Functional Magnetic Graphene Composites for Biosensing
Abstract
:1. Introduction
2. Fabrication of Magnetic Graphene Composites (MGCs) for Sensors
2.1. Ex Situ Assembly Methods
2.1.1. Non-Covalent Assembly Methods
2.1.2. Covalent Assembly Methods
2.2. In Situ Assembly Methods
2.2.1. In Situ Reduction Methods
2.2.2. In Situ Hydrothermal Synthesis Methods
3. Sensors Based on MGCs
3.1. Optical Sensors
3.2. Electrochemical Sensors
3.3. Other Sensors
4. Summary and Outlook
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.-B. Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 2015, 115, 2483–2531. [Google Scholar] [CrossRef] [Green Version]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; De La Guardia, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal. Chem. 2015, 72, 1–9. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, H.; Chen, W.; Zhang, J.; Wang, N.; Guo, X.; Jiang, X. Rapid detection of copper in biological systems using click chemistry. Small 2018, 14, 1703857. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Li, B. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chem. 2018, 255, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ding, C.; Lin, Y.; Sun, W.; Liu, H.; Zhu, X.; Dai, Y.; Luo, C. Highly selective and sensitive chemiluminescence biosensor for adenosine detection based on carbon quantum dots catalyzing luminescence released from aptamers functionalized graphene@magnetic β-cyclodextrin polymers. Talanta 2018, 186, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Daneshpour, M.; Karimi, B.; Omidfar, K. Simultaneous detection of gastric cancer-involved miR-106a and let-7a through a dual-signal-marked electrochemical nanobiosensor. Biosens. Bioelectron. 2018, 109, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Liu, Y.; Wang, S.; Hu, Y.; Guo, Z. Electrochemiluminescence immunosensor based on functionalized graphene/Fe3O4-Au magnetic capture probes for ultrasensitive detection of tetrodotoxin. Electroanalysis 2017, 29, 2098–2105. [Google Scholar] [CrossRef]
- Khoshfetrat, S.M.; Mehrgardi, M.A. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 2017, 114, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Wang, Y.; Wu, C.; Li, Q.; Tang, B. Rapid and sensitive detection of cancer cells based on the photothermal effect of graphene functionalized magnetic microbeads. ACS Appl. Mater. Interfaces 2016, 8, 29933–29938. [Google Scholar] [CrossRef] [PubMed]
- Seidi, S.; Majd, M.; Rezazadeh, M.; Shanehsaz, M. Magnetic nanocomposite of chitosan-Schiff base grafted graphene oxide for lead analysis in whole blood. Anal. Biochem. 2018, 553, 28–37. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Wu, H.-F. Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J. Mater. Chem. B 2013, 1, 3950–3961. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Li, J.; Ding, C.; Lin, Y.; Sun, W.; Luo, C. An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 2017, 174, 809–818. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, F.-B.; Lin, H.-W.; Wu, F.; Chen, D.-Z.; Wu, Z.-Y. A novel H2O2 biosensor based on Fe3O4-Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets-Nafion film modified screen-printed carbon electrode. Electrochim. Acta 2013, 109, 750–755. [Google Scholar] [CrossRef]
- Chimezie, A.B.; Hajian, R.; Yusof, N.A.; Woi, P.M.; Shams, N. Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe3O4) as an electrochemical sensor for trace determination of As(III) in water resources. J. Electroanal. Chem. 2017, 796, 33–42. [Google Scholar] [CrossRef]
- Qu, J.; Dong, Y.; Wang, Y.; Lou, T.; Du, X. Determination of hydrogen peroxide using a biosensor based on Fe3O4 magnetic nanoparticles and horseradish peroxidase with graphene-chitosan composite. Mciro Nano Lett. 2014, 9, 572–576. [Google Scholar] [CrossRef]
