014, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.H.; Lyes, M.; Sladewski, K.; Enany, S.; McEachern, E.; Mathew, D.P.; Das, S.; Moshensky, A.; Bapat, S.; Pride, D.T.; et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J. Mol. Med. 2016, 94, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Yu, V.; Rahimy, M.; Korrapati, A.; Xuan, Y.; Zou, A.E.; Krishnan, A.R.; Tsui, T.; Aguilera, J.A.; Advani, S.; Crotty Alexander, L.E.; et al. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 2016, 52, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Otero, C.E.; Noeker, J.A.; Brown, M.M.; Wavreil, F.D.M.; Harvey, W.A.; Mitchell, K.A.; Heggland, S.J. Electronic cigarette liquid exposure induces flavor-dependent osteotoxicity and increases expression of a key bone marker, collagen type I. J. Appl. Toxicol. 2019, 39, 888–898. [Google Scholar] [CrossRef]
- Glynos, C.; Bibli, S.I.; Katsaounou, P.; Pavlidou, A.; Magkou, C.; Karavana, V.; Topouzis, S.; Kalomenidis, I.; Zakynthinos, S.; Papapetropoulos, A. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am. J. Physiol. Cell Mol. Physiol. 2018, 315, L662–L672. [Google Scholar] [CrossRef] [Green Version]
- Sussan, T.E.; Gajghate, S.; Thimmulappa, R.K.; Ma, J.; Kim, J.H.; Sudini, K.; Consolini, N.; Cormier, S.A.; Lomnicki, S.; Hasan, F.; et al. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS ONE 2015, 10, e0116861. [Google Scholar] [CrossRef]
- Canistro, D.; Vivarelli, F.; Cirillo, S.; Babot Marquillas, C.; Buschini, A.; Lazzaretti, M.; Marchi, L.; Cardenia, V.; Rodriguez-Estrada, M.T.; Lodovici, M.; et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 2017, 7, 2028. [Google Scholar] [CrossRef]
- Salturk, Z.; Çakir, Ç.; Sünnetçi, G.; Atar, Y.; Kumral, T.L.; Yildirim, G.; Berkiten, G.; Uyar, Y. Effects of Electronic Nicotine Delivery System on Larynx: Experimental Study. J. Voice 2015, 29, 560–563. [Google Scholar] [CrossRef]
- McGrath-Morrow, S.A.; Hayashi, M.; Aherrera, A.; Lopez, A.; Malinina, A.; Collaco, J.M.; Neptune, E.; Klein, J.D.; Winickoff, J.P.; Breysse, P.; et al. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice. PLoS ONE 2015, 10, e0118344. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Li, G.E.; Chen, H.; Cranfield, C.G.; McGrath, K.C.; Gorrie, C.A. Maternal E-Cigarette Exposure Results in Cognitive and Epigenetic Alterations in Offspring in a Mouse Model. Chem. Res. Toxicol. 2018, 31, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Madison, M.C.; Landers, C.T.; Gu, B.H.; Chang, C.Y.; Tung, H.Y.; You, R.; Hong, M.J.; Baghaei, N.; Song, L.Z.; Porter, P.; et al. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Investig. 2019, 129, 4290–4304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelikoff, J.T.; Parmalee, N.L.; Corbett, K.; Gordon, T.; Klein, C.B.; Aschner, M. Microglia Activation and Gene Expression Alteration of Neurotrophins in the Hippocampus Following Early-Life Exposure to E-Cigarette Aerosols in a Murine Model. Toxicol. Sci. 2018, 162, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Fan, X.; Horton, A.; Haller, S.T.; Kennedy, D.J.; Schiefer, I.T.; Dworkin, L.; Cooper, C.J.; Tian, J. The Effect of Electronic-Cigarette Vaping on Cardiac Function and Angiogenesis in Mice. Sci. Rep. 2019, 9, 4085. [Google Scholar] [CrossRef]
- Smith, D.; Aherrera, A.; Lopez, A.; Neptune, E.; Winickoff, J.P.; Klein, J.D.; Chen, G.; Lazarus, P.; Collaco, J.M.; McGrath-Morrow, S.A. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life. PLoS ONE 2015, 10, e0137953. [Google Scholar] [CrossRef]
- Qasim, H.; Karim, Z.A.; Silva-Espinoza, J.C.; Khasawneh, F.T.; Rivera, J.O.; Ellis, C.C.; Bauer, S.L.; Almeida, I.C.; Alshbool, F.Z. Short-Term E-Cigarette Exposure Increases the Risk of Thrombogenesis and Enhances Platelet Function in Mice. J. Am. Heart Assoc. 2018, 7, e009264. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Hoeng, J.; Harbo, S.; Kogel, U.; Gardner, W.; Oldham, M.; Benson, E.; Talikka, M.; Kondylis, A.; Martin, F.; et al. Biological changes in C57BL/6 mice following 3 weeks of inhalation exposure to cigarette smoke or e-vapor aerosols. Inhal. Toxicol. 2018, 30, 553–567. [Google Scholar] [CrossRef] [Green Version]
- Alasmari, F.; Crotty Alexander, L.E.; Hammad, A.M.; Bojanowski, C.M.; Moshensky, A.; Sari, Y. Effects of Chronic Inhalation of Electronic Cigarette Vapor Containing Nicotine on Neurotransmitters in the Frontal Cortex and Striatum of C57BL/6 Mice. Front. Pharmacol. 2019, 10, 885. [Google Scholar] [CrossRef] [Green Version]
- Olfert, I.M.; DeVallance, E.; Hoskinson, H.; Branyan, K.W.; Clayton, S.; Pitzer, C.R.; Sullivan, D.P.; Breit, M.J.; Wu, Z.; Klinkhachorn, P.; et al. Chronic exposure to electronic cigarettes results in impaired cardiovascular function in mice. J. Appl. Physiol. 2018, 124, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Wetendorf, M.; Randall, L.T.; Lemma, M.T.; Hurr, S.H.; Pawlak, J.B.; Tarran, R.; Doerschuk, C.M.; Caron, K.M. E-Cigarette Exposure Delays Implantation and Causes Reduced Weight Gain in Female Offspring Exposed In Utero. J. Endocr. Soc. 2019, 3, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Lauterstein, D.E.; Tijerina, P.B.; Corbett, K.; Oksuz, B.A.; Shen, S.S.; Gordon, T.; Klein, C.B.; Zelikoff, J.T. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages. Int. J. Environ. Res. Public Health 2016, 13, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larcombe, A.N.; Janka, M.A.; Mullins, B.J.; Berry, L.J.; Bredin, A.; Franklin, P.J. The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L67–L79. [Google Scholar] [CrossRef] [PubMed]
