Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases
Abstract
:1. Introduction
2. Engineering of the Oxidative Half-Reaction with Oxygen
3. Engineering of the Preference for Artificial Electron Acceptors
4. Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
ACO | Acyl-CoA oxidase |
AfGDH | Glucose dehydrogenase from Aspergillus flavus |
AnGOx | Glucose oxidase from Aspergillus niger |
AvLOx | L-lactate oxidase from Aerococcus viridans |
BBE | berberine bridge enzyme |
ChOx | Cholesterol oxidase |
DAO | D-amino acid oxidase |
DET | Direct electron transfer |
FAD | Flavin adenine dinucleotide |
FAOx | Fructosyl amino acid oxidase |
FM | Ferrocene methanol |
FMN | Flavin mononucleotide |
FPOx | Fructosyl peptide oxidase |
GMC | Glucose-methanol-choline |
GOx | Glucose oxidase |
HAO | α-hydroxy acid oxidase |
LMO | Lactate monooxygenase |
LOx | L-lactate oxidase |
MCD | (2S)-methylsuccinyl-CoA dehydrogenase |
PDB | Protein data bank |
PDH | Pyranose 2-dehydrogenase |
PaGOx | Glucose oxidase from Penicillium amagasakiense |
VAO | Vanillyl alcohol oxidase |
References
- Romero, E.; Gómez Castellanos, J.R.; Gadda, G.; Fraaije, M.W.; Mattevi, A. Same substrate, many reactions: Oxygen activation in flavoenzymes. Chem. Rev. 2018, 118, 1742–1769. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Martens, N.; Hindle, A.; Hall, E.A.H. An assessment of mediators as oxidants for glucose oxidase in the presence of oxygen. Biosens. Bioelectron. 1995, 10, 393–403. [Google Scholar] [CrossRef]
- Trampitsch, C.; Slavica, A.; Riethorst, W.; Nidetzky, B. Reaction of Trigonopsis variabilis D-amino acid oxidase with 2,6-dichloroindophenol: Kinetic characterisation and development of an oxygen-independent assay of the enzyme activity. J. Mol. Catal. B Enzym. 2005, 32, 271–278. [Google Scholar] [CrossRef]
- Kenausis, G.; Taylor, C.; Katakis, I.; Heller, A. ‘Wiring’ of glucose oxidase and lactate oxidase within a hydrogel made with poly(vinyl pyridine) complexed with [Os(4,4[prime or minute]-dimethoxy-2,2[prime or minute]-bipyridine)2Cl]+/2+. J. Chem. Soc. Faraday Trans. 1996, 92, 4131–4136. [Google Scholar] [CrossRef]
- Fagan, R.L.; Palfey, B.A. Flavin-dependent enzymes. In Comprehensive Natural Products II: Chemistry and Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 7, pp. 37–113. [Google Scholar]
- Dijkman, W.P.; de Gonzalo, G.; Mattevi, A.; Fraaije, M.W. Flavoprotein oxidases: Classification and applications. Appl. Microbiol. Biotechnol. 2013, 97, 5177–5188. [Google Scholar] [CrossRef][Green Version]
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Davis, J.B.; Yarbrough, H.F. Preliminary experiments on a microbial fuel cell. Science 1962, 137, 615–616. [Google Scholar] [CrossRef]
- Rasmussen, M.; Abdellaoui, S.; Minteer, S.D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 2016, 76, 91–102. [Google Scholar] [CrossRef][Green Version]
- Bollella, P.; Gorton, L. Enzyme based amperometric biosensors. Curr. Opin. Electrochem. 2018, 10, 157–173. [Google Scholar] [CrossRef]
- Ferri, S.; Kojima, K.; Sode, K. Review of glucose oxidases and glucose dehydrogenases: A bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. Technol. 2011, 5, 1068–1076. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yokoyama, K.; Tamiya, E.; Karube, I. Performance of an integrated biosensor composed of a mediated and an oxygen-based glucose sensor under unknown oxygen tension. Anal. Lett. 1989, 22, 2949–2959. [Google Scholar] [CrossRef]
