Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Solid Phase Synthesis SPPS
4.3. RP-HPLC Characterization
4.4. Peptide Purification by Solid Phase Extraction (SPE)
4.5. MALDI-TOF Mass Spectrometry Analysis
4.6. Cell Culture
4.7. Viability Test by MTT
4.8. Evaluation of the Integrity of the Cytoplasmic Membrane Using SYTO9/PI
4.9. Determination of the Type of cell Death (Apoptosis/Necrosis)
4.10. Determination of Mitochondrial Membrane Depolarization
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Ahx | 6-aminohexanoic residue |
LFB | Lactoferrin |
LfcinB | Bovine Lactoferricin |
MALDI | Matrix assisted Laser Desortion ionization |
MS | Mass spectrometry |
RP-HPLC | Reverse phase High Performance Liquid Chromatography |
RP-SPE | Reverse Phase Solid phase extraction |
SPPS | Solid Phase Peptide Synthesis |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- World Human Organization (WHO). Available online: http://www.who.int/cancer/en/ (accessed on 22 May 2018).
- Globocan. Available online: http://globocan.iarc.fr/Default.aspx (accessed on 5 May 2019).
- DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin. 2017, 67, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014, 35, 3365–3383. [Google Scholar] [CrossRef]
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005, 104, 1129–1137. [Google Scholar] [CrossRef]
- Kerlikowske, K.; Zhu, W.; Hubbard, R.A.; Geller, B.; Dittus, K.; Braithwaite, D.; Wernli, K.J.; Miglioretti, D.L.; O’Meara, E.S. Outcomes of screening mammography by frequency, breast density, postmenopausal hormone therapy. JAMa Intern. Med. 2013, 173, 807–816. [Google Scholar] [CrossRef]
- Clough, K.B.; Kaufman, G.J.; Nos, C.; Buccimazza, I.; Sarfati, I.M. Improving breast cancer surgery: A classification and quadrant per quadrant atlas for oncoplastic surgery. Ann. Surg. Oncol. 2010, 17, 1375–1391. [Google Scholar] [CrossRef]
- Hassett, M.J.; O’Malley, A.J.; Pakes, J.R.; Newhouse, J.P.; Earle, C.C. Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J. Natl. Cancer Inst. 2006, 98, 1108–1117. [Google Scholar] [CrossRef]
- Mader, J.S.; Richardson, A.; Salsman, J.; Top, D.; De Antueno, R.; Duncan, R.; Hoskin, D.W. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Exp. Cell Res. 2007, 3. [Google Scholar] [CrossRef]
- Mader, J.S.; Salsman, J.; Conrad, D.M.; Hoskin, D.W. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer 2005, 4, 612–624. [Google Scholar] [CrossRef]
- Wang, S.; Tu, J.; Zhou, C.; Li, J.; Huang, L.; Tao, L.; Zhao, L. The effect of Lfcin-B on non-small cell lung cancer H460 cells is mediated by inhibiting VEGF expression and inducing apoptosis. Arch. Pharm. Res. 2015, 38, 261–271. [Google Scholar] [CrossRef]
- Alexander, D.B.; Vogel, H.J.; Tsuda, H. Lactoferrin researchers descend on Nagoya Castle1. Biochem. Cell Biol. 2017, 95, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Solarte, V.A.; Rosas, J.E.; Rivera, Z.J.; Arango-rodríguez, M.L.; García, J.E.; Vernot, J. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines. BioMed Res. Int. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Vargas Casanova, Y.; Rodríguez Guerra, J.A.; Umaña Pérez, Y.A.; Leal Castro, A.L.; Almanzar Reina, G.; García Castañeda, J.E.; Rivera Monroy, Z.J. Antibacterial synthetic peptides derived from bovine lactoferricin exhibit cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Molecules 2017, 22, 1641. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.R.; Cárdenas, A.B.; Ochoa-Zarzosa, A.; Meza, J.L.; Umaña Pérez, A.; Fierro-Medina, R.; Rivera Monroy, Z.J.; García Castañeda, J.E. The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv. 2019, 9, 20497–20504. [Google Scholar] [CrossRef]
- Kulkarni, A.; Stroup, A.M.; Paddock, L.E.; Hill, S.; Plascak, J.; Llanos, A. Breast cancer incidence and mortality by molecular subtype: Statewide age and racial/ethnic disparities in new jerney. Cancer Health Disparities 2019, 3, e1–e17. [Google Scholar]
- Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J. SEER cancer statistics review. Natl. Cancer Inst. 2020. [Google Scholar]