- Ponzoni, L.; Moretti, M.; Sala, M.; Fasoli, F.; Mucchietto, V.; Lucini, V.; Cannazza, G.; Gallesi, G.; Castellana, C.N.; Clementi, F.; et al. Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice. Eur. Neuropsychopharmacol. 2015, 25, 1775–1786. [Google Scholar] [CrossRef]
- Chapman, D.G.; Casey, D.T.; Ather, J.L.; Aliyeva, M.; Daphtary, N.; Lahue, K.G.; van der Velden, J.L.; Janssen-Heininger, Y.M.W.; Irvin, C.G. The Effect of Flavored E-cigarettes on Murine Allergic Airways Disease. Sci. Rep. 2019, 9, 13671. [Google Scholar] [CrossRef]
- Nguyen, T.; Li, G.E.; Chen, H.; Cranfield, C.G.; McGrath, K.C.; Gorrie, C.A. Neurological effects in the offspring after switching from tobacco cigarettes to e-cigarettes during pregnancy in a mouse model. Toxicol. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chan, Y.L.; Nguyen, L.T.; Mak, C.; Zaky, A.; Anwer, A.G.; Shi, Y.; Nguyen, T.; Pollock, C.A.; Oliver, B.G.; et al. Impact of maternal e-cigarette vapor exposure on renal health in the offspring. Ann. N. Y. Acad. Sci. 2019, 1452, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, G.; Chan, Y.L.; Nguyen, T.; van Reyk, D.; Saad, S.; Oliver, B.G. Modulation of neural regulators of energy homeostasis, and of inflammation, in the pups of mice exposed to e-cigarettes. Neurosci. Lett. 2018, 684, 61–66. [Google Scholar] [CrossRef]
- Chen, H.; Li, G.; Chan, Y.L.; Chapman, D.G.; Sukjamnong, S.; Nguyen, T.; Annissa, T.; McGrath, K.C.; Sharma, P.; Oliver, B.G. Maternal E-Cigarette Exposure in Mice Alters DNA Methylation and Lung Cytokine Expression in Offspring. Am. J. Respir. Cell Mol. Biol. 2018, 58, 366–377. [Google Scholar] [CrossRef]
- Alasmari, F.; Crotty Alexander, L.E.; Nelson, J.A.; Schiefer, I.T.; Breen, E.; Drummond, C.A.; Sari, Y. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 77, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.M.; Huang, C.C.; Sung, H.C.; Lee, M.C.; Hsiao, C.Y. Electronic cigarette exposure reduces exercise performance and changes the biochemical profile of female mice. Biosci. Biotechnol. Biochem. 2019, 83, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.S.; Wu, X.R.; Lee, H.W.; Xia, Y.; Deng, F.M.; Moreira, A.L.; Chen, L.C.; Huang, W.C.; Lepor, H. Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Proc. Natl. Acad. Sci. USA 2019, 116, 21727–21731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.M.; Lopez, B.; Nathan, D.; Wilson, J.; Bankole, E.; Tumoyan, H.; Munoz, A.; Espinoza-Derout, J.; Hasan, K.M.; Chang, S.; et al. A mouse model for chronic intermittent electronic cigarette exposure exhibits nicotine pharmacokinetics resembling human vapers. J. Neurosci. Methods 2019, 326, 108376. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Derout, J.; Hasan, K.M.; Shao, X.M.; Jordan, M.C.; Sims, C.; Lee, D.L.; Sinha, S.; Simmons, Z.; Mtume, N.; Liu, Y.; et al. Chronic intermittent electronic cigarette exposure induces cardiac dysfunction and atherosclerosis in apolipoprotein-E knockout mice. Am. J. Physiol. Circ. Physiol. 2019, 317, H445–H459. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.M.; Friedman, T.C.; Shao, X.; Parveen, M.; Sims, C.; Lee, D.L.; Espinoza-Derout, J.; Sinha-Hikim, I.; Sinha-Hikim, A.P. E-cigarettes and Western Diet: Important Metabolic Risk Factors for Hepatic Diseases. Hepatology 2019, 69, 2442–2454. [Google Scholar] [CrossRef]
- Espinoza-Derout, J.; Shao, X.M.; Bankole, E.; Hasan, K.M.; Mtume, N.; Liu, Y.; Sinha-Hikim, A.P.; Friedman, T.C. Hepatic DNA Damage Induced by Electronic Cigarette Exposure Is Associated With the Modulation of NAD+/PARP1/SIRT1 Axis. Front. Endocrinol. 2019, 10, 320. [Google Scholar] [CrossRef]
- Rau, A.S.; Reinikovaite, V.; Schmidt, E.P.; Taraseviciene-Stewart, L.; Deleyiannis, F.W. Electronic Cigarettes Are as Toxic to Skin Flap Survival as Tobacco Cigarettes. Ann. Plast. Surg. 2017, 79, 86–91. [Google Scholar] [CrossRef]
- Rahali, D.; Jrad-Lamine, A.; Dallagi, Y.; Bdiri, Y.; Ba, N.; El May, M.; El Fazaa, S.; El Golli, N. Semen Parameter Alteration, Histological Changes and Role of Oxidative Stress in Adult Rat Epididymis on Exposure to Electronic Cigarette Refill Liquid. Chin. J. Physiol. 2018, 61, 75–84. [Google Scholar] [CrossRef] [Green Version]
- El Golli, N.; Jrad-Lamine, A.; Neffati, H.; Rahali, D.; Dallagi, Y.; Dkhili, H.; Ba, N.; El May, M.V.; El Fazaa, S. Impact of e-cigarette refill liquid with or without nicotine on liver function in adult rats. Toxicol. Mech. Methods 2016, 26, 419–426. [Google Scholar] [CrossRef]