- He, Z.; Wei, J.; Gan, C.; Liu, W.; Liu, Y. A rolling circle amplification signal-enhanced immunosensor for ultrasensitive microcystin-LR detection based on a magnetic graphene-functionalized electrode. RSC Adv. 2017, 7, 39906–39913. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Takemura, K.; Kato, C.N.; Suzuki, T.; Park, E.Y. Binary nanoparticle graphene hybrid structure-based highly sensitive biosensing platform for norovirus-like particle detection. ACS Appl. Mater. Interfaces 2017, 9, 27298–27304. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, S.; Zhao, T.; Jia, X.; He, P. Magnetic graphene oxide-supported hemin as peroxidase probe for sensitive detection of thiols in extracts of cancer cells. Biosens. Bioelectron. 2014, 57, 110–116. [Google Scholar] [CrossRef]
- Roy, E.; Patra, S.; Kumar, D.; Madhuri, R.; Sharma, P.K. Multifunctional magnetic reduced graphene oxide dendrites: Synthesis, characterization and their applications. Biosens. Bioelectron. 2015, 68, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Gou, Y.; Ma, Y.; Zheng, X.; Bai, R.; Abdelmoaty, A.A.A.; Hu, F. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. Biosens. Bioelectron. 2017, 88, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-Q.; Nie, F.; Sheng, Q.-L.; Zheng, J.-B. An electrochemical sensor for sensitive determination of nitrites based on Ag-Fe3O4-graphene oxide magnetic nanocomposites. Chem. Pap. 2015, 69, 911–920. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Chen, F.; Liu, J.; Zhang, H.; Yang, Z.; Wang, B. Strong coupled palladium nanoparticles decorated on magnetic graphene nanosheets as enhanced peroxidase mimetics for colorimetric detection of H2O2. Dyes Pigment. 2016, 125, 64–71. [Google Scholar] [CrossRef]
- Chen, X.-H.; Pan, S.-D.; Ye, M.-J.; Li, X.-P.; Zhao, Y.-G.; Jin, M.-C. Magnetic solid-phase extraction based on a triethylenetetramine-functionalized magnetic graphene oxide composite for the detection of ten trace phenolic environmental estrogens in environmental water. J. Sep. Sci. 2016, 39, 762–768. [Google Scholar] [CrossRef]
- Pakapongpan, S.; Poo-Arporn, R.P. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater. Sci. Eng. C Mater. 2017, 76, 398–405. [Google Scholar] [CrossRef]
- Sun, B.; Gou, X.; Bai, R.; Abdelmoaty, A.A.A.; Ma, Y.; Zheng, X.; Hu, F. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor. Mater. Sci. Eng. C Mater. 2017, 74, 515–524. [Google Scholar] [CrossRef]
- Sacmaci, S.; Sacmaci, M.; Kok, C. Grafting of glutathione to magnetic graphene oxide and application for the determination of As(III)/(V) in food samples via a zeta potential analyzer. New J. Chem. 2018, 42, 5345–5355. [Google Scholar] [CrossRef]
- Ge, S.; Sun, M.; Liu, W.; Li, S.; Wang, X.; Chu, C.; Yan, M.; Yu, J. Disposable electrochemical immunosensor based on peroxidase-like magnetic silica-graphene oxide composites for detection of cancer antigen 153. Sens. Actuat. B Chem. 2014, 192, 317–326. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Q.; Song, H.; Zhao, X.; Yi, T.; Chen, H.; Chen, X. In situ synthesis of self-assembled three-dimensional graphene-magnetic palladium nanohybrids with dual-enzyme activity through one-pot strategy and its application in glucose probe. ACS Appl. Mater. Interfaces 2015, 7, 3480–3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Chen, C.; Yang, D.; Dong, G.; Jia, S.; Zhao, B.; Yan, L.; Yao, Q.; Sunna, A.; Liu, Y. Optical biosensors based on nitrogen-doped graphene functionalized with magnetic nanoparticles. Adv. Mater. Interfaces 2016, 3. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Karimzadeh, A.; Shadjou, N.; Mokhtarzadeh, A.; Bageri, L.; Sadeghi, S.; Mahboob, S. Graphene quantum dots decorated with magnetic nanoparticles: Synthesis, electrodeposition, characterization and application as an electrochemical sensor towards determination of some amino acids at physiological pH. Mater. Sci. Eng. C Mater. 2016, 68, 814–830. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Guo, Z.; Ma, H.; Li, Y.; Cao, W.; Du, B.; Wei, Q. Magnetic electrode-based label-free electrochemical impedance spectroscopy immunosensor for sensitive detection of human malignant melanoma markers using gold nanoparticles functionalized magnetic graphene sheets as signal amplifier. RSC Adv. 2014, 4, 59106–59113. [Google Scholar] [CrossRef]
- Hu, L.-Y.; Niu, C.-G.; Wang, X.-Y.; Huang, D.-W.; Zhang, L.; Zeng, G.-M. Magnetic separate “turn-on” fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene. Talanta 2017, 168, 196–202. [Google Scholar] [CrossRef]
- Duan, H.; Li, L.; Wang, X.; Wang, Y.; Li, J.; Luo, C. beta-Cyclodextrin/chitosan-magnetic graphene oxide-surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv. 2015, 5, 68397–68403. [Google Scholar] [CrossRef]
- Jahanbani, S.; Benvidi, A. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite. Mater. Sci. Eng. C Mater. 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Omidinia, E.; Shadjou, N.; Hasanzadeh, M. (Fe3O4)-graphene oxide as a novel magnetic nanomaterial for non-enzymatic determination of phenylalanine. Mater. Sci. Eng. C Mater. 2013, 33, 4624–4632. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Duan, H.; Wang, Y.; Bu, Y.; Luo, C. Based on magnetic graphene oxide highly sensitive and selective imprinted sensor for determination of sunset yellow. Talanta 2016, 147, 169–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.; Zhou, Y.; Li, B.; Gu, W.; Shi, X.; Xian, Y. Electrochemical sensor for bisphenol A based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 2013, 107, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhuo, Y.; Chai, Y.; Yu, Y.; Liao, N.; Yuan, R. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag. Anal. Chim. Acta 2013, 790, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Abdolmohammad-Zadeh, H.; Rahimpour, E. Utilizing of Ag@AgCl@graphene oxide@Fe3O4 nanocomposite as a magnetic plasmonic nanophotocatalyst in light-initiated H2O2 generation and chemiluminescence detection of nitrite. Talanta 2015, 144, 769–777. [Google Scholar] [CrossRef]
- Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chem. Eng. J. 2017, 327, 694–704. [Google Scholar] [CrossRef]
- Duan, H.; Wang, X.; Wang, Y.; Li, J.; Sun, Y.; Luo, C. An efficient Horseradish peroxidase chemiluminescence biosensor with surface imprinting based on phenylboronic acid functionalized ionic liquid@magnetic graphene oxide. Sens. Actuat. B Chem. 2016, 236, 44–51. [Google Scholar] [CrossRef]
- Sereshti, H.; Afsharsaveh, Z.; Gaikani, H.; Nodeh, H.R. Electroless-coated magnetic three-dimensional graphene with silver nanoparticles used for the determination of pesticides in fruit samples. J. Sep. Sci. 2018, 41, 1567–1575. [Google Scholar] [CrossRef]
- Liao, N.; Zhuo, Y.; Chai, Y.-Q.; Xiang, Y.; Han, J.; Yuan, R. Reagent less electrochemiluminescent detection of protein biomarker using graphene-based magnetic nanoprobes and poly-l-lysine as co-reactant. Biosens. Bioelectron. 2013, 45, 189–194. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Li, L.; Duan, H.; Luo, C. Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate. Talanta 2015, 131, 354–360. [Google Scholar] [CrossRef]
- Il Kim, M.; Kim, M.S.; Woo, M.-A.; Ye, Y.; Kang, K.S.; Lee, J.; Park, H.G. Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 2014, 6, 1529–1536. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Lee, J.H. Role of magnetic Fe3O4 graphene oxide in chemiluminescent aptasensors capable of sensing tumor markers in human serum. Anal. Methods 2013, 5, 6964–6968. [Google Scholar] [CrossRef]