- Cass, A.E.; Davis, G.; Francis, G.D.; Hill, H.A.O.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.; Turner, A.P. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Binyamin, G.; Heller, A. Stabilization of wired glucose oxidase anodes rotating at 1000 rpm at 37 °C. J. Electrochem. Soc. 1999, 146, 2965–2967. [Google Scholar] [CrossRef]
- Kleppe, K. The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger. Biochemistry 1966, 5, 139–143. [Google Scholar] [CrossRef]
- Turner, A.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications, 1st ed.; Oxford University Press: Oxford, NY, USA, 1987; p. 770. [Google Scholar]
- Loew, N.; Fitriana, M.; Hiraka, K.; Sode, K.; Tsugawa, W. Characterization of electron mediator preference of Aerococcus viridans-derived lactate oxidase for use in disposable enzyme sensor Strips. Sens. Mater. 2017, 29, 1703–1711. [Google Scholar]
- Loew, N.; Tsugawa, W.; Nagae, D.; Kojima, K.; Sode, K. Mediator preference of two different FAD-dependent glucose dehydrogenases employed in disposable enzyme glucose sensors. Sensors 2017, 17, 2636. [Google Scholar] [CrossRef][Green Version]
- Chaiyen, P.; Fraaije, M.W.; Mattevi, A. The enigmatic reaction of flavins with oxygen. Trends Biochem. Sci. 2012, 37, 373–380. [Google Scholar] [CrossRef][Green Version]
- Carro, J.; Ferreira, P.; Martínez, A.T.; Gadda, G. Stepwise hydrogen atom and proton Transfers in Dioxygen Reduction by aryl-alcohol oxidase. Biochemistry 2018, 57, 1790–1797. [Google Scholar] [CrossRef][Green Version]
- Sucharitakul, J.; Prongjit, M.; Haltrich, D.; Chaiyen, P. Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase. Biochemistry 2008, 47, 8485–8490. [Google Scholar] [CrossRef]
- Mallett, T.C.; Claiborne, A. Oxygen reactivity of an NADH oxidase C42S mutant: Evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change. Biochemistry 1998, 37, 8790–8802. [Google Scholar] [CrossRef] [PubMed]
- Brondani, P.B.; Dudek, H.M.; Martinoli, C.; Mattevi, A.; Fraaije, M.W. Finding the switch: Turning a Baeyer–Villiger monooxygenase into a NADPH oxidase. J. Am. Chem. Soc. 2014, 136, 16966–16969. [Google Scholar] [CrossRef]
- Yoshida, H.; Sakai, G.; Mori, K.; Kojima, K.; Kamitori, S.; Sode, K. Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci. Rep. 2015, 5, 13498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Horaguchi, Y.; Saito, S.; Kojima, K.; Tsugawa, W.; Ferri, S.; Sode, K. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity. Int. J. Mol. Sci. 2012, 13, 14149–14157. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Horaguchi, Y.; Saito, S.; Kojima, K.; Tsugawa, W.; Ferri, S.; Sode, K. Engineering glucose oxidase to minimize the influence of oxygen on sensor response. Electrochim. Acta 2014, 126, 158–161. [Google Scholar] [CrossRef]
- Chen, L.; Lyubimov, A.Y.; Brammer, L.; Vrielink, A.; Sampson, N.S. The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase. Biochemistry 2008, 47, 5368–5377. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kojima, K.; Kobayashi, T.; Tsugawa, W.; Ferri, S.; Sode, K. Mutational analysis of the oxygen-binding site of cholesterol oxidase and its impact on dye-mediated dehydrogenase activity. J. Mol. Catal. B Enzym. 2013, 88, 41–46. [Google Scholar] [CrossRef]
- Tremey, E.; Stines-Chaumeil, C.; Gounel, S.; Mano, N. Designing an O2-insensitive glucose oxidase for improved electrochemical applications. ChemElectroChem 2017, 4, 2520–2526. [Google Scholar] [CrossRef]
- Gutierrez, E.A.; Mundhada, H.; Meier, T.; Duefel, H.; Bocola, M.; Schwaneberg, U. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics. Biosens. Bioelectron. 2013, 50, 84–90. [Google Scholar] [CrossRef]