- Golli, N.E.; Jrad-Lamine, A.; Neffati, H.; Dkhili, H.; Rahali, D.; Dallagi, Y.; El May, M.V.; El Fazaa, S. Impact of e-cigarette refill liquid exposure on rat kidney. Regul. Toxicol. Pharmacol. 2016, 77, 109–116. [Google Scholar] [CrossRef]
- El Golli, N.; Rahali, D.; Jrad-Lamine, A.; Dallagi, Y.; Jallouli, M.; Bdiri, Y.; Ba, N.; Lebret, M.; Rosa, J.P.; El May, M.; et al. Impact of electronic-cigarette refill liquid on rat testis. Toxicol. Mech. Methods 2016, 26, 427–434. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Anagnostopoulos, N.; Kougias, M.; Evangelopoulou, V.; Connolly, G.N.; Behrakis, P.K. Short-term pulmonary effects of using an electronic cigarette: Impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 2012, 141, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Ansary, M.A.; Barayan, F.R.; Almusallam, A.S.; Almehaid, A.M.; Alarifi, N.S.; Alsohaibani, T.A.; Zia, I. Electronic Cigarettes: Impact on Lung Function and Fractional Exhaled Nitric Oxide Among Healthy Adults. Am. J. Men’s Health 2019, 13, 1557988318806073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Tao, J.Q.; Johncola, A.; Guo, W.; Caporale, A.; Langham, M.C.; Wehrli, F.W. Acute exposure to e-cigarettes causes inflammation and pulmonary endothelial oxidative stress in nonsmoking, healthy young subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L155–L166. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.S.; Bhetraratana, M.; Peters, K.M.; Yang, B.K.; Yin, F.; Gornbein, J.; Araujo, J.A.; Middlekauff, H.R. Sympathomimetic Effects of Acute E-Cigarette Use: Role of Nicotine and Non-Nicotine Constituents. J. Am. Heart Assoc. 2017, 6, e006579. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.S.; Bhetraratana, M.; Yin, F.; Peters, K.M.; Gornbein, J.; Araujo, J.A.; Middlekauff, H.R. Increased Cardiac Sympathetic Activity and Oxidative Stress in Habitual Electronic Cigarette Users: Implications for Cardiovascular Risk. JAMA Cardiol. 2017, 2, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Dautzenberg, B.; Garelik, D. Patients with lung cancer: Are electronic cigarettes harmful or useful? Lung Cancer 2017, 105, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Zhuikova, E.; Durrant, P.; Macauley, E.; Goss, H.; Ioannides, C.; Marczylo, T.; Bailey, A. Monitoring nicotine intake in human volunteers transitioning from cigarette smoking to e-cigarette use. Tob. Prev. Cessat. 2018, 4, A81. [Google Scholar] [CrossRef]
- Simmons, V.N.; Quinn, G.P.; Harrell, P.T.; Meltzer, L.R.; Correa, J.B.; Unrod, M.; Brandon, T.H. E-cigarette use in adults: A qualitative study of users’ perceptions and future use intentions. Addict. Res. Theory 2016, 24, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Goniewicz, M.L.; O’Connor, R.J.; Travers, M.J.; Hyland, A.J. Urinary metabolite levels of flame retardants in electronic cigarette users: A study using the data from NHANES 2013–2014. Int. J. Environ. Res. Public Health 2018, 15, 201. [Google Scholar] [CrossRef] [Green Version]
- Walele, T.; Bush, J.; Koch, A.; Savioz, R.; Martin, C.; O’Connell, G. Evaluation of the safety profile of an electronic vapour product used for two years by smokers in a real-life setting. Regul. Toxicol. Pharmacol. 2018, 92, 226–238. [Google Scholar] [CrossRef]
- Polosa, R.; Morjaria, J.B.; Prosperini, U.; Russo, C.; Pennisi, A.; Puleo, R.; Caruso, M.; Caponnetto, P. Health effects in COPD smokers who switch to electronic cigarettes: A retrospective-prospective 3-year follow-up. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2533–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polosa, R.; Morjaria, J.B.; Caponnetto, P.; Caruso, M.; Campagna, D.; Amaradio, M.D.; Ciampi, G.; Russo, C.; Fisichella, A. Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. Discov. Med. 2016, 21, 99–108. [Google Scholar] [PubMed]
- Staudt, M.R.; Salit, J.; Kaner, R.J.; Hollmann, C.; Crystal, R.G. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. Respir. Res. 2018, 19, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tommasi, S.; Caliri, A.W.; Caceres, A.; Moreno, D.E.; Li, M.; Chen, Y.; Siegmund, K.D.; Besaratinia, A. Deregulation of Biologically Significant Genes and Associated Molecular Pathways in the Oral Epithelium of Electronic Cigarette Users. Int. J. Mol. Sci. 2019, 20, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, D.M.I.; Brooksbank, K.J.M.; Taylor, R.G.; Pinel, K.; Rios, F.J.; Touyz, R.M.; Delles, C. Acute effects of electronic and tobacco cigarettes on vascular and respiratory function in healthy volunteers: A cross-over study. J. Hypertens. 2019, 37, 154–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniewicz, L.; Brynedal, A.; Hedman, L.; Lundbäck, M.; Bosson, J.A. Acute Effects of Electronic Cigarette Inhalation on the Vasculature and the Conducting Airways. Cardiovasc. Toxicol. 2019, 19, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniewicz, L.; Bosson, J.A.; Kuhl, J.; Abdel-Halim, S.M.; Kiessling, A.; Mobarrez, F.; Lundbäck, M. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis 2016, 255, 179–185. [Google Scholar] [CrossRef] [Green Version]
- WHO. Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 2 January 2020).
- Bonnie, R.J.; Stratton, K.; Kwan, L.Y. Public Health Implications of Raising the Minimum Age of Legal Access to Tobacco Products; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Bhalerao, A.; Sivandzade, F.; Archie, S.R.; Cucullo, L. Public Health Policies on E-Cigarettes. Curr. Cardiol. Rep. 2019, 21, 111. [Google Scholar] [CrossRef] [Green Version]
- Azzopardi, D.; Patel, K.; Jaunky, T.; Santopietro, S.; Camacho, O.M.; McAughey, J.; Gaça, M. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke. Toxicol. Mech. Methods 2016, 26, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Czekala, L.; Simms, L.; Stevenson, M.; Trelles-Sticken, E.; Walker, P.; Walele, T. High Content Screening in NHBE cells shows significantly reduced biological activity of flavoured e-liquids, when compared to cigarette smoke condensate. Toxicol. In Vitro 2019, 58, 86–96. [Google Scholar] [CrossRef]
- Taylor, M.; Carr, T.; Oke, O.; Jaunky, T.; Breheny, D.; Lowe, F.; Gaça, M. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke. Toxicol. Mech. Methods 2016, 26, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Romagna, G.; Allifranchini, E.; Ripamonti, E.; Bocchietto, E.; Todeschi, S.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Comparison of the Cytotoxic Potential of Cigarette Smoke and Electronic Cigarette Vapour Extract on Cultured Myocardial Cells. Int. J. Environ. Res. Public Health 2013, 10, 5146–5162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthérieu, S.; Garat, A.; Beauval, N.; Soyez, M.; Allorge, D.; Garçon, G.; Lo-Guidice, J.M. Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells. Toxicol. In Vitro 2017, 45, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Czekala, L.; Simms, L.; Stevenson, M.; Tschierske, N.; Maione, A.G.; Walele, T. Toxicological comparison of cigarette smoke and e-cigarette aerosol using a 3D in vitro human respiratory model. Regul. Toxicol. Pharmacol. 2019, 103, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Barna, S.; Rózsa, D.; Varga, J.; Fodor, A.; Szilasi, M.; Galuska, L.; Garai, I. First comparative results about the direct effect of traditional cigarette and e-cigarette smoking on lung alveolocapillary membrane using dynamic ventilation scintigraphy. Nucl. Med. Commun. 2019, 40, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Breheny, D.; Oke, O.; Pant, K.; Gaça, M. Comparative tumor promotion assessment of e-cigarette and cigarettes using the in vitro Bhas 42 cell transformation assay. Environ. Mol. Mutagen. 2017, 58, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.W.; Kosinska, W.; Guttenplan, J.B. E-cigarette Aerosol Condensate Enhances Metabolism of Benzo(a)pyrene to Genotoxic Products, and Induces CYP1A1 and CYP1B1, Likely by Activation of the Aryl Hydrocarbon Receptor. Int. J. Environ. Res. Public Health 2019, 16, 2468. [Google Scholar] [CrossRef] [Green Version]
- Reinikovaite, V.; Rodriguez, I.E.; Karoor, V.; Rau, A.; Trinh, B.B.; Deleyiannis, F.W.; Taraseviciene-Stewart, L. The effects of electronic cigarette vapour on the lung: Direct comparison to tobacco smoke. Eur. Respir. J. 2018, 51, 1701661. [Google Scholar] [CrossRef]
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 1018–1036. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.; Uibel, S.; Braun, M.; Klingelhoefer, D.; Takemura, M.; Groneberg, D.A. Tobacco smoke particles and indoor air quality (ToPIQ)-the protocol of a new study. J. Occup. Med. Toxicol. 2011, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, P.K. Air Pollution and Health; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010.
- Margham, J.; McAdam, K.; Forster, M.; Liu, C.; Wright, C.; Mariner, D.; Proctor, C. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke. Chem. Res. Toxicol. 2016, 29, 1662–1678. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Aherrera, A.; Isichei, C.; Olmedo, P.; Jarmul, S.; Cohen, J.E.; Navas-Acien, A.; Rule, A.M. Assessment of indoor air quality at an electronic cigarette (Vaping) convention. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 522–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, W.F.; Klerx, W.N.; Cremers, H.W.J.M.; Ramlal, R.; Schwillens, P.; Talhout, R. The Health Risks of Electronic Cigarette Use to Bystanders. Int. J. Environ. Res. Public Health 2019, 16, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampos, S.; Kostenidou, E.; Farsalinos, K.; Zagoriti, Z.; Ntoukas, A.; Dalamarinis, K.; Savranakis, P.; Lagoumintzis, G.; Poulas, K. Real-Time Assessment of E-Cigarettes and Conventional Cigarettes Emissions: Aerosol Size Distributions, Mass and Number Concentrations. Toxics 2019, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martuzevicius, D.; Prasauskas, T.; Setyan, A.; O’Connell, G.; Cahours, X.; Julien, R.; Colard, S. Characterization of the Spatial and Temporal Dispersion Differences Between Exhaled E-Cigarette Mist and Cigarette Smoke. Nicotine Tob. Res. 2019, 21, 1371–1377. [Google Scholar] [CrossRef]
- Marcham, C.L.; Springston, J.P. Electronic cigarettes in the indoor environment. Rev. Environ. Health 2019, 34, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Chang, H. Research gaps related to the environmental impacts of electronic cigarettes. Tob. Control. 2014, 23, ii54–ii58. [Google Scholar] [CrossRef]
Type of Cells | Characteristic of E-Liquid | Action | Ref. | |
---|---|---|---|---|
1. | NHBE cells | Base: PG:VG (50%/50%) Nicotine: 36 mg/mL Flavor: flavorless | Decreased: airway surface liquid hydration Increased: mucus viscosity | [114] |
2. | NHBE cells | Base: PG:VG Nicotine: 24 mg/mL Flavor: “Tennessee Cured” | Decreased: cell viability Increased: oxidative stress | [120] |
3. | NHBE cells | Base: PG:VG (55%/45%) Nicotine: none Flavors: three cinnamon flavors | Decreased: intracellular ATP levels Impaired: mitochondrial respiration and glycolysis | [106] |
