Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress
Abstract
1. Introduction
2. Results
2.1. Baseline Clinical and Demographic Characteristics
2.2. Effect of Biophysical Treatment on Salivary Amylase Levels
2.3. Effect of Biophysical Treatment DASS-21 Subscales
3. Discussion
4. Materials and Methods
4.1. Patient Recruitment and Study Design
4.2. Biophysical Therapy
4.3. Salivary Alpha Amylase Sampling and Measurement
4.4. DASS-21 Questionnaire
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DASS-21 | Depression Anxiety Stress Scale-21 |
GAD-7 | Generalized Anxiety Disorder 7-item scale |
SAA | Salivary alpha-amylase |
References
- Korte, S.M.; Koolhaas, J.M.; Wingfield, J.C.; McEwen, B.S. The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 2005, 29, 3–38. [Google Scholar] [CrossRef]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef]
- McEwen, B.S. Stress, adaptation, and disease: Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- Seeman, T.E.; McEwen, B.S.; Rowe, J.W.; Singer, B.H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. USA 2001, 98, 4770–4775. [Google Scholar] [CrossRef]
- Karlamangla, A.S.; Singer, B.H.; McEwen, B.S.; Rowe, J.W.; Seeman, T.E. Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J. Clin. Epidemiol. 2002, 55, 696–710. [Google Scholar] [CrossRef]
- Glei, D.A.; Goldman, N.; Chuang, Y.-L.; Weinstein, M. Do chronic stressors lead to physiological dysregulation? Testing the theory of allostatic load. Psychosom. Med. 2007, 69, 769–776. [Google Scholar] [CrossRef]
- Karlamangla, A.S.; Singer, B.H.; Seeman, T.E. Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. Psychosom. Med. 2006, 68, 500–507. [Google Scholar] [CrossRef]
- Levin, M. The wisdom of the body: Future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen. Med. 2011, 6, 667–673. [Google Scholar] [CrossRef]
- Pokorný, J.; Pokorný, J.; Kobilková, J. Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 2013, 5, 1439–1446. [Google Scholar] [CrossRef]
- Brizhik, L.S.; Eremko, A.A. Nonlinear Model of the Origin of Endogenous Alternating Electromagnetic Fields and Selfregulation of Metabolic Processes in Biosystems. Electromagn. Biol. Med. 2003, 22, 31–39. [Google Scholar] [CrossRef]
- Fröhlich, F.; McCormick, D.A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron 2010, 67, 129–143. [Google Scholar] [CrossRef]
- Brizhik, L.S.; Del Giudice, E.; Popp, F.-A.; Maric-Oehler, W.; Schlebusch, K.-P. On the dynamics of self-organization in living organisms. Electromagn. Biol. Med. 2009, 28, 28–40. [Google Scholar] [CrossRef]
- De Ninno, A.; Pregnolato, M. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization. Electromagn. Biol. Med. 2017, 36, 115–122. [Google Scholar] [CrossRef]
- Muehsam, D.; Ventura, C. Life Rhythm as a Symphony of Oscillatory Patterns: Electromagnetic Energy and Sound Vibration Modulates Gene Expression for Biological Signaling and Healing. Glob. Adv. Health Med. 2014, 3, 40–55. [Google Scholar] [CrossRef]
- Foletti, A.; Grimaldi, S.; Lisi, A.; Ledda, M.; Liboff, A.R. Bioelectromagnetic medicine: The role of resonance signaling. Electromagn. Biol. Med. 2013, 32, 484–499. [Google Scholar] [CrossRef]
- Funk, R.H.W.; Monsees, T.; Ozkucur, N. Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef]
- Funk, R.H. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am. J. Transl. Res. 2018, 10, 1260–1272. [Google Scholar]
- Liboff, A.R. Local and Holistic Electromagnetic Therapies. Electromagn. Biol. Med. 2007, 26, 315–325. [Google Scholar] [CrossRef]