- Brugger, D.; Krondorfer, I.; Shelswell, C.; Huber-Dittes, B.; Haltrich, D.; Peterbauer, C.K. Engineering pyranose 2-oxidase for modified oxygen reactivity. PLoS ONE 2014, 9, e109242. [Google Scholar] [CrossRef]
- Brugger, D.; Sützl, L.; Zahma, K.; Haltrich, D.; Peterbauer, C.K.; Stoica, L. Electrochemical characterization of the pyranose 2-oxidase variant N593C shows a complete loss of the oxidase function with full preservation of substrate (dehydrogenase) activity. Phys. Chem. Chem. Phys. 2016, 18, 32072–32077. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Finnegan, S.; Agniswamy, J.; Weber, I.T.; Gadda, G. Role of valine 464 in the flavin oxidation reaction catalyzed by choline oxidase. Biochemistry 2010, 49, 2952–2961. [Google Scholar] [CrossRef] [PubMed]
- Carro, J.; Amengual-Rigo, P.; Sancho, F.; Medina, M.; Guallar, V.; Ferreira, P.; Martínez, A.T. Multiple implications of an active site phenylalanine in the catalysis of aryl-alcohol oxidase. Sci. Rep. 2018, 8, 8121. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hernández-Ortega, A.; Lucas, F.; Ferreira, P.; Medina, M.; Guallar, V.; Martínez, A.T. Modulating O2 reactivity in a fungal flavoenzyme involvement of aryl-alcohol oxidase PHE-501 contiguous to catalytic histidine. J. Biol. Chem. 2011, 286, 41105–41114. [Google Scholar] [CrossRef][Green Version]
- Kim, S.; Nibe, E.; Ferri, S.; Tsugawa, W.; Sode, K. Engineering of dye-mediated dehydrogenase property of fructosyl amino acid oxidases by site-directed mutagenesis studies of its putative proton relay system. Biotechnol. Lett. 2010, 32, 1123–1129. [Google Scholar] [CrossRef]
- Kim, S.; Nibe, E.; Tsugawa, W.; Kojima, K.; Ferri, S.; Sode, K. Construction of engineered fructosyl peptidyl oxidase for enzyme sensor applications under normal atmospheric conditions. Biotechnol. Lett. 2012, 34, 491–497. [Google Scholar] [CrossRef]
- Zhao, G.; Bruckner, R.C.; Jorns, M.S. Identification of the oxygen activation site in monomeric sarcosine oxidase: Role of Lys265 in catalysis. Biochemistry 2008, 47, 9124–9135. [Google Scholar] [CrossRef][Green Version]
- Zafred, D.; Steiner, B.; Teufelberger, A.R.; Hromic, A.; Karplus, P.A.; Schofield, C.J.; Wallner, S.; Macheroux, P. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction. FEBS J. 2015, 282, 3060–3074. [Google Scholar] [CrossRef]
- Sygmund, C.; Santner, P.; Krondorfer, I.; Peterbauer, C.K.; Alcalde, M.; Nyanhongo, G.S.; Guebitz, G.M.; Ludwig, R. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microb. Cell Fact. 2013, 12, 38. [Google Scholar] [CrossRef][Green Version]
- Krondorfer, I.; Lipp, K.; Brugger, D.; Staudigl, P.; Sygmund, C.; Haltrich, D.; Peterbauer, C.K. Engineering of pyranose dehydrogenase for increased oxygen reactivity. PLoS ONE 2014, 9, e91145. [Google Scholar] [CrossRef][Green Version]
- Leferink, N.G.; Fraaije, M.W.; Joosten, H.-J.; Schaap, P.J.; Mattevi, A.; van Berkel, W.J. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J. Biol. Chem. 2009, 284, 4392–4397. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schwander, T.; von Borzyskowski, L.S.; Burgener, S.; Cortina, N.S.; Erb, T.J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 2016, 354, 900–904. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Burgener, S.; Schwander, T.; Romero, E.; Fraaije, M.; Erb, T. Molecular basis for converting (2S)-methylsuccinyl-CoA dehydrogenase into an oxidase. Molecules 2018, 23, 68. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Salvi, F.; Rodriguez, I.; Hamelberg, D.; Gadda, G. Role of f357 as an oxygen gate in the oxidative half-reaction of choline oxidase. Biochemistry 2016, 55, 1473–1484. [Google Scholar] [CrossRef]