4. | NHBE cells | Base: VG 100% Nicotine: 1.1% Flavors: tobacco | Inhibited: epithelial ion transport beyond cystic fibrosis transmembrane conductance regulator | [121] |
5. | NHBE cells | Base: unknown Nicotine 2.4% w/v Flavor: flavorless | Dysregulation of gene expression | [108] |
6. | NHBE cells | Base: unknown Nicotine: 24 mg per cartridge Flavors: menthol, tobacco | Decreased: expression of genes involved in cilia assembly and movement Increased: expression of genes involved in oxidative and xenobiotic stress pathways and a marker of reactive oxygen species production | [122] |
7. | NHBE cells | Base: unknown Nicotine: 36 mg/mL Flavor: flavorless | Decreased: expression of FOXJ1 and KCNMA1 Increased: interleukin (IL)-6 and IL-8 release Impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance | [100] |
8. | NHBE cells | Base: unknown Nicotine: 16 mg/mL Flavor: flavorless | Alterations in cellular glycerophopholipid biosynthesis, cytochrome P450 function, retinoid metabolism, and nicotine catabolism | [109] |
9. | NHBE cells | E-cigarette liquid diluted to 100 μM by nicotine | Alters the metabolome | [104] |
10. | NHBE cells THP-1 macrophages | Base: PG:VG (70%:30%) Nicotine: 18 mg/mL Flavors: three apple flavors | Decreased: efferocytosis, TNF-α, IL-6, IP-10, MIP-1α and MIP-1β release Increased: necrosis and apoptosis | [123] |
11. | NHBE cells | Base: PG:VG (50%/50%) Nicotine: 24 mg/mL Flavor: flavorless | Increased: IL-8 release in response to infection | [111] |
12. | NHBE cells—H292 cell line | Base: PG 100% Nicotine: 24 mg/mL Flavors: tobacco, piña colada, menthol, coffee and strawberry | Decreased: metabolic activity and cell viability Increased: interleukin [IL]-1β, IL-6, IL-10, CXCL1, CXCL2 and CXCL10 release | [124] |
13. | Immortalized NHBE cell line—CL-1548 | Base: unknown Nicotine: none Flavor: flavorless | Decreased: ciliated, mucus-producing and club cells [phenotypic changes] | [107] |
14. | NHBE 3D cell cultures | Base: unknown Nicotine: 7μg/mL equi- nicotine units Flavor: flavorless | Decreased: cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel function, which regulate fluid homeostasis in the lung | [115] |
15. | Human lung carcinoma A549 cells | Base: PG:VG (50%/50%) VG 100%, PG 100% Nicotine: 18 mg/mL Flavor: flavorless | Decreased: cell viability | [113] |
16. | A549 cells | Base: unknown Nicotine: 18 mg/mL Flavor: strawberry | Decreased: cell viability | [125] |
17. | A549 cells | Base: unknown Nicotine: 24 mg/mL Flavor: tobacco | Increased: pneumococcal adhesion to airway cells | [126] |
18. | Human lung adenocarcinoma cells—A549 and NCI-H441 | Base: PG:VG (50%/50%) Nicotine: 18 mg/mL Flavors: cinnamon, tobacco, menthol | Decreased: cell viability Increased: IL-8 release | [127] |
19. | Human-derived bronchial epithelial cell lines—BEAS-2B, IB3-1, C38 and CALU-3; Macrophage cell lines—J774, a mouse macrophage and THP-1 a monocyte-derived macrophage; human-derived fibroblast cell line—Wi-38 | Base: PG:VG Nicotine: 0.8–16 mg/mL Flavors: flavorless, cherry, tobacco, crisp mint, menthol, apple, coffee, vanilla, strawberry | Decreased: cell viability | [128] |
20. | Human-induced pluripotent stem cell-derived endothelial cells [iPSC-ECs] | Base: PG:VG (50%/50%, 80%/20%), VG 100% Nicotine: 6 and 18 mg/mL Flavors: sweet tobacco with undertones of caramel, vanilla, tobacco, sweet, cinnamon, menthol | Decreased: cell viability Increased: ROS levels, caspase 3/7 activity Promoted: low-density lipoprotein uptake, activation of oxidative stress-related pathway, impaired tube formation and migration | [129] |
21. | Human pulmonary fibroblasts [hPFs]; A549 lung epithelial cells; pluripotent human embryonic stem cells [hESCs] | Base: PG:VG, VG, unknown Nicotine: 6–24 mg/mL Flavors: fruit, tobacco, mint, chocolate, vanilla, caramel, candy, coffee, cinnamon, creamy | Decreased: cell viability | [130] |
22. | Human airway epithelium cells | Base: PG:VG Nicotine: 2.4% Flavor: tobacco | Morphologic differences in secretory function | [131] |
23. | Lung epithelial cell line [CALU3] | Base: PG:VG (70%/30%, 55%/45%) Nicotine: 12 mg/mL Flavors: Captain Black Cigar, Peanut Butter Cookie, T-bone, Popcorn, Black Licorice, Energon [orange energy drink], Vanilla Tobacco, Banana Pudding [Southern Style], Kola, Hot Cinnamon Candies, Menthol Tobacco, Solid Menthol, Peanut Butter Cookies, Banana Pudding, and Hot Cinnamon Candies | Decreased: cell viability | [132] |
24. | Human umbilical vein endothelial cells [HUVECs] | Base: PG:VG Nicotine: 6–24 mg/mL Flavors: tobacco, menthol, fruit | Decreased: cell viability Alterations in cell morphology | [133] |
25. | Human lung fibroblasts [HFL-1] | Base: unknown Nicotine: 16 mg/mL Flavor: tobacco | Decreased: stability of electron transport chain complex IV subunit Increased: levels of mitochondrial ROS, nuclear DNA fragmentation, IL-8 and IL-6 release | [134] |
26. | Neutrophils | Base: unknown Nicotine: 16, 24 mg/mL Flavor: tobacco | Increased: CD11b and CD66b expression, MMP-9 and CXCL8 release, NE and MMP-9 activity, p38 MAPK activation | [135] |
27. | Human bronchial airway epithelial cells [H292]; human fetal lung fibroblasts [HFL1] | Base: PG:VG Nicotine: 16 mg/mL Flavors: tobacco, menthol fruit, cinnamon, candy | Decreased: cell viafbility Increased: IL-6 and IL-8 release, stress and morphological change | [98] |
28. | Human Periodontal Ligament Fibroblasts | Base: PG 100% Nicotine: final concentration 10 µg/mL Flavors: hazelnut, lime, menthol | Decreased: cell viability | [136] |
29. | ATII cells | Base: unknown Nicotine: 24 mg/mL Flavor: flavorless | Increased: IL-8 levels, DNA damage and apoptosis | [110] |
30. | Mouse vascular endothelial cell line bEnd.3; Mouse primary brain microvascular endothelial cells | Base: unknown Nicotine: 24 mg/mL Flavor: flavorless | Increased: mitochondrial depolarization, transmembrane iron exporter Slc40a1 (crucial to maintain cellular iron and redox homeostasis) and porphyrin importer Abcb6 (linked to accelerated atherosclerosis) | [112] |
31. | NHBR cell line BEAS-2B; human bronchial urothelial cell line UROtsa | Base; PG:VG (50%/50%) Nicotine: 24 mg/mL Flavor: flavorless | Increased: mutational susceptibility and tumorigenic transformation | [75] |
32. | Human epithelial cells—human keratinocytes (HaCaTs); Human lung alveolar type II epithelial cells (A549 cells); Alveolar macrophages (AMs) Human polymorphonuclear leukocytes (hPMNs) | Base: PG:VG, PG, VG Nicotine: 8, 24 mg/mL Flavors: flavorless, Treasury, Highlander Grog, California Blues, Pure smoke | Decreased: antimicrobial activity against Staphylococcus aureus | [137] |
33. | Normal epithelial cells (HaCat–a spontaneously transformed immortal keratinocyte cell line); Head and neck squamous cell carcinoma (HNSCC) cell lines (UMSCC10B—derived from a metastatic lymph node, HN30—derived from a primary laryngeal tumor) | Base: PG:VG (70%/30%) Nicotine: 12 mg/mL Flavors: “Classic Tobacco”, “Red American Tobacco” | Decreased: cell viability Increased: apoptosis and necrosis, DNA strand breaks | [138] |
34. | Human osteosarcoma cell lines Saos-2 and MG-63 | Base: PG/VG (50%/50%) Nicotine: 24 mg/mL Flavors: flavorless, watermelon, mango, mixed fruits, coffee, apple pie, menthol and watermelon, menthol, hot cinnamon, menthol and cinnamon | Decreased: cell viability Increased: collagen type I protein expression | [139] |
35. | Normal human tracheobronchial epithelial cells (NHTE cells) | Base: unknown Nicotine: 18 mg/mL Flavor: tobacco | Increased: IL-6 release Promoted: human rhinovirus (HRV) infection | [101] |
36. | Monocytic cells from human pleural tissue—U937; Human monocyte-macrophage cell line (mature monocytes-macrophages)—Mono Mac 6 | Base: unknown Nicotine: none Flavors: Strawberry Zing, Café Latte, Pineapple Coconut, Cinnamon Roll, Fruit Swirl, Mega Melons, Mystery Mix (menthol flavor), American Tobacco, Grape Vape, Very Berry, and Mixed Flavors | Decreased: cell viability Increased: IL-8 secretion, oxidative stress (ROS level) | [105] |
37. | Alveolar macrophages; THP-1 macrophages | Base: PG:VG (50%:50%) Nicotine: 36 mg/mL Flavor: flavorless | Decreased: cell viability | [99] |
Animals | Characteristic of E-Liquid | Action | Ref. | |
---|---|---|---|---|
1. | C57BL/6J mice | Base: PG:VG Nicotine: 33 mg/mL Flavor: flavorless | Decreased: innate immunity against viral pathogens in resident macrophages Increased: surfactant-associated phospholipids in the airway, lipid deposition Altered: lung lipid homeostasis in alveolar macrophages and epithelial cells, phospholipids in alveolar macrophages | [146] |
2. | C57BL/6 mice | Base: PG:VG (50%/50%) Nicotine: 18 mg/mL Flavor: tobacco | Increased: bronchoalveolar lavage fluid (BALF) cellularity, Muc5ac production, BALF and lung oxidative stress markers | [140] |
3. | C57BL/6 mice | Base: unknown Nicotine: 13 mg/mL Flavor: tobacco | Decrease: hippocampal gene expression of Ngfr and Bdnf, serum levels of cytokines IL-1β, IL-2, and IL-6 Increased: expression of Iba-1, a specific marker of microglia, in the cornus ammonis 1 region of the hippocampus | [147] |
4. | C57BL/6 mice | Base: PG:VG (50%/50%) Nicotine: 24 mg/mL Flavor: flavorless | Decreased: weight gain Increased: angiogenesis in mouse heart tissue, endothelial cell marker CD31 and CD34, collagen content in heart tissue | [148] |
5. | C57BL/6J mice | Base: unknown Nicotine: 18 mg/mL Flavor: strawberry | Increased: IL-1β release | [125] |
6. | C57BL/6J mice | Base: PG:VG Nicotine: 16 mg/mL Flavors: tobacco, menthol fruit, cinnamon, candy | Decreased: lung glutathione levels Increased: proinflammatory cytokines | [98] |
7. | C57BL/6J mice | Base: PG 00% Nicotine: 2.4% Flavor: flavorless | Increased: activity in the zero maze and open field tests | [149] |
8. | C57BL/6J mice | Base: PG:VG (70%/30%) Nicotine: 18 mg/mL Flavor: menthol | Increased: platelets hyperactivation with enhanced aggregation, dense and α granule secretion, activation of the αIIbβ3 integrin, phosphatidylserine expression, and Akt and ERK activation Decreased: thrombosis occlusion and bleeding times | [150] |
9. | C57BL/6 mice | Base: PG:VG Nicotine: 4% by weight Flavors: different (nonmenthol) flavor mixtures | Altered: minimal squamous metaplasia in laryngeal epiglottis, and histiocytic infiltrates in the lung, genes expression | [151] |
10. | C57BL/6 mice | Base: PG:VG (50%/50%) Nicotine: 24 mg/mL Flavors: flavorless | Decreased: dopamine concentration in the striatum and GABA in frontal cortex Increased: glutamate concentration in the striatum and glutamine in the frontal cortex and striatum | [152] |
11. | C57BL/6 mice | Base: unknown Nicotine: 18 mg/mL Flavor: cappuccino | Increased: arterial stiffness Decreased: the maximal aortic relaxation to methacholine | [153] |
12. | C57BL/6J mice | Base: unknown Nicotine: 1.8% Flavor: menthol | Decreased: pulmonary bacterial clearance, phagocytosis by alveolar macrophages Increased: oxidative stress, intranasal infection with Streptococcus pneumonia, lung viral titers and virus-induced illness and mortality in response to Influenza A virus infection | [141] |
13. | Pregnant C57BL/6J mice | Base: PG:VG (55%/45%) Nicotine: 24 mg/mL Flavor: flavorless | Impair embryo implantation Altered: integrin, chemokine, and JAK signaling pathways | [154] |
14. | Pregnant C57BL/6 mice | Base: unknown Nicotine: 13–16 mg/mL Flavor: tobacco | Alerted: transcriptome in frontal cortex in both offspring and treatment groups | [155] |
15. | Neonatal C57BL/6J mice | Base: PG 100% Nicotine: 1.8% Flavor: flavorless | Decreased: weight gain Increased: cotinine levels Altered: lung growth | [144] |
16. | C57BL/6 mice; CD-1 mice | Base: PG:VG (50%/50%) Nicotine: 24 mg/mL Flavor: flavorless | Decreased: renal filtration, heart rate Increased: circulating proinflammatory and pro-fibrotic proteins, fibrosis in kidneys, heart and liver, blood pressure Altered: gene expression–activation of pro-fibrotic pathway, cardiovascular function | [111] |
17. | Balb/c mice | Base: PG:VG Nicotine: 12 mg/mL Flavor: tobacco | Decrease: parenchymal lung function at both functional residual capacity and high transrespiratory pressures | [156] |
18. | Balb/c mice | Base: unknow Nicotine: 16.8 mg/day Flavor: flavorless | Increased: brain cotinine and nicotine levels, urine cotinine levels, α4β2 nicotinic acetylcholine receptors in different brain areas | [157] |
19. | Balb/c mice | Base: unknown Nicotine: 16 mg/mL Flavors: flavorless | Decreased: asthmatic airway inflammation and airway hyperresponsiveness Increased: infiltration of inflammatory cells into airways from blood, cytokines such as interleukin (IL)-4, IL-5 and IL-13 release, and ovalbumin -specific IgE production | [32] |
20. | Balb/c mice | Base: PG:VG (50%/50%) Nicotine: 12 mg/mL Flavor: Black Licorice, Kola, Banana Pudding, Cinnacide | Decreased: airway inflammation Increased: peripheral airway hyperresponsiveness, soluble lung collagen Heterogeneous effects on features of allergic airways disease | [158] |
21. | Pregnant Balb/C mice | Bae: unknown Nicotine: 18 mg/mL Flavor: tobacco | Decrease: global DNA methylation, Aurora Kinase (Aurk) A and AurkB gene expression and a reduction in neuronal cell numbers in the cornu ammonis 1 region of the dorsal hippocampus in offspring from mothers switching to e-cigarettes | [159] |
22. | Pregnant Balb/c mice | Base: PG:VG (50%/50%) Nicotine: 18 mg/mL Flavor: tobacco | Increased: markers of oxidative stress, inflammation, and fibrosis in the adult offspring | [160] |
23. | Pregnant Balb/c mice | Base: unknown Nicotine: 18 mg/mL Flavor: flavorless | Decreased: body fat in offspring Increased: mRNA expression of brain NPY and iNOS in offspring | [161] |
24. | Pregnant Balb/C mice | Base: PG:VG (50%/50%) Nicotine: 18 mg/mL Flavor: tobacco | Decreased: anxiety, and hyperactivity Increased: global DNA methylation in the brains Altered: genes associated with modulating neurological activity Deficits in short-term memory in offspring | [145] |
25. | Pregnant Balb/c mice | Base: PG:VG (50%/50%) Nicotine: 18 mg/mL Flavor: tobacco | Increased: IL-1β, IL-6, and TNF-α release in the mother lung, TNF-α protein levels in adult offspring Decreased: IL-1β level in adult offspring Altered: global DNA methylation | [162] |
26. | CD1 mice | Base: unknown Nicotine: 24 mg/mL Flavor: tobacco | Increased: nasal platelet-activating factor receptor (PAFR) expression and nasopharyngeal pneumococcal colonization | [126] |
27. | CD1 mice | Base: PG:VG (50%/50%) Nicotine: 24 mg/mL Flavor: flavorless | Decreased: glutamate transporter-1 expression in striatum, cystine/glutamate antiporter in striatum and hippocampus Increased: expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), which regulates glutamate release in frontal cortex and stratum, level of nicotine and cotinine in frontal cortex | [163] |
28. | CD-1 mice | Base: PG:VG, PG 100% Nicotine: 0.6%, 1.8%, 14–24 mg/mL Flavors: flavorless, Treasury, Highlander Grog, California Blues, Pure smoke | Increased: acute phase reactant in serum Altered: inflammatory markers within the airways | [137] |
29. | ICR mice | Base: VG 100% Nicotine: 0.5 and 5 mg/mL Flavor: flavorless | Decrease: in the grip strength and swimming time of the mice, glycogen storage in liver and muscle | [164] |
30. | FVBN mice | Base; PG:VG (50%/50%) Nicotine: 24 mg/mL Flavor: flavorless | Decreased: DNA-repair activity and repair proteins XPC and OGG1/2 in the lung Increased: DNA damage in the lung, bladder, and heart | [75] |
31. | FVB/N mice | Base: PG:VG (50%/50%) Nicotine: 36 mg/mL Flavor: flavorless | Increased: lung adenocarcinomas and bladder urothelial hyperplasia cases | [165] |
32. | A/J mice | Base: PG:VG (50%/50%) Nicotine: 18 mg/mL Flavor: flavorless | Increased: airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression | [100] |
33. | C57BL/6 mice; Apolipoprotein E knockout [ApoE−/−] mice | Base: unknown Nicotine: 2.4% Flavor: tobacco | Decreased: body weight, food intake Increased: Plasma nicotine and cotinine levels, locomotion | [166] |
34. | Apolipoprotein E knockout [ApoE−/−] mice | Base: unknown Nicotine: 2.4% Flavor: flavorless | Decreased: left ventricular fractional shortening and ejection fraction Increased: oxidative stress, mitochondrial DNA mutations, atherosclerotic lesions Altered: genes associated with metabolism, circadian rhythm, inflammation, ultrastructural abnormalities indicative of cardiomyopathy | [167] |
35. | Apolipoprotein E knockout [ApoE−/−] mice on a western diet | Base: unknown Nicotine: 2.4% Flavor: flavoreless | Increased: hepatic lipid accumulation, oxidative stress, hepatic triglyceride levels, hepatocyte apoptosis Altered: gene expression (including genes associated with lipid metabolism, cholesterol biosynthesis, and circadian rhythm) | [168] |
36. | Apolipoprotein E knockout [ApoE−/−] mice | Base: unknown Nicotine: 2.4% Flavor: tobacco | Decreased: NAD+/NADH ratio, sirtuin 1 (SIRT1) Increased: DNA damage (apurinic/apyrimidinic sites), oxidative stress in hepatic cells, poly (ADP ribose) polymerase (PARP1) activity, mitochondrial DNA mutations, and PTEN-induced kinase 1 (PINK1), vacuolization of the mitochondria and a reduction in cellular organelles in hepatocytes | [169] |