- Duan, H.; Li, L.; Wang, X.; Wang, Y.; Li, J.; Luo, C. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer. Spectrochim. Acta A 2015, 139, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Wang, K.; Jin, Y.; Yang, X.; Jiang, L.; Yan, Y.; Dong, X.; Li, H.; Qiu, B. Polyoxometalate@magnetic graphene as versatile immobilization matrix of Ru(bpy)(3)(2+) for sensitive magneto-controlled electrochemiluminescence sensor and its application in biosensing. Biosens. Bioelectron. 2014, 57, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Lu, L.; Gao, X.; Li, M.-J.; Qiu, B.; Lin, Z.; Yang, H.; Chen, G. Magnetic graphene oxide-based electrochemiluminescent aptasensor for thrombin. Electrochim. Acta 2013, 89, 13–17. [Google Scholar] [CrossRef]
- Hou, T.; Liu, Y.; Xu, L.; Wu, Y.; Ying, Y.; Wen, Y.; Guo, X.; Yang, H. Au dotted magnetic graphene sheets for sensitive detection of thiocyanate. Sensor Actuat. B Chem. 2017, 241, 376–382. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, Y.; Kang, M.; Wang, K.; Xiang, Y. Electrochemical detection of protein by using magnetic graphene-based target enrichment and copper nanoparticles-assisted signal amplification. Analyst 2015, 140, 7818–7822. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, Q.; Li, J.; Shu, J.; Qiu, Z.; Lin, Y.; Tang, D. Magnetic graphene nanosheet-based microfluidic device for homogeneous real-time electronic monitoring of pyrophosphatase activity using enzymatic hydrolysate-induced release of copper ion. Anal. Chem. 2016, 88, 1030–1038. [Google Scholar] [CrossRef]
- Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Prakash, A.; Chandra, S.; Bahadur, D. Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon 2012, 50, 4209–4219. [Google Scholar] [CrossRef]
- Molinero-Fernandez, A.; Jodra, A.; Moreno-Guzman, M.; Angel Lopez, M.; Escarpa, A. Magnetic reduced graphene oxide/nickel/platinum nanoparticles micromotors for mycotoxin analysis. Chem. Eur. J. 2018, 24, 7172–7176. [Google Scholar] [CrossRef]
- Jin, Y.; Qian, J.; Wang, K.; Yang, X.; Dong, X.; Qiu, B. Fabrication of multifunctional magnetic FePc@Fe3O4/reduced graphene oxide nanocomposites as biomimetic catalysts for organic peroxide sensing. J. Electroanal. Chem. 2013, 693, 79–85. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Liu, Z.; Guo, Y.; Li, C.; Dong, C.; Shuang, S. An ultra-sensitive sensor based on beta-cyclodextrin modified magnetic graphene oxide for detection of tryptophan. J. Electroanal. Chem. 2016, 781, 363–370. [Google Scholar] [CrossRef]
- Derikvand, H.; Azadbakht, A. An impedimetric sensor comprising magnetic nanoparticles-graphene oxide and carbon nanotube for the electrocatalytic oxidation of salicylic acid. J. Inorg. Organomet. Polym. Mater. 2017, 27, 901–911. [Google Scholar] [CrossRef]
- Azadbakht, A.; Derikvandi, Z. Aptamer-based sensor for diclofenac quantification using carbon nanotubes and graphene oxide decorated with magnetic nanomaterials. J. Iran. Chem. Soc. 2018, 15, 595–606. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Hou, C.; Liu, M. Magnetic Fe3O4@MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine. RSC Adv. 2015, 5, 98260–98268. [Google Scholar] [CrossRef]
- Yakout, A.A.; Abd El-Hady, D. A combination of beta-cyclodextrin functionalized magnetic graphene oxide nanoparticles with beta-cyclodextrin-based sensor for highly sensitive and selective voltammetric determination of tetracycline and doxycycline in milk samples. RSC Adv. 2016, 6, 41675–41686. [Google Scholar] [CrossRef]