- Yao, L.; Zhang, Y.; Chen, K.; Hu, X.; Xu, L.X. Discovery of IL-18 as a novel secreted protein contributing to doxorubicin resistance by comparative secretome analysis of MCF-7 and MCF-7/Dox. PLoS ONE 2011, 6, e24684. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Vanden, D.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘ proof-of-concept. J. Ethnofarmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Hakimuddin, F.; Paliyath, G.; Meckling, K. Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res. Treat. 2004, 85, 65–79. [Google Scholar] [CrossRef]
- Van Zijl, C.; Lottering, M.L.; Steffens, F.; Joubert, A. In vitro effects of 2-methoxyestradiol on MCF-12A and MCF-7 cell growth, morphology and mitotic spindle formation. Cell Biochem. Funct. 2008, 26, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Solarte, A.; Conget, P.; Vernot, J.; Rosas, J.E.; Arango-rodrı, M.L.; Rivera, J.; Garcı, J.E. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS ONE 2017, 12, e0174707. [Google Scholar] [CrossRef] [PubMed]
- Kiosses, W.B.; Hahn, K.M.; Giannelli, G.; Quaranta, V. Characterization of morphological and cytoskeletal changes in MCF10A breast epithelial cells plated on laminin-5: Comparison with breast cancer cell line MCF7. Cell Commun. Adhes. 2001, 8, 29–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Nat. Publ. Gr. 2017, 28, 9–21. [Google Scholar] [CrossRef]
- Lee, S.; Won, S.; Pyo, C.; Yoo, N.; Kim, J.; Choi, S. Requirement of the JNK-associated Bcl-2 pathway for human lactoferrin-induced apoptosis in the Jurkat leukemia T cell line. Biochimie 2009, 91, 102–108. [Google Scholar] [CrossRef]
- Pan, W.; Chen, P.; Chen, Y.S.; Hsu, H.; Lin, C.; Chen, W. Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J. Dairy Sci. 2013, 96, 7511–7520. [Google Scholar] [CrossRef]
- Roy, M.K.; Kuwabara, Y.; Hara, K.; Watanabe, Y.; Tamai, Y. Peptides From the N-terminal End of Bovine Lactoferrin Induce Apoptosis in Human Leukemic (HL-60) Cells. J. Dairy Sci. 2002, 85, 2065–2074. [Google Scholar] [CrossRef]
- Kanwar, R.K.; Kanwar, J.R. Immunomodulatory lactoferrin in the regulation of apoptosis modulatory proteins in cancer. Protein Pept. Lett. 2013, 20, 450–458. [Google Scholar]
- Furlong, S.J.; Mader, J.S.; Hoskin, D.W. Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-de fi cient mice bearing B-lymphoma xenografts. Exp. Mol. Pathol. 2010, 88, 371–375. [Google Scholar] [CrossRef]
- Xu, X.X.; Jiang, H.R.; Li, H.B.; Zhang, T.N.; Zhou, Q.; Liu, N. Apoptosis of stomach cancer cell SGC-7901 and regulation of Akt signaling way induced by bovine lactoferrin. J. Dairy Sci. 2010, 93, 2344–2350. [Google Scholar] [CrossRef]
- Yoo, Y.; Watanabe, R.; Koike, Y.; Mitobe, M.; Shimazaki, K.; Watanabe, S.; Azuma, I. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 1997, 637, 624–628. [Google Scholar] [CrossRef]
- Zhang, Y.; Lima, C.F.; Rodrigues, L.R. In vitro evaluation of bovine lactoferrin potential as an anticancer agent. Int. Dairy J. 2015, 40, 6–15. [Google Scholar] [CrossRef]
- Zaldivar, M.A.; Andres, M.T.; Rego, A.; Pereira, C.S.; Fierro, J.F.; Real, M.C. Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in Saccharomyces cerevisiae. Apoptosis. 2016, 21, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Amiri, F.; Moradian, F.; Rafiei, A. Research in molecular medicine anticancer effect of lactoferrin on gastric cancer cell line AGS. Res. Mol. Med. 2015, 3, 11–16. [Google Scholar]
- Richardson, A.; De Antueno, R.; Duncan, R.; Hoskin, D.W. Biochemical and Biophysical Research Communications Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem. Biophys. Res. Commun. 2009, 388, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.; Hilchie, A.L.; Haney, E.F.; Bolscher, J.G.M.; Eric, M.H.; Hancock, R.E.W.; Vogel, H.J. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem. Cell Biol. 2017, 95, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.C.; Nicolau, A.; Teixeira, J.A.; Rodrigues, L.R. The effect of bovine milk lactoferrin on human breast cancer cell lines. J. Dairy Sci. 2011, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Furlong, S.J.; Mader, J.S.; Hoskin, D.W. Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C 6 ceramide or tamoxifen. Oncol. Rep. 2006, 15, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, J.A.; Kanwar, J.R.; Kanwar, R.K. Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer. BMC Cancer 2015, 15, 425. [Google Scholar] [CrossRef]