37. | DJ-1 knockdown mice | Base: Unknown Nicotine: 24 mg/mL Flavor: flavorless | Altered: regulation of oxidative phosphorylation complexes | [110] |
38. | Sprague Dawley rats | Base: unknown Nicotine: 12 and 24 mg/mL Flavor: tobacco | Increased: necrosis in dorsal skin flaps | [170] |
39. | Sprague Dawley rats | Base: PG:VG Nicotine: 18 mg/mL Flavor: red fruits | Increased: phase-I carcinogen-bioactivating enzymes activity, oxygen free radical production, DNA oxidation, DNA damage at chromosomal and gene level | [142] |
40. | Wistar rats | Base: PG:VG (50%/40%) Nicotine: 18 mg/mL Flavor: tobacco | Decreased: sperm vitality, sperm count in the cauda epididymis Increased: morphologically abnormal spermatozoa, myeloperoxidase granules–inflammatory state Altered: semen parameters, redox status | [171] |
41. | Wistar rats | Base: PG:VG (50%/40%) Nicotine: 18 mg/mL Flavor: tobacco | Decreased: total protein content (superoxide dismutase, catalase and glutathione-S-transferase), cell viability Increased: malondialdehyde content, lipid peroxidation, oxidative stress, inflammatory cells infiltration, oxidative tissue injuries | [172] |
42. | Wistar rats | Base: PG:VG (50%/40%) Nicotine: 18 mg/mL Flavor: tobacco | Decreased: uric acid and mainly urea, superoxide dismutase and catalase activities Increased: total protein and sulfhydryl content, cells with reduced and dark nuclei located in the renal collecting ducts | [173] |
43. | Wistar rats | Base: PG:VG (50%/40%) Nicotine: 18 mg/mL Flavor: tobacco | Decreased: sperm density and viability, testicular lactate dehydrogenase activity, testosterone level, cytochrome P450 side-chain cleavage, 17 beta-hydroxysteroid dehydrogenase mRNA level Increased: antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione-S-transferase, sulfhydryl group content Altered: testis tissue—germ cells desquamation, disorganization of the tubular contents of testis and cell deposits in seminiferous tubules | [174] |
Patients | Characteristic of E-Liquid | Action | Ref. | |
---|---|---|---|---|
1. | Healthy never-smokers (before and after e-cigarette usage) | Base: PG:VG (70%/30%) Nicotine: nicotine-free Flavor: flavorless | Increased: oxidative stress, inflammation, circulatory burden of the serum | [177] |
2. | Healthy never-smokers (before and after e-cigarettes usage) | Unknown | Increased: plasma endothelial microparticle levels Altered: transcriptomes of small airway epithelium and alveolar macrophages | [187] |
3. | Healthy never-smokers (before and after e-cigarettes usage) | Base: PG:VG Nicotine:1.2% Flavor: tobacco | Decrease: high-frequency spectral component in electrocardiogram (0.15-0.4 Hz) Increase: low-frequency spectral component in electrocardiogram (0.04–0.15 Hz) and the low-frequency to high-frequency ratio Altered: in cardiac sympathovagal balance towards sympathetic predominance | [178] |
4. | Healthy e-cigarette users (divided into groups either exposed or not exposed to e-cigarette vapor) | Unknown | Altered: gene expression taking part in Wnt/Ca+ pathway and Rho family GTPases signaling pathway in oral cells | [188] |
5. | Healthy e-cigarettes users vs controls subjects (never smokers) | Unknown | Decreased: high-frequency spectral component in electrocardiogram Increased: low-frequency spectral component in electrocardiogram, low frequency to high frequency ratio, low-density lipoprotein oxidizability, oxidative stress | [179] |
6. | Healthy e-cigarettes users (before and after e-cigarettes usage) | Base: PG:VG Nicotine: 18 mg/mL Flavor: tobacco | Decreased: peak expiratory flow Increased: particularly platelet microparticles | [189] |
7. | Healthy e-cigarettes users vs controls subjects (never smokers) | Unknown | Decreased: lung function test parameters | [176] |
8. | Healthy sporadic smokers (before and after e-cigarettes usage) | Base: PG:VG (49.4%/44.4%) Nicotine: 19 mg/mL Flavor: flavorless | Increased: heart rate and arterial stiffness, flow resistance, blood pressure | [190] |
9. | Healthy sporadic smokers (divided into two groups either exposed or not exposed to e-cigarette vapor) | Base: PG:VG (49.4%/44.4%) Nicotine: 12 mg/mL Flavor: flavorless | Increased: endothelial progenitor cells level in blood, E-selectin positive microvesicles (endothelial origin) | [191] |
10. | Healthy smokers vs controls subjects (never smokers) | Base: PD Nicotine: <10% Flavor: tobacco | Decreased: fraction of exhaled nitric oxide Increased: total respiratory impedance, flow respiratory resistance, overall peripheral airway resistance | [175] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merecz-Sadowska, A.; Sitarek, P.; Zielinska-Blizniewska, H.; Malinowska, K.; Zajdel, K.; Zakonnik, L.; Zajdel, R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. Int. J. Mol. Sci. 2020, 21, 652. https://doi.org/10.3390/ijms21020652
Merecz-Sadowska A, Sitarek P, Zielinska-Blizniewska H, Malinowska K, Zajdel K, Zakonnik L, Zajdel R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. International Journal of Molecular Sciences. 2020; 21(2):652. https://doi.org/10.3390/ijms21020652
Chicago/Turabian StyleMerecz-Sadowska, Anna, Przemyslaw Sitarek, Hanna Zielinska-Blizniewska, Katarzyna Malinowska, Karolina Zajdel, Lukasz Zakonnik, and Radoslaw Zajdel. 2020. "A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment" International Journal of Molecular Sciences 21, no. 2: 652. https://doi.org/10.3390/ijms21020652
APA StyleMerecz-Sadowska, A., Sitarek, P., Zielinska-Blizniewska, H., Malinowska, K., Zajdel, K., Zakonnik, L., & Zajdel, R. (2020). A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. International Journal of Molecular Sciences, 21(2), 652. https://doi.org/10.3390/ijms21020652