- Hashemi, P.; Bagheri, H.; Afkhami, A.; Amidi, S.; Madrakian, T. Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen printed electrode for sensitive determination of ampyra. Talanta 2018, 176, 350–359. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Li, F.; Li, M.; Chen, L.; Dong, Y.; Wei, Q. Sandwich-type amperometric immunosensor using functionalized magnetic graphene loaded gold and silver core-shell nanocomposites for the detection of Carcinoembryonic antigen. J. Electroanal. Chem. 2017, 795, 1–9. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Dong, Y.; Jiang, L.; Wang, P.; Liu, Q.; Liu, H.; Wei, Q. An ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-C.; Chen, Y.-T.; Tsai, R.-Y.; Chen, M.-C.; Chen, S.-L.; Xiao, M.-C.; Chen, C.-L.; Hua, M.-Y. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens. Bioelectron. 2015, 66, 198–207. [Google Scholar] [CrossRef]
- Taghvimi, A.; Hamishehkar, H.; Ebrahimi, M. The application of magnetic nano graphene oxide in determination of methamphetamine by high performance liquid chromatography of urine samples. J. Iran. Chem. Soc. 2016, 13, 1471–1480. [Google Scholar] [CrossRef]
- Duan, H.; Wang, X.; Wang, Y.; Sun, Y.; Li, J.; Luo, C. An ultrasensitive lysozyme chemiluminescence biosensor based on surface molecular imprinting using ionic liquid modified magnetic graphene oxide/beta-cyclodextrin as supporting material. Anal. Chim. Acta 2016, 918, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; Wei, K.-C.; Liao, S.-S.; Huang, C.-Y.; Sun, C.-L.; Wu, P.-J.; Lu, Y.-J.; Yang, H.-W.; Ma, C.-C.M. A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosens. Bioelectron. 2015, 67, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wu, H.; Wu, B.; Wang, Z.; Cao, H.; Fu, C.; Jia, N. Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano Micro Lett. 2014, 6, 258–267. [Google Scholar] [CrossRef]
- Arvand, M.; Hemmati, S. Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens. Actuat. B Chem. 2017, 238, 346–356. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, H.; Li, L.; Wang, X.; Li, J.; Bu, Y.; Luo, C. A chemiluminescence sensor for determination of lysozyme using magnetic graphene oxide multi-walled carbon nanotube surface molecularly imprinted polymers. RSC Adv. 2016, 6, 12391–12397. [Google Scholar] [CrossRef]
- Naghib, S.M.; Rahmanian, M.; Majidzadeh-A, K.; Asiaei, S.; Vahidi, O. Novel magnetic nanocomposites comprising reduced graphene oxide/Fe3O4/gelatin utilized in ultrasensitive non-enzymatic biosensing. Int. J. Electrochem. Sci. 2016, 11, 10256–10269. [Google Scholar] [CrossRef]
- Liang, R.-P.; Wang, X.-N.; Liu, C.-M.; Meng, X.-Y.; Qiu, J.-D. Construction of graphene oxide magnetic nanocomposites-based on-chip enzymatic microreactor for ultrasensitive pesticide detection. J. Chromatogr. A 2013, 1315, 28–35. [Google Scholar] [CrossRef]
- Waifalkar, P.P.; Chougale, A.D.; Kollu, P.; Patil, P.S.; Patil, P.B. Magnetic nanoparticle decorated graphene based electrochemical nanobiosensor for H2O2 sensing using HRP. Colloids Surf. B 2018, 167, 425–431. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Ge, S.; Lu, J.; Yu, J.; Song, X.; Liu, S. Magnetic graphene nanosheets based electrochemiluminescence immunoassay of cancer biomarker using CdTe quantum dots coated silica nanospheres as labels. Talanta 2012, 99, 512–519. [Google Scholar] [CrossRef]
- Dong, Y.-L.; Zhang, H.-G.; Rahman, Z.U.; Su, L.; Chen, X.-J.; Hu, J.; Chen, X.-G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976. [Google Scholar] [CrossRef]
- Zhou, Z.; Hao, N.; Zhang, Y.; Hua, R.; Qian, J.; Liu, Q.; Li, H.; Zhu, W.; Wang, K. A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation. Chem. Commun. 2017, 53, 7096–7099. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.D.; Rocha, F.R.P. A green flow-injection procedure for fluorimetric determination of bisphenol A in tap waters based on the inclusion complex with β-cyclodextrin. Int. J. Environ. Anal. Chem. 2013, 93, 1402–1412. [Google Scholar] [CrossRef]