- Guo, J.; Lin, Y.; Xiao, Y.; Crommen, J.; Jiang, Z. Recent developments in cyclodextrin functionalized monolithic columns for the enantioseparation of chiral drugs. J. Pharm. Biomed. Anal. 2016, 130, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta 2006, 1758, 1184–1202. [Google Scholar] [CrossRef] [PubMed]
- Umeyama, M.; Kira, A.; Nishimura, K.; Naito, A. Interactions of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochim. Biophys. Acta 2006, 1758, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Carmela, M.; Valenti, P.; Musci, G. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
- Sadiq, I.Z.; Babagana, K.; Danlami, D. Peptides: A closer look at bovine lactoferricin. Mol. Cancer 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Islam, Z.; Sharmin, S.; Dohra, H.; Yamazaki, M. Entry of 6-residue antimicrobial peptide derived from lactoferricin B into single vesicles and E. coli cells without damaging their membranes. Biochemistry 2017, 56, 4419–4431. [Google Scholar] [CrossRef]
- Vergel Galeano, C.F.; Rivera Monroy, Z.J.; Rosas Pérez, J.E.; García Castañeda, J.E. Efficient synthesis of peptides with 4-methylpiperidine as Fmoc removal reagent by solid phase synthesis. J. Mex. Chem. Soc. 2014, 58, 386–392. [Google Scholar]
- de Jesús Huertas, N.; Rivera Monroy, Z.J.; Fierro Medina, R.; García Castañeda, J.E. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules 2017, 22, 987. [Google Scholar] [CrossRef]
- Insuasty-Cepeda, D.S.; Rodríguez-Mayor, A.V.; Pineda-Castañeda, H.M.; García-Castañeda, J.E.; Maldonado-Villamil, M.; Fierro-Medina, R.; Rivera-Monroy, Z.J. Synthetic peptide purification via solid-phase economical, fast, and efficient methodology. Molecules 2019, 24, 1215. [Google Scholar] [CrossRef]
- Langan, T.; Rodgers, K.; Chou, R. Synchromization of mammalian cell cultures by serum deprivation. Methods Cell Sci. 2017, 1524, 97–105. [Google Scholar] [CrossRef]
- Robertson, T.; McGoverin, C.; Vanholsbeek, D.; Swift, S. Optimisation of the Protocol for the LIVE/DEAD® BacLightTM Bacterial Viability Kit for Rapid Determination of Bacterial Load. Front. Microbiol. 2019, 1–13. [Google Scholar] [CrossRef]
Code | Sequence | Characterization | Cytotoxic Effect | |||
---|---|---|---|---|---|---|
RP-HPLC | m/z [M+H]+ | IC50 (µM)/(µg/mL) | ||||
tR (min) | Purity a (%) | HTB-132 | MCF-7 | |||
26[M] | (RRWQWRMKKLG)2-K-Ahx | 5.3 | 94 | 3312.3 | 30/96 | >60/>200 |
26[K] | (RRWQWRKKKLG)2-K-Ahx | 4.8 | 95 | 3302.7 | >60/>200 | N/D |
26[D] | (RRWQWRDKKLG)2-K-Ahx | 4.8 | 97 | 3276.7 | >60/>200 | N/D |
26[A] | (RRWQWRAKKLG)2-K-Ahx | 4.8 | 95 | 3187.9 | 26/96 | >60/>200 |
26[F] | (RRWQWRFKKLG)2-K-Ahx | 5.6 | 91 | 3342.5 | 13/43 | 6/19 |
26[L] | (RRWQWRLKKLG)2-K-Ahx | 5.5 | 92 | 3272.4 | 10/32 | 20/66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Insuasty-Cepeda, D.S.; Barragán-Cárdenas, A.C.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Fierro-Medina, R.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int. J. Mol. Sci. 2020, 21, 4550. https://doi.org/10.3390/ijms21124550
Insuasty-Cepeda DS, Barragán-Cárdenas AC, Ochoa-Zarzosa A, López-Meza JE, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences. 2020; 21(12):4550. https://doi.org/10.3390/ijms21124550
Chicago/Turabian StyleInsuasty-Cepeda, Diego Sebastián, Andrea Carolina Barragán-Cárdenas, Alejandra Ochoa-Zarzosa, Joel E. López-Meza, Ricardo Fierro-Medina, Javier Eduardo García-Castañeda, and Zuly Jenny Rivera-Monroy. 2020. "Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway" International Journal of Molecular Sciences 21, no. 12: 4550. https://doi.org/10.3390/ijms21124550
APA StyleInsuasty-Cepeda, D. S., Barragán-Cárdenas, A. C., Ochoa-Zarzosa, A., López-Meza, J. E., Fierro-Medina, R., García-Castañeda, J. E., & Rivera-Monroy, Z. J. (2020). Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences, 21(12), 4550. https://doi.org/10.3390/ijms21124550