- Foletti, A.; Baron, P.; Sclauzero, E.; Bucci, G.; Rinaudo, A.; Rocco, R. Assessment of biophysical therapy in the management of pain in current medical practice compared with ibuprofen and placebo: A pilot study. J. Biol. Regul. Homeost. Agents 2014, 28, 471–479. [Google Scholar]
- Foletti, A.; Egan, C.G.; Baron, P. Effect of biophysical therapy on articular pain in a primary care setting compared to ibuprofen and placebo: A randomized controlled trial. J. Biol. Regul. Homeost. Agents 2018, 32, 407–413. [Google Scholar] [PubMed]
- Foletti, A.; Baron, P. Biophysical Approach to Knee Osteoarthritis Pain and Disability. World J. Res. Rev. 2018, 5, 48–50. [Google Scholar] [CrossRef]
- Foletti, A.; Pokorný, J. Biophysical approach to low back pain: A pilot report. Electromagn. Biol. Med. 2015, 34, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Baron, P. Towards a biophysical approach to different levels of low back pain. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 592–595. [Google Scholar]
- Foletti, A.; Baron, P. Towards a biophysical management of neck pain and disability. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), Saint Petersburg, Russia, 22–25 May 2017; pp. 1707–1709. [Google Scholar]
- Del Giudice, E.; De Filippis, A.; Del Giudice, N.; Del Giudice, M.; d’Elia, I.; Iride, L.; Menghi, E.; Tedeschi, A.; Cozza, V.; Adone, B.; et al. Evaluation of a method based on coherence in aqueous systems and resonance-based isotherapeutic remedy in the treatment of chronic psoriasis vulgaris. Curr. Top. Med. Chem. 2015, 15, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Baron, P.; Cozzolino, M. Biophysical integrated approach for the management of early stages of CKD in elderly patients: A 12-month controlled study. Int. Urol. Nephrol. 2019, 51, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Baron, P. Biophysical approach to minor anxiety and Depressive Disorders. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 1400–1403. [Google Scholar]
- Strahler, J.; Skoluda, N.; Kappert, M.B.; Nater, U.M. Simultaneous measurement of salivary cortisol and alpha-amylase: Application and recommendations. Neurosci. Biobehav. Rev. 2017, 83, 657–677. [Google Scholar] [CrossRef] [PubMed]
- Skoluda, N.; La Marca, R.; Gollwitzer, M.; Müller, A.; Limm, H.; Marten-Mittag, B.; Gündel, H.; Angerer, P.; Nater, U.M. Long-term stability of diurnal salivary cortisol and alpha-amylase secretion patterns. Physiol. Behav. 2017, 175, 1–8. [Google Scholar] [CrossRef]
- Bendezú, J.J.; Wadsworth, M.E. Person-centered examination of salivary cortisol and alpha-amylase responses to psychosocial stress: Links to preadolescent behavioral functioning and coping. Biol. Psychol. 2018, 132, 143–153. [Google Scholar] [CrossRef]
- Eddy, P.; Wertheim, E.H.; Hale, M.W.; Wright, B.J. The salivary alpha amylase awakening response is related to over-commitment. Stress 2018, 21, 194–202. [Google Scholar] [CrossRef]
- Bauduin, S.E.E.C.; van Noorden, M.S.; van der Werff, S.J.A.; de Leeuw, M.; van Hemert, A.M.; van der Wee, N.J.A.; Giltay, E.J. Elevated salivary alpha-amylase levels at awakening in patients with depression. Psychoneuroendocrinology 2018, 97, 69–77. [Google Scholar] [CrossRef]
- Lépine, J.P. Epidemiology, burden, and disability in depression and anxiety. J. Clin. Psychiatry 2001, 62 (Suppl. S13), 4–10, Discussion 11-2. [Google Scholar]
- Hoffman, D.L.; Dukes, E.M.; Wittchen, H.-U. Human and economic burden of generalized anxiety disorder. Depress. Anxiety 2008, 25, 72–90. [Google Scholar] [CrossRef]
