Next Article in Journal
Normoxic Tumour Extracellular Vesicles Modulate the Response of Hypoxic Cancer and Stromal Cells to Doxorubicin In Vitro
Next Article in Special Issue
Adipose Tissue Fibrosis: Mechanisms, Models, and Importance
Previous Article in Journal
Reciprocal Dysregulation of MiR-146b and MiR-451 Contributes in Malignant Phenotype of Follicular Thyroid Tumor
Previous Article in Special Issue
In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?
Review

Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration

Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2020, 21(17), 5952; https://doi.org/10.3390/ijms21175952
Received: 15 July 2020 / Revised: 6 August 2020 / Accepted: 7 August 2020 / Published: 19 August 2020
(This article belongs to the Special Issue Cells and Materials for Disease Modeling and Regenerative Medicine)
Myocardial infarction causes cardiac tissue damage and the release of damage-associated molecular patterns leads to activation of the immune system, production of inflammatory mediators, and migration of various cells to the site of infarction. This complex response further aggravates tissue damage by generating oxidative stress, but it eventually heals the infarction site with the formation of fibrotic tissue and left ventricle remodeling. However, the limited self-renewal capability of cardiomyocytes cannot support sufficient cardiac tissue regeneration after extensive myocardial injury, thus, leading to an irreversible decline in heart function. Approaches to improve cardiac tissue regeneration include transplantation of stem cells and delivery of inflammation modulatory and wound healing factors. Nevertheless, the harsh environment at the site of infarction, which consists of, but is not limited to, oxidative stress, hypoxia, and deficiency of nutrients, is detrimental to stem cell survival and the bioactivity of the delivered factors. The use of biomaterials represents a unique and innovative approach for protecting the loaded factors from degradation, decreasing side effects by reducing the used dosage, and increasing the retention and survival rate of the loaded cells. Biomaterials with loaded stem cells and immunomodulating and tissue-regenerating factors can be used to ameliorate inflammation, improve angiogenesis, reduce fibrosis, and generate functional cardiac tissue. In this review, we discuss recent findings in the utilization of biomaterials to enhance cytokine/growth factor and stem cell therapy for cardiac tissue regeneration in small animals with myocardial infarction. View Full-Text
Keywords: biomaterials; stem cells; cytokines; growth factors; cardiac tissue regeneration; regenerative medicine biomaterials; stem cells; cytokines; growth factors; cardiac tissue regeneration; regenerative medicine
Show Figures

Figure 1

MDPI and ACS Style

Smagul, S.; Kim, Y.; Smagulova, A.; Raziyeva, K.; Nurkesh, A.; Saparov, A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int. J. Mol. Sci. 2020, 21, 5952. https://doi.org/10.3390/ijms21175952

AMA Style

Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. International Journal of Molecular Sciences. 2020; 21(17):5952. https://doi.org/10.3390/ijms21175952

Chicago/Turabian Style

Smagul, Saltanat, Yevgeniy Kim, Aiganym Smagulova, Kamila Raziyeva, Ayan Nurkesh, and Arman Saparov. 2020. "Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration" International Journal of Molecular Sciences 21, no. 17: 5952. https://doi.org/10.3390/ijms21175952

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop