Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H+-ATPase Rich Ionocytes
Abstract
:1. Introduction
2. Results
2.1. Avp and its Receptors are Widely Expressed in Zebrafish Tissues
2.2. avp Knockdown Downregulates Avp Protein Expression
2.3. Avp Regulates the Function of Ionocytes
2.4. Avp Modulates the Number of Ionocytes on the Skin
2.5. Avp Morphants Exhibit Reduced Expressions of Cgrp and its Receptor Crlr1
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Preparation of Total RNA and cDNA Synthesis
4.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
4.4. Microinjection of Avp Antisense Morpholino Oligonucleotide (MO) and Capped-mRNA (cRNA)
4.5. Incubation of AVP Antagonists
4.6. Enzyme-Linked Immunosorbent Assay (ELISA)
4.7. Measurement of Whole-Body Na+, Ca2+ and Cl− Contents
4.8. Scanning Ion-Selective Electrode Technique (SIET) and Measurement of H+ Gradients
4.9. Immunofluorescence (IF) and Cell Counting
4.10. In Situ Hybridization
4.11. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussy, N.; Deleuze, C.; Desarmenien, M.G.; Moos, F.C. Osmotic regulation of neuronal activity: A new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog. Neurobiol. 2000, 62, 113–134. [Google Scholar] [CrossRef]
- Knepper, M.A.; Kim, G.H.; Fernandez-Llama, P.; Ecelbarger, C.A. Regulation of thick ascending limb transport by vasopressin. J. Am. Soc. Nephrol. 1999, 10, 628–634. [Google Scholar] [PubMed]
- Amorim, J.B.; Musa-Aziz, R.; Mello-Aires, M.; Malnic, G. Signaling path of the action of AVP on distal K+ secretion. Kidney Int. 2004, 66, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutina, A.V.; Marina, A.S.; Natochin, Y.V. The involvement of V1b-subtype vasopressin receptors in regulation of potassium ions excretion in the rat kidneys. Dokl. Biol. Sci. 2014, 459, 338–340. [Google Scholar] [CrossRef]
- Deen, P.M.; Verdijk, M.A.; Knoers, N.V.; Wieringa, B.; Monnens, L.A.; van Os, C.H.; van Oost, B.A. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994, 264, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Shibata, Y.; Ogushi, Y.; Okada, R. Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: Aquaporins and evolution. Biol. Bull. 2015, 229, 109–119. [Google Scholar] [CrossRef]
- Mutig, K.; Paliege, A.; Kahl, T.; Jons, T.; Muller-Esterl, W.; Bachmann, S. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am. J. Physiol. Renal Physiol. 2007, 293, F1166–F1177. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, N.B.; Hofmeister, M.V.; Rosenbaek, L.L.; Nielsen, J.; Fenton, R.A. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int. 2010, 78, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 2007, 369, 1287–1301. [Google Scholar] [CrossRef]
- Meijer, E.; Bakker, S.J.; van der Jagt, E.J.; Navis, G.; de Jong, P.E.; Struck, J.; Gansevoort, R.T. Copeptin, a Surrogate Marker of Vasopressin, Is Associated with Disease Severity in Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephro. 2011, 6, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Gattone, V.H.; 2nd Wang, X.; Harris, P.C.; Torres, V.E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 2003, 9, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Lema, S.C.; Washburn, E.H.; Crowley, M.E.; Carvalho, P.G.; Egelston, J.N.; McCormick, S.D. Evidence for a role of arginine vasotocin (AVT) receptors in the gill during salinity acclimation by a euryhaline teleost fish. Am. J. Physiol. Regul Integr. Comp. Physiol. 2019, 316, R735–R750. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.D.; Bradshaw, D. Hormonal control of salt and water balance in vertebrates. Gen. Comp. Endocrinol. 2006, 147, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Warne, J. The role of arginine vasotocin in teleost fish osmoregulation. Symp. Soc. Exp. Biol. 2002, 83–95. [Google Scholar]