- Kovacic, P.; Somanathan, R. Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J. Recept. Signal Transduct. Res. 2010, 30, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Pall, M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013, 17, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Cichoń, N.; Bijak, M.; Miller, E.; Saluk, J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 2017, 38, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Cichon, N.; Saluk-Bijak, J.; Miller, E.; Sliwinski, T.; Synowiec, E.; Wigner, P.; Bijak, M. Evaluation of the effects of extremely low frequency electromagnetic field on the levels of some inflammatory cytokines in post-stroke patients. J. Rehabil. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cichon, N.; Bijak, M.; Synowiec, E.; Miller, E.; Sliwinski, T.; Saluk-Bijak, J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scand. J. Clin. Lab. Invest. 2018, 78, 626–631. [Google Scholar] [CrossRef]
- Cichoń, N.; Bijak, M.; Czarny, P.; Miller, E.; Synowiec, E.; Sliwinski, T.; Saluk-Bijak, J. Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke Patients. Front. Aging Neurosci. 2018, 10, 294. [Google Scholar] [CrossRef]
- Cichoń, N.; Rzeźnicka, P.; Bijak, M.; Miller, E.; Miller, S.; Saluk, J. Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients. Adv. Clin. Exp. Med. 2018, 27, 1285–1293. [Google Scholar] [CrossRef]
- Cichoń, N.; Czarny, P.; Bijak, M.; Miller, E.; Śliwiński, T.; Szemraj, J.; Saluk-Bijak, J. Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation. Oxid. Med. Cell. Longev. 2017, 2017, 2181942. [Google Scholar] [CrossRef]
- Pinteaux, E.; Rothwell, N.J.; Boutin, H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia 2006, 53, 551–556. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, T. Synaptic plasticity-related neural oscillations on hippocampus-prefrontal cortex pathway in depression. Neuroscience 2015, 292, 170–180. [Google Scholar] [CrossRef]
- Xu, X.; An, L.; Mi, X.; Zhang, T. Impairment of cognitive function and synaptic plasticity associated with alteration of information flow in theta and gamma oscillations in melamine-treated rats. PLoS ONE 2013, 8, e77796. [Google Scholar] [CrossRef] [PubMed]
- Kojima, N.; Yasuda, H.; Hanamura, K.; Ishizuka, Y.; Sekino, Y.; Shirao, T. Drebrin A regulates hippocampal LTP and hippocampus-dependent fear learning in adult mice. Neuroscience 2016, 324, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.M.; Buzsáki, G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci. USA 2007, 104, 14495–14500. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-M.; Chen, F.; Yu, H.-Q.; Zhou, P. Resonance effects on human brain based on magnetic stimulation of extremely low frequency. J. Tianjin Univ. 2011, 44, 823–828. [Google Scholar]
- Yang, J.; Wang, L.; Wang, F.; Tang, X.; Zhou, P.; Liang, R.; Zheng, C.; Ming, D. Low-Frequency Pulsed Magnetic Field Improves Depression-Like Behaviors and Cognitive Impairments in Depressive Rats Mainly via Modulating Synaptic Function. Front. Neurosci. 2019, 13, 820. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Rajkowski, J.; Kubiak, P.; Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 1994, 14, 4467–4480. [Google Scholar] [CrossRef]
- Baum, B.J. Principles of saliva secretion. Ann. N. Y. Acad. Sci. 1993, 694, 17–23. [Google Scholar] [CrossRef]
- Gordis, E.B.; Granger, D.A.; Susman, E.J.; Trickett, P.K. Salivary alpha amylase-cortisol asymmetry in maltreated youth. Horm. Behav. 2008, 53, 96–103. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N.; Schlotz, W.; Ehlert, U.; Kirschbaum, C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology 2007, 32, 392–401. [Google Scholar] [CrossRef]