- Babamiri, B.; Salimi, A.; Hallaj, R.; Hasanzadeh, M. Nickel nanoclusters as a novel emitter for molecularly imprinted electrochemiluminescence based sensor toward nanomolar detection of creatinine. Biosensors Bioelectron. 2018, 107, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Dai, Y.; Sun, Y.; Ding, C.; Sun, W.; Zhu, X.; Liu, H.; Luo, C. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 2018, 182, 116–124. [Google Scholar] [CrossRef]
- Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.-Z. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J. Phys. Chem. C 2009, 113, 8853–8857. [Google Scholar] [CrossRef]
- Borisova, B.; Sanchez, A.; Jimenez-Falcao, S.; Martin, M.; Salazar, P.; Parrado, C.; Pingarron, J.M.; Villalonga, R. Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sens. Actuat. B Chem. 2016, 232, 84–90. [Google Scholar] [CrossRef]
- Li, S.; Wu, Q.; Ma, P.; Zhang, Y.; Song, D.; Wang, X.; Sun, Y. A sensitive SPR biosensor based on hollow gold nanospheres and improved sandwich assay with PDA-Ag@Fe3O4/rGO. Talanta 2018, 180, 156–161. [Google Scholar] [CrossRef]
Preparation Method | Composite | Sensor Type | Analyte(s) | Linear Dynamic Range (LDR) | Limit of Detection (LOD) | Real Sample (s) | Citation |
---|---|---|---|---|---|---|---|
Ex situ non-covalent conjugation Assembly | CS/Fe3O4/GO/T-Apt/HM | Chemiluminescence | Thrombin | 5.0 × 10−15–2.5 × 10−10 M | 1.5 × 10−15 M | Serum | [15] |
BGNs- Fe3O4/Au-Ab1 | Electro-chemiluminescent immunoassay | Tetrodotoxin | 0.01–100 ng·mL−1 | 0.01 ng·mL−1 | Muscle samples | [10] | |
SPE/GS-Nafion/Fe3O4-Au-HRP | Electrochemical | H2O2 | 2.0 × 10−5–2.5 × 10−3 M | 1.2 × 10−5 M | Contact lens care solution | [16] | |
rGO-Fe3O4/SPE | Electrochemical | As(III) | 2–300 μg·L−1 | 0.10 μg L−1 | Lake, reverse osmosis and natural mineral water samples | [17] | |
HRP-GS-Fe3O4-CS/GC | Electrochemical | H2O2 | 2.49 × 10−5–1.67 × 10−3 M | 3.05 × 10−6 M | - | [18] | |
Fe3O4@PDA-rGO | Electrochemical immunoassay | Microcystin-LR | 0.01–50 mg·L−1 | 0.007 ug·L−1 | Real water | [19] | |
Fe3O4-GO | Photothermal Imaging | Cancer cell | 100–700 cells | 100 cells | Human Blood | [12] | |
Fe3O4@Chitosan/GO | Flame atomic absorption spectrometer (FAAS) | Lead ion Pb2+ | 10–800 ng·mL−1 | 2 ng·mL−1 | Blood | [13] | |
Ex situ covalent conjugation Assembly | Fe3O4-GO-hemin | Colorimetry | Glutathione (GSH) | 10−10–10−6 M | 8.2 × 10−11 M | Extraction of Ramos cells | [22] |
Pd/Fe3O4-PEI-rGO | Colorimetry | H2O2 | 0.5–150 × 10−6 M | 0.1 × 10−6 M | - | [26] | |
rGO-Fe3O4@Silance-rGO | Electrochemical | Europium metal ion | Differentialpulsestrippingvoltammetry (DPSV) (0.99–29.12 μg·L−1); Squarewavestrippingvoltammetr (SWSV) (0.059–47.6 μg·L−1) | DPSV (0.30 μg·L−1); SWSV (0.019 μg·L−1) | Water, food, urine and human blood serum | [23] | |
Ag-Fe3O4-GO/GCE | Electrochemical | Nitrite | 0.5 × 10−6 M–0.72 × 10−3 M, 0.72–8.15 × 10−3 M | 0.17 × 10−6 M | Tap water | [25] | |
Fe3O4-rGO-GOx | Electrochemical | Glucose | 0.05–1 × 10−3 M | 0.1 × 10−6 M | - | [28] | |
Fe3O4-rGO | Electrochemical | Lobetyolin | 1.0 × 10−7–1.0 × 10−4 mol·L−1 | 4.3 × 10−8 M | Radix Codonopsis | [29] | |
Bio-Ab-Cor/AuNPs/ Fe3O4-rGO@Nafion/GCE | Electrochemical immunoassay | Cortisol | 0.1–1000 ng·mL−1 | 0.05 ng·mL−1 | Human serum | [24] | |
Fe3O4@SiO2-GO | Electrochemical immunoassay | Cancer antigen 153 | 10−3–200 U·mL−1 | 2.8 × 10−4 U·mL−1 | Serum | [31] | |
Fe3O4/GO@GSH | Zeta potential analyzer | As(III) | 0.5–1.5 mol·L−1 | 0.1 mg·L−1 | Tea samples | [30] | |
TETA-Fe3O4-GO | MSPE-LC-MS/MS | Estrogens | - | 0.15–1.5 ng·L−1 | Tap water, well river, river water | [27] | |
In situ Reduction | Fe3O4-Pd/3DRGO | Colorimetry | GSH/Glucose | 0.4–40 × 10−6 M/0.5–60 × 10−6 M | 5.2 × 10−8 M/1.3 × 10−7 M | Human urine | [32] |
Fe3O4/NG | Colorimetry | H2O2 and Glucose | 17.1 × 10−6 M–10 × 10−3 M 17.1 × 10−6 M~18.0 × 10−3 M | 17.1 × 10−6 M 57.9 × 10−6 M | - | [33] | |
Fe3O4/GO/PtNPs | Colorimetric | Breast cancer cells | 100–1000 cells | 100 cells | - | [34] | |
Aptamer- Fe3O4/GO | Fluorescent | Bisphenol A | 0.2–10 ng·mL−1 | 0.071 ng·mL−1 | Actual water | [35] | |
Fe3O4-Chitosan-GO | Fluorescence spectroscopy, and MALDI-MS | Bacterial cell | P.aeruginosa, 4–40 × 102 cfu·mL−1 S.aureus, 1–30 × 102 cfu·mL−1 | 1.0–4.0 × 102 cfu·mL−1 | Blood colloids | [14] | |
ILs-Fe3O4@DA/GO/β-CD | Chemiluminescence | Lysozyme | 1.0–80 × 10−9 mg·mL−1 | 3.0 × 10−10 mg·mL−1 | Human urine | [36] | |
Fe3O4/GO | Chemiluminescence | prostate specific antigen (PSA) | 1.6–50 ng·mL−1 | 0.5 ng·mL−1 | 25% human serum. | [37] | |
β-CD/Cs- Fe3O4/GO-SMIP | Chemiluminescence | Bovine serum albumin (BSA) | 5.0 × 10−7–1.0 × 10−4 mg·mL−1 | 1.1 × 10−7 mg·L−1 | - | [38] | |
Fe3O4/rGO-MWCNTs/SMIP | Chemiluminescence | Lysozyme | 5.04 × 10−9–4.27 × 10−7 g·mL−1 | 1.90 × 10−9 g·mL−1 | Eggs | [39] | |
Fe3O4/GO/IL/PBA | Chemiluminescence | Horseradish peroxidase | 1.0 × 10−4–8.0 × 10−3 mg·mL−1 | 2.9 × 10−5 mg·mL−1 | Waste water | [40] | |
Si/Fe3O4/GO/MIP | Chemiluminescence | Dopamine | 8.0–200.0 ng·mL−1 | 1.5 ng·mL−1 | Urine | [41] | |
Fe3O4/GO/Ag/AgCl | Chemiluminescence | Nitrite | 5–200 ng·mL−1 | 1.15 ng·mL−1 | Sausage | [42] | |
Fe3O4@POM/rGO/ Ru(bpy)32+ | Electro-chemiluminescent | Nicotinamide adenine dinucleotide (NADH), L-lactate dehydrogenase | 5 × 10−9 M–5 × 10−4 M for L-lactate | 0.1 × 10−9 M for NADH; 0.4 × 10−9 M for L-lactate | Serum | [43] | |
Fe3O4/GO | Electro-chemiluminescent | Thrombin | 2.0–50 × 10−9 mol·L−1. | 1.3 × 10−9 mol·L−1 | - | [44] | |
Fe3O4/GO/Ab2/Ru(bpy)32+ | Electro-chemiluminescent immunoassay | 3,30,5-triiodothyronine (T3) | 0.1 pg·mL−1–10 ng·mL−1 | 0.03 pg·mL−1 | - | [45] | |
Fe3O4/GNs | Electro-chemiluminescent immunoassay | PSA | 0.003–50 ng·mL−1 | 0.72 ng·mL−1 | Human serum | [46] | |
γ-Fe2O3/rGO | SERS 1 | R6G molecules | 5 × 10−7–5 × 10−4 M | 5 × 10−7 M | [47] | ||
Fe3O4/GO/Au | SERS 1 | Thiocyanate (SCN−) | - | 10−8 g·L−1 | Milk | [48] | |
Fe3O4/RGO | Electrochemical | Folate receptor | 0.01–100 ng·mL−1 | 7.8 pg·mL−1 | Pathological serum samples | [49] | |
Fe3O4/GO | Electrochemical | Pyrophosphatase | 0.1–20 mU·mL−1 | 0.05 mU·mL−1 | - | [50] | |
Fe3O4/GO | Electrochemical | Vascular endothelial growth factor (VEGF) | 31.25–2000 pg·mL−1 | 31.25 pg·mL−1 | Plasma | [51] | |
In situ Reduction | Fe3O4/GO/GC | Electrochemical | H2O2, NADH, Lactate, Ascorbicacid(AA), Dopamine(DA) Uric acid(UA) Nitrite | H2O2, 2 × 10−8–2.8 × 10−7 M; NADH, 2 × 10−6–1.5 × 10−5 M; Lactate, 2 × 10−4–2.2 × 10−3 M; AA, 1.6 × 10−4–7.2 × 10−3 M; DA, 4 × 10−7–3.5 × 10−6 M; UA, 4 × 10−6–2 × 10−5 M; Nitrite, 1 × 10−6–9.2 × 10−5 M | H2O2, 6 × 10−9 M; NADH, 4 × 10−7 M; Lactate, 2 × 10−4–2.2 × 10−3 M; AA, 2 × 10−5 M; DA, 8 × 10−8 M; UA, 5 × 10−7 M; Nitrite, 3 × 10−7 M; | Real samples for Nitrite | [52] |
Fe3O4/GO | Electrochemical | Chromium (Cr+3) | 0.2–2 × 10−9 M | - | - | [53] | |
Fe3O4/GO/Gelatin | Electrochemical | glucose | 0.1–10 × 10−3 M | 0.024 × 10−6 M | Human blood | [54] | |
Fe3O4/GO/AChE | Electrochemical | Organophosphorus pesticide | 1–20 μg·L−1 | 0.18 μg·L−1 | - | [55] | |
FePc@ Fe3O4/rGO | Electrochemical | Tert-butyl hydroperoxide (TBHP) | 20 × 10−6 M–60 × 10−3 M | 7.5 × 10−6 M | Cosmetic sample | [56] | |
Fe3O4/GO/β-CD/GCE | Electrochemical | Tryptophan | 5.0 × 10−7 M–7.5 × 10−4 M | 3.1 × 10−7 M | - | [57] | |
Ni-PDA/CNTs/GO/ Fe3O4/CPE | Electrochemical | Salicylic acid (SA) | 5.00–155 × 10−6 M | 900 × 10−9 M | Water | [58] | |