- Haruta, K.; Yamashita, T.; Kawashima, S. Changes in arginine vasotocin content in the pituitary of the Medaka (Oryzias latipes) during osmotic stress. Gen. Comp. Endocrinol. 1991, 83, 327–336. [Google Scholar] [CrossRef]
- Perrott, M.N.; Carrick, S.; Balment, R.J. Pituitary and plasma arginine vasotocin levels in teleost fish. Gen. Comp. Endocrinol. 1991, 83, 68–74. [Google Scholar] [CrossRef]
- Balment, R.J.; Lu, W.; Weybourne, E.; Warne, J.M. Arginine vasotocin a key hormone in fish physiology and behaviour: A review with insights from mammalian models. Gen. Comp. Endocrinol. 2006, 147, 9–16. [Google Scholar] [CrossRef]
- Kulczykowska, E.; Stolarski, J. Diurnal changes in plasma arginine vasotocin and isotocin in rainbow trout adapted to fresh water and brackish Baltic water. Gen. Comp. Endocrinol. 1996, 104, 197–202. [Google Scholar] [CrossRef]
- Warne, J.M.; Balment, R.J. Effect of acute manipulation of blood volume and osmolality on plasma [AVT] in seawater flounder. Am. J. Physiol. 1995, 269 Pt 2, R1107–R1112. [Google Scholar] [CrossRef]
- Yamada, T.; Nishio, T.; Sano, Y.; Kawago, K.; Matsuda, K.; Uchiyama, M. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl− transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata. Gen. Comp. Endocrinol. 2008, 157, 63–69. [Google Scholar] [CrossRef]
- Yan, J.J.; Hwang, P.P. Novel discoveries in acid-base regulation and osmoregulation: A review of selected hormonal actions in zebrafish and medaka. Gen. Comp. Endocrinol. 2019, 277, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Guh, Y.J.; Hwang, P.P. Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen. Comp. Endocrinol. 2017, 251, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Guh, Y.J.; Lin, C.H.; Hwang, P.P. Osmoregulation in zebrafish: Ion transport mechanisms and functional regulation. EXCLI J. 2015, 14, 627–659. [Google Scholar] [PubMed]
- Hwang, P.P.; Chou, M.Y. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch. 2013, 465, 1233–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colwill, R.M. Behavioral studies of stimulus learning in zebrafish larvae. Behav. Process. 2019, 164, 150–156. [Google Scholar] [CrossRef]
- Hwang, P.P. Ion uptake and acid secretion in zebrafish (Danio rerio). J. Exp. Biol. 2009, 212 Pt 11, 1745–1752. [Google Scholar] [CrossRef] [Green Version]
- Hwang, P.P.; Lee, T.H. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 148, 479–497. [Google Scholar] [CrossRef]
- Wang, Y.F.; Tseng, Y.C.; Yan, J.J.; Hiroi, J.; Hwang, P.P. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am. J. Physiol. Regul Integr. Comp. Physiol. 2009, 296, R1650–R1660. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.F.; Yan, J.J.; Tseng, Y.C.; Chen, R.D.; Hwang, P.P. Molecular Physiology of an Extra-renal Cl− Uptake Mechanism for Body Fluid Cl− Homeostasis. Int. J. Biol. Sci. 2015, 11, 1190–1203. [Google Scholar] [CrossRef] [Green Version]
- Perry, S.F.; Vulesevic, B.; Grosell, M.; Bayaa, M. Evidence that SLC26 anion transporters mediate branchial chloride uptake in adult zebrafish (Danio rerio). Am. J. Physiol. Regul Integr. Comp. Physiol. 2009, 297, R988–R997. [Google Scholar] [CrossRef]