- Dubick, M.A.; Conteas, C.N.; Billy, H.T.; Majumdar, A.P.; Geokas, M.C. Raised serum concentrations of pancreatic enzymes in cigarette smokers. Gut 1987, 28, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Onyesom, I.; Osioma, E.; Ifie, E.J.; Oweh, O.T. Activities of Alpha Amylase in Serum and Saliva of Some Nigerian Cigarette Smokers. Adv. Life Sci. 2012, 2, 28–30. [Google Scholar]
- Maier, H.; Jarczyk, L.; Scherer, G.; Born, I.A. Effects of acute nicotine administration on the function of the human parotid gland. Laryngo Rhino Otol. 1991, 70, 24–26. [Google Scholar] [CrossRef]
- Chowdhury, P.; Doi, R.; Tangoku, A.; Rayford, P.L. Structural and functional changes of rat exocrine pancreas exposed to nicotine. Int. J. Pancreatol. 1995, 18, 257–264. [Google Scholar] [PubMed]
- Foletti, A.; Ledda, M.; Lolli, M.G.; Grimaldi, S.; Lisi, A. Electromagnetic information transfer through aqueous system. Electromagn. Biol. Med. 2017, 36, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, I.; Foletti, A. Steps towards a Biophysical Approach to Refractory Gynecological Infections. In Proceedings of the 2015 Progress in Electromagnetic Research Symposium (PIERS), Prague, Czech Republic, 6–9 July 2015; pp. 175–178. [Google Scholar]
- Ferrara, I.; Foletti, A. Electronic transmission of ethynyl-oestradiol in menopausal women. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), Saint Petersburg, Russia, 22–25 May 2017; pp. 1704–1706. [Google Scholar]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales, 2nd ed.; Psychology Foundation of Australia: Sydney, Australia, 1995. [Google Scholar]
- Bottesi, G.; Ghisi, M.; Altoè, G.; Conforti, E.; Melli, G.; Sica, C. The Italian version of the Depression Anxiety Stress Scales-21: Factor structure and psychometric properties on community and clinical samples. Compr. Psychiatry 2015, 60, 170–181. [Google Scholar] [CrossRef]
Characteristic | All (N = 24) | Placebo (N = 12) | Biophysical (N = 12) | p-Value |
---|---|---|---|---|
Age (years) | 39.2 ± 7.2 | 38.3 ± 5.6 | 40.1 ± 8.6 | 0.54 |
Female gender, n (%) | 20 (83.3) | 10 (83.3) | 10 (83.3) | 1.00 |
Cigarette smoker, n (%) | 11 (45.8) | 6 (50) | 5 (41.7) | 0.68 |
Education, n (%) | ||||
High school | 24 (100) | 12 (100) | 12 (100) | 1.00 |
University | 7 (29.2) | 3 (25) | 4 (33.3) | 0.65 |
Salivary amylase (U/mL) | 111.8 ± 94.5 | 105.2 ± 106.8 | 118.4 ± 84.6 | 0.74 |
DASS-21 subscales | ||||
Depression | 9.6 ± 2.1 | 9.5 ± 2.1 | 9.7 ± 2.2 | 0.85 |
Anxiety | 6.8 ± 1.8 | 6.8 ± 1.9 | 6.7 ± 1.9 | 0.83 |
Stress | 11.6 ± 3.4 | 11.7 ± 3.4 | 11.5 ± 3.6 | 0.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, I.; Egan, C.G.; Foletti, A. Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. Int. J. Mol. Sci. 2020, 21, 415. https://doi.org/10.3390/ijms21020415
Ferrara I, Egan CG, Foletti A. Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. International Journal of Molecular Sciences. 2020; 21(2):415. https://doi.org/10.3390/ijms21020415
Chicago/Turabian StyleFerrara, Ida, Colin Gerard Egan, and Alberto Foletti. 2020. "Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress" International Journal of Molecular Sciences 21, no. 2: 415. https://doi.org/10.3390/ijms21020415
APA StyleFerrara, I., Egan, C. G., & Foletti, A. (2020). Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. International Journal of Molecular Sciences, 21(2), 415. https://doi.org/10.3390/ijms21020415