Fe3O4/GO/CNT | Electrochemical | Diclofenac (DCF) | 100–1300 × 10−12 M | 33 × 10−12 M | Diclofenac sodium ampoule | [59] | |
Fe3O4/GQDs/GCE | Electrochemical | Amino acid | L-Cys (0.01–100 × 10−6 M); L-Tyr (0.09–230 × 10−6 M); L-Asp (1–50 × 10−6 M): L-Phe (0.5–650 × 10−6 M) | L-Cys (0.01 × 10−6 M); L-Tyr (0.09 × 10−6 M); L-Asp (1 × 10−6 M): L-Phe (0.5 × 10−6 M) | - | [60] | |
Fe3O4/rGO-GCE | Electrochemical | DNA sequences | 1.0 × 10−18–1.0 × 10−8 M | 2.8 × 10−19 M | Genomic samples extracted from blood | [61] | |
Fe3O4/rGO-GCE | Electrochemical | Phenylalanine | 100–1000 × 10−9 M | 14.5 × 10−9 M | - | [62] | |
Fe3O4/rGO/GOx-GCE | Electrochemical | Glucose | 0.05–1.5 × 10−3 M | 0.15 × 10−6 M | Human serum | [63] | |
Fe3O4@ZIF-8/rGO/GCE | Electrochemical | Dopamine | 2.0 × 10−9–1.0 ×10−5 M | 6.67 × 10−10 M | Urine and serum | [64] | |
β-CD- Fe3O4/rGO | Electrochemical | Tetracycline and doxycycline | 0.5–90.0 ng·L−1 | 0.18 ng·L−1 | Milk | [65] | |
In situ Reduction | Fe3O4/GQDs/MWCNTs/GCE | Electrochemical | Progesterone | 0.01–0.5 and 0.5–3.0 × 10−6 M | 2.18 × 10−9 M and 16.84 µA M−1 | Human serum | [66] |
UA/FePtGNR/SPCE | Electrochemical | Ampyra (4-aminopyridine or dalfampridine) | 0.08–9.0 × 10−6 M | 0.028 × 10−6 M | Biological fluids | [67] | |
β-CD/Au/Fe3O4/GO/GCE | Electrochemical | Sunset yellow | 5.0 × 10−9–2 × 10−6 M | 2 × 10−9 M | Water sample and mirinda drink | [68] | |
Fe3O4/GO/Ag/AuNPs/MIPs | Electrochemical | Dibutyl phthalate (DBP) | 2.5 × 10−9–5 × 10−5 M | 8 × 10−10 M | Drink samples | [69] | |
Fe3O4/GO/Chitosan | Electrochemical | Bisphenol A (BPA) | 6.0 × 10−8–1.1 × 10−5 M | 1.7 × 10−8 M | Plastic powder | [70] | |
S1-SA-Ab2-MFMGRS | Electrochemical immunoassay | Thyroxine | 0.05 pg·mL−1–5 ng·mL−1 | 0.015 pg·mL−1 | - | [71] | |
Fe3O4/rGO-Au@Ag/Ni2+-Ab2 | Electrochemical immunoassay | Carcinoembryonic antigen | 0.1 pg·mL−1–100 ng·mL−1 | 0.0697 pg·mL−1 | Human serum | [72] | |
Fe3O4/rGO/Au | Electrochemical immunoassay | Cluster of differentiation 146 antigen (CD146) | 5 pg·mL−1–500 ng·mL−1 | 2.5 pg·mL−1 | Human serum | [73] | |
Fe3O4/rGO-Au@Ag NPs | Electrochemical immunoassay | Human Immunoglobulin G | 5 fg·L−1–50 ng·mL−1 | 2 fg·L−1 | Human serum | [74] | |
MGLA/poly SiNW-FET | Electronic (FET) | Apolipoprotein A II protein (APOA2 protein) | 19.5 pg·mL−1–1.95 µg·mL−1 | 6.7 pg·mL−1 | Human urine | [75] | |
Ag@3D-Fe3O4/GO | MSPE-GC-µECD | Pesticides: Fenitrothion, Chloropyrofos, Hexaconazole | 0.1–5 ng·g−1 | 0.07–0.13 ng·g−1 | Extraction of the selected pesticides in tomato and grape samples | [76] | |
Fe3O4/GO | MSPE-HPLC-UV | Methamphetamine | 100–1500 ng·mL−1 | 30 ng·mL−1 | Urine samples | [77] | |
In situ Hydrothermal synthesis | Fe3O4/GO-CNT | UPLC-MS | Melamine | 0.0015–0.15 mg·kg−1 | 0.00045 mg·kg−1 | Milk | [7] |
Fe3O4/GO | Colorimetric | H2O2, Glucose | 1–50 × 10−6 M, 2–200 × 10−6 M | 0.32 × 10−6 M | Diabetic urine | [78] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Huang, Y.; Huang, K.; Lin, J.; Huang, P. Functional Magnetic Graphene Composites for Biosensing. Int. J. Mol. Sci. 2020, 21, 390. https://doi.org/10.3390/ijms21020390
Li F, Huang Y, Huang K, Lin J, Huang P. Functional Magnetic Graphene Composites for Biosensing. International Journal of Molecular Sciences. 2020; 21(2):390. https://doi.org/10.3390/ijms21020390
Chicago/Turabian StyleLi, Fan, Yan Huang, Kai Huang, Jing Lin, and Peng Huang. 2020. "Functional Magnetic Graphene Composites for Biosensing" International Journal of Molecular Sciences 21, no. 2: 390. https://doi.org/10.3390/ijms21020390
APA StyleLi, F., Huang, Y., Huang, K., Lin, J., & Huang, P. (2020). Functional Magnetic Graphene Composites for Biosensing. International Journal of Molecular Sciences, 21(2), 390. https://doi.org/10.3390/ijms21020390