- Bayaa, M.; Vulesevic, B.; Esbaugh, A.; Braun, M.; Ekker, M.E.; Grosell, M.; Perry, S.F. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J. Exp. Biol. 2009, 212 Pt 20, 3283–3295. [Google Scholar] [CrossRef] [Green Version]
- Horng, J.L.; Lin, L.Y.; Hwang, P.P. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am. J. Physiol. Cell Physiol. 2009, 296, C682–C692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.F.; Lafont, A.G.; Lee, Y.C.; Hwang, P.P. A novel function of calcitonin gene-re;ated peptide in body fluid Cl- homeostasis. Proc. Biol. Sci. 2016, 283, 20160684. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.Y.; Hung, J.C.; Wu, L.C.; Hwang, S.P.; Hwang, P.P. Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol. Life Sci. 2011, 68, 2797–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, T.C.; Liao, B.K.; Huang, C.J.; Lin, L.Y.; Hwang, P.P. Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am. J. Physiol. Regul Integr. Comp. Physiol. 2005, 289, R1202–R1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, C.D.; You, M.S.; Guh, Y.J.; Ma, M.; Jiang, Y.J.; Hwang, P.P. A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2007, 2, e302. [Google Scholar] [CrossRef]
- Bakkers, J.; Hild, M.; Kramer, C.; Furutani-seiki, M.; Hammerschmidt, M. zebrafish Delta Np63 is a direct target of bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev. Cell. 2002, 2, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.Y.; Lin, C.H.; Chao, P.L.; Hung, J.C.; Cruz, S.A.; Hwang, P.P. Stanniocalcin-1 controls ion regulation functions of ion-transporting epithelium other than calcium balance. Int. J. Biol. Sci. 2015, 11, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Breves, J.P.; Serizier, S.B.; Goffin, V.; McCormick, S.D.; Karlstrom, R.O. Prolactin regulates transcription of the ion uptake Na+/Cl− cotransporter (ncc) gene in zebrafish gill. Mol. Cell Endocrinol. 2013, 369, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.R.; Hare, J.F.; Anderson, W.G.; Caldwell, H.K. Effects of arginine vasopressin on Richardson’s ground squirrel social and vocal behavior. Behav. Neurosci. 2018, 132, 34–50. [Google Scholar] [CrossRef]
- Mieda, M.; Okamoto, H.; Sakurai, T. Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr. Biol. 2016, 26, 2535–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebstein, R.; Israel, S.; Lerer, E.; Uzefovsky, F.; Shalev, I.; Gritsenko, I.; Riebold, M.; Salomon, S.; Yirmiya, N. Arginine vasopressin and oxytocin modulate human social behavior. Ann. N. Y. Acad. Sci. 2009, 1167, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, K.; Yokoi, H.; Nagasaki, H.; Arima, H.; Murase, T.; Sugimura, Y.; Miura, Y.; Hirabayashi, M.; Oiso, Y. Altered cardiovasular regulation in arginine vasopressin-overexpressing transgenic rat. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E1161–E1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayr, V.; Luckner, G.; Jochberger, S.; Wenzel, V.; Ulmer, H.; Pajk, W.; Knotzer, H.; Friesenecker, B.; Lindner, K.; Hasibeder, W.; et al. Arginine vasopressin in advanced cardiovascular failure during the post-resuscitation phase after cardiac arrest. Resuscitation 2007, 72, 35–44. [Google Scholar] [CrossRef]
- Mazzocchi, G.; Malendowicz, L.K.; Rebuffat, P.; Tortorella, C.; Nussdorfer, G.G. Arginine-vasopressin stimulates CRH and ACTH release by rat adrenal medulla, acting via the V1 receptor subtype and a protein kinase C-dependent pathway. Peptides 1997, 18, 191–195. [Google Scholar] [CrossRef]
- Liu, J.P.; Engler, D.; Funder, J.W.; Robinson, P.J. Arginine vasopressin (AVP) causes the reversible phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein in the ovine anterior pituitary: Evidence that MARCKS phosphorylation is associated with adrenocorticotropin (ACTH) secretion. Mol. Cell. Endocrinol. 1994, 105, 217–226. [Google Scholar]
- Tamma, R.; Sun, L.; Cuscito, C.; Lu, P.; Corcelli, M.; Li, J.; Colaianni, G.; Moonga, S.S.; Di Benedetto, A.; Grano, M.; et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl. Acad. Sci. USA 2013, 110, 18644–18649. [Google Scholar] [CrossRef] [Green Version]
- Foo, N.C.; Carter, D.; Murphy, D.; Ivell, R. Vasopressin and oxytocin gene expression in rat testis. Endocrinology 1991, 128, 2118–2128. [Google Scholar] [CrossRef]
- Srivastava, R.; Chaturvedi, C.M. Age, photoperiod and estrogen dependent variations in the shell gland and the expression of AVT in the ovary of Japanese quail. Steroids 2012, 77, 578–588. [Google Scholar] [CrossRef]
- Srivastava, R.; Cornett, L.E.; Chaturvedi, C.M. Age-dependent expression of AVT and its oxytocic-like receptor VT3 in the shell gland of Japanese quail, Coturnix coturnix japonica. Gen. Comp. Endocrinol. 2010, 165, 47–52. [Google Scholar] [CrossRef]
- Saito, N.; Grossmann, R. Gene expression of arginine vasotocin in ovarian and uterine tissues of the chicken. Asian Austral. J. Anim. 1999, 12, 695–701. [Google Scholar] [CrossRef]
- Gwee, P.C.; Tay, B.H.; Brenner, S.; Venkatesh, B. Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: Origin of the vertebrate neurohypophysial hormone genes. BMC Evol. Biol. 2009, 9, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoi, S.; Okuyama, T.; Kamei, Y.; Naruse, K.; Taniguchi, Y.; Ansai, S.; Kinoshita, M.; Young, L.J.; Takemori, N.; Kubo, T.; et al. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). PLoS Genet. 2015, 11, e1005009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, Y.; Sakihara, T.; Mukuda, T.; Ando, M. Antagonistic effects of vasotocin and isotocin on the upper esophageal sphincter muscle of the eel acclimated to seawater. J. Comp. Physiol. B 2007, 177, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Perrone, R.; Silva, A.C. Status-Dependent Vasotocin Modulation of Dominance and Subordination in the Weakly Electric Fish Gymnotus omarorum. Front. Behav. Neurosci. 2018, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramallo, M.R.; Grober, M.; Canepa, M.M.; Morandini, L.; Pandolfi, M. Arginine-vasotocin expression and participation in reproduction and social behavior in males of the cichlid fish Cichlasoma dimerus. Gen. Comp. Endocrinol. 2012, 179, 221–231. [Google Scholar] [CrossRef]
- Sun, A.; Grossman, E.B.; Lombardi, M.; Hebert, S.C. Vasopressin alters the mechanism of apical Cl− entry from Na+:Cl− to Na+:K+:2Cl− cotransport in mouse medullary thick ascending limb. J. Membr. Biol. 1991, 120, 83–94. [Google Scholar] [CrossRef]
- Kim, G.H.; Ecelbarger, C.A.; Mitchell, C.; Packer, R.K.; Wade, J.B.; Knepper, M.A. Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am. J. Physiol. 1999, 276, F96–F103. [Google Scholar] [CrossRef]
- Ecelbarger, C.A.; Kim, G.H.; Wade, J.B.; Knepper, M.A. Regulation of the abundance of renal sodium transporters and channels by vasopressin. Exp. Neurol. 2001, 171, 227–234. [Google Scholar] [CrossRef]
- Mutig, K.; Saritas, T.; Uchida, S.; Kahl, T.; Borowski, T.; Paliege, A.; Böhlick, A.; Bleich, M.; Shan, Q.; Bachmann, S. Short-term stimulation of the thiazide-sensitive Na+-Cl− cotransporyer by vasopressin involves phosphorylation and membrane translocation. Am. J. Physiol. Renal Physiol. 2010, 298, F502–F509. [Google Scholar] [CrossRef] [Green Version]
- Casavola, V.; Guerra, L.; Helmle-Kolb, C.; Reshkin, S.J.; Murer, H. Na+/H+-exchange in A6 cells: Polarity and vasopressin regulation. J. Membr. Biol. 1992, 130, 105–114. [Google Scholar] [CrossRef]
- Giesecke, T.; Himmerkus, N.; Leipziger, J.; Bleich, M.; Koshimizu, T.A.; Fähling, M.; Smorodchenko, A.; Shpak, J.; Knappe, C.; Isermann, J.; et al. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J. Am. Soc. Nephrol. 2019, 30, 946–961. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Kobayashi, M.; Sato, Y.; Zhou, M.; Abe, H.; Okamoto, H.; Nonoguchi, H.; Tanoue, A.; Kawahara, K. The intercalated cells of the mouse kidney OMCD(is) are the target of the vasopressin V1a receptor axis for urinary acidification. Clin. Exp. Nephrol. 2013, 17, 783–792. [Google Scholar] [CrossRef]
- Izumi, Y.; Hori, K.; Nakayama, Y.; Kimura, M.; Hasuike, Y.; Nanami, M.; Kohda, Y.; Otaki, Y.; Kuragano, T.; Obinata, M.; et al. Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid-base homeostasis. J. Am. Soc. Nephrol. 2011, 22, 673–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balment, R.J.; Warne, J.M.; Tierney, M.; Hazon, N. Arginine vasotocin and fish osmoregulation. Fish. Physiol. Biochem. 1993, 11, 189–194. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Gregório, S.F.; Carvalho, E.S.; Canario, A.V.; Power, D.M.; Mancera, J.M.; Martínez-Rodríguez, G.; Fuentes, J. AVT is involved in the regulation of ion transport in the intestine of the sea bream (Sparus aurata). Gen. Comp. Endocrinol. 2013, 193, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.P.; Zhao, L.Y.; Zheng, Q.S.; Liu, S.W.; Zhao, X.Y.; Lu, X.L.; Niu, X.L. Arginine vasopressin stimulates proliferation of adult rat cardiac fibroblasts via protein kinase C-extracellular signal-regulated kinase 1/2 pathway. Sheng Li Xue Bao 2008, 60, 333–340. [Google Scholar] [PubMed]
- Liu, S.; He, Y.; Dou, Y.; Wang, H.; Tao, L.; Zhao, L.; Shang, F.; Liu, H. Caveolin-1 restoration by cholesterol enhances the inhibitory effect of simvastatin on arginine vasopressin-induced cardiac fibroblasts proliferation. Mol. Cell. Biochem. 2009, 331, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, F.; Zhang, L.; Wang, X.; Wang, Y.; Woo, A.Y.; Zhu, W. GRK2/beta-arrestin mediates arginine vasopressin-induced cardiac fibroblast proliferation. Clin. Exp. Pharmacol. Physiol. 2017, 44, 285–293. [Google Scholar] [CrossRef]
- Gassanov, N.; Jankowski, M.; Danalache, B.; Wang, D.; Grygorczyk, R.; Hoppe, U.C.; Gutkowska, J. Arginine vasopressin-mediated cardiac differentiation: Insights into the role of its receptors and nitric oxide signaling. J. Biol. Chem. 2007, 282, 11255–11265. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.M.; Mikhailova, M.; Bedolla, R.; Kreisberg, J.I. Arginine vasopressin stimulates mesangial cell proliferation by activating the epidermal growth factor receptor. Am. J. Physiol. Renal Physiol. 2001, 280, F972–F979. [Google Scholar] [CrossRef] [PubMed]
- Esaki, M.; Hoshijima, K.; Kobayashi, S.; Fukuda, H.; Kawakami, K.; Hirose, S. Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am. J. Physiol. Regul Integr. Comp. Physiol. 2007, 292, R470–R480. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kimelman, D. A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev. Cell. 2002, 2, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Kumai, Y.; Kwong, R.W.; Perry, S.F. A role for transcription factor glial cell missing 2 in Ca2+ homeostasis in zebrafish, Danio rerio. Pflug. Arch. 2015, 467, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Horng, J.L.; Lin, L.Y.; Huang, C.J.; Katoh, F.; Kaneko, T.; Hwang, P.P. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am. J. Physiol. Regul Integr. Comp. Physiol. 2007, 292, R2068–R2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindels, R.J.; Hartog, A.; Abrahamse, S.L.; Van Os, C.H. Effects of pH on apical calcium entry and active calcium transport in rabbit cortical collecting system. Am. J. Physiol. 1994, 266 Pt 2, F620–F627. [Google Scholar] [CrossRef]
- Karet, F.E. Inherited distal renal tubular acidosis. J. Am. Soc. Nephrol. 2002, 13, 2178–2184. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.; Mistry, A.C.; Hanson, L.; Mallick, R.; Wynne, B.M.; Thai, T.L.; Bailey, J.L.; Klein, J.D.; Hoover, R.S. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am. J. Physiol. Renal Physiol. 2013, 305, F645–F652. [Google Scholar] [CrossRef] [Green Version]
- Ferris, C.F.; Melloni, R.H., Jr.; Koppel, G.; Perry, K.W.; Fuller, R.W.; Delville, Y. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci. 1997, 17, 4331–4340. [Google Scholar] [CrossRef]
- Mulligan, K.A.; McKnite, S.H.; Lindner, K.H.; Lindstrom, P.J.; Detloff, B.; Lurie, K.G. Synergistic effects of vasopressin plus epinephrine during cardiopulmonary resuscitation. Resuscitation 1997, 35, 265–271. [Google Scholar] [CrossRef]
Gene Name | Protein Name | Forward Primer(5-3) | Reverse Primer(5-3) |
---|---|---|---|
avp | Avp | CGGAGCCCATCAGACAGT | TCGCAGCAGATGCCCTCA |
avpr1aa | Avpr1aa | CTTCTACGGGCCGGACTTTC | CGGGCTGCTGAGGACTAAACT |
avpr1ab | Avpr1ab | CGACTTCTTAGGCTGTTTCC | TAGGCACGCTCTGACTTGAT |
avpr2aa | Avpr2aa | CCCGCAGATGTTATGGGATA | AGGCTACCATGATGGGTGTA |
avpr2ab | Avpr2ab | TGTGACGAAAGCCATGTCTAAG | TGTGACGAAAGCCATGTCTAAG |
avpr2l | Avpr2l | ATGGGCGCTCAAGCACTAAG | CCGTATGTCAGAGTGGCTTT |
rpl13a | Rpl13a | CCTCGGTCGTCTTTCCGCTATTG | CAGCCTGACCCCTCTTGGTTTTG |
slc12a10.2 | Ncc2b | GCCCCCAAAGTTTTCCAGTT | GGCATGGAGCCTGTGATTG |
clc-2c | Clc-2c | ATTGAGAAATGGGAGGAGCA | GGCATGCAGCCTGTGATG |
slc4a-4b | Nbce1b | TGTTCCTCTACATGGGCGTCG | CAACCCACATAAATGATGACATC |
atp6v1a | Ha | GAGGAACCACTGCCATTCCA | CAACCCACATAAATGATGACATC |
nhe3b | Nhe3b | TGCAGACAGCGCCTCTAGC | TGTGGCCTGTCTCTGTTTGC |
slc4a1b | Ae1b | GTCTGCGAAGAGCCCGAACC | CGGTGTTCATTGTCCTGCGTAT |
trpv6 | Ecac | TCCTTTCCCATCACCCTCT | GCACTGTGGCAACTTTCGT |
atp2b2 | Pmca2 | AAGCAGTTCAGGGGTTTAC | CAGATCATTGCCTTGTATCA |
slc8a1b | Ncx1b | TAAAGTGGCAGCGATACAGGT | CAGATCAAGGCGAAGATGG |
atp1a1a.1 | Nka.1 | CATCCAGTCTGCATCACACAAG | TGGTTCACGATCTCAGTGTTTG |
cgrp | Cgrp | CGACTACGAGGCGAGAAGATTG | CTCAGAAAGTCTGCCAGGCGAT |
crlr1 | Crlr1 | AGCAGTGGCCAACAATCAAGA | CAAACACTGCCACAACAATGAG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, S.-K.; Lee, H.-L.; Lee, Y.-C.; Wu, L.-C.; Tsou, Y.-L.; Lu, S.-W.; Shih, S.-W.; Hwang, P.-P.; Chou, M.-Y. Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H+-ATPase Rich Ionocytes. Int. J. Mol. Sci. 2020, 21, 3957. https://doi.org/10.3390/ijms21113957
Tong S-K, Lee H-L, Lee Y-C, Wu L-C, Tsou Y-L, Lu S-W, Shih S-W, Hwang P-P, Chou M-Y. Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H+-ATPase Rich Ionocytes. International Journal of Molecular Sciences. 2020; 21(11):3957. https://doi.org/10.3390/ijms21113957
Chicago/Turabian StyleTong, Sok-Keng, Hung-Ling Lee, Yi-Chun Lee, Liang-Chun Wu, Yi-Ling Tsou, Shao-Wei Lu, Shang-Wu Shih, Pung-Pung Hwang, and Ming-Yi Chou. 2020. "Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H+-ATPase Rich Ionocytes" International Journal of Molecular Sciences 21, no. 11: 3957. https://doi.org/10.3390/ijms21113957