- Saam, J.; Rosini, E.; Molla, G.; Schulten, K.; Pollegioni, L.; Ghisla, S. O2 Reactivity of flavoproteins dynamic access of dioxygen to the active site and role of a H+ relay system in D-amino acid oxidase. J. Biol. Chem. 2010, 285, 24439–24446. [Google Scholar] [CrossRef][Green Version]
- Hiraka, K.; Kojima, K.; Lin, C.-E.; Tsugawa, W.; Asano, R.; La Belle, J.T.; Sode, K. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridans l-lactate oxidase. Biosens. Bioelectron. 2018, 103, 163–170. [Google Scholar] [CrossRef]
- Hiraka, K.; Kojima, K.; Tsugawa, W.; Asano, R.; Ikebukuro, K.; Sode, K. Rational engineering of Aerococcus viridans L-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. Biosens. Bioelectron. 2020, 151, 111974. [Google Scholar] [CrossRef]
- Lario, P.I.; Sampson, N.; Vrielink, A. Sub-atomic resolution crystal structure of cholesterol oxidase: What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J. Mol. Biol. 2003, 326, 1635–1650. [Google Scholar] [CrossRef]
- Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Gora, A.; Sustr, V.; Klvana, M.; Medek, P.; et al. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012, 8, e1002708. [Google Scholar] [CrossRef][Green Version]
- Baron, R.; McCammon, J.A.; Mattevi, A. The oxygen-binding vs. oxygen-consuming paradigm in biocatalysis: Structural biology and biomolecular simulation. Curr. Opin. Struc. Biol. 2009, 19, 672–679. [Google Scholar] [CrossRef]
- Shimasaki, T.; Yoshida, H.; Kamitori, S.; Sode, K. X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction. Sci. Rep. 2017, 7, 2790. [Google Scholar] [CrossRef] [PubMed]
- Milton, R.D.; Hickey, D.P.; Abdellaoui, S.; Lim, K.; Wu, F.; Tan, B.; Minteer, S.D. Rational design of quinones for high power density biofuel cells. Chem. Sci. 2015, 6, 4867–4875. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Okurita, M.; Suzuki, N.; Loew, N.; Yoshida, H.; Tsugawa, W.; Mori, K.; Kojima, K.; Klonoff, D.C.; Sode, K. Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium (III) as an electron acceptor. Bioelectrochemistry 2018, 123, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M. The acceptor specificity of flavins and flavoproteins. I. Techniques for anaerobic spectrophotometry. Biochim. Biophys. Acta Bioenerg. 1971, 226, 241–258. [Google Scholar] [CrossRef]
- Dixon, M. The acceptor specificity of flavins and flavoproteins. II. Free flavins. Biochim. Biophys. Acta Bioenerg. 1971, 226, 259–268. [Google Scholar] [CrossRef]
- Dixon, M. The acceptor specificity of flavins and flavoproteins. III. Flavoproteins. Biochim. Biophys. Acta Bioenerg. 1971, 226, 269–284. [Google Scholar] [CrossRef]
- Suraniti, E.; Courjean, O.; Gounel, S.; Tremey, E.; Mano, N. Uncovering and redesigning a key amino acid of glucose oxidase for improved biotechnological applications. Electroanalysis 2013, 25, 606–611. [Google Scholar] [CrossRef]
- Arango Gutierrez, E.; Wallraf, A.M.; Balaceanu, A.; Bocola, M.; Davari, M.D.; Meier, T.; Duefel, H.; Schwaneberg, U. How to engineer glucose oxidase for mediated electron transfer. Biotechnol. Bioeng. 2018, 115, 2405–2415. [Google Scholar] [CrossRef]
- Kopečný, D.; Končitíková, R.; Popelka, H.; Briozzo, P.; Vigouroux, A.; Kopečná, M.; Zalabák, D.; Šebela, M.; Skopalová, J.; Frébort, I. Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. FEBS J. 2016, 283, 361–377. [Google Scholar] [CrossRef][Green Version]
- Stoisser, T.; Rainer, D.; Leitgeb, S.; Wilson, D.K.; Nidetzky, B. The Ala95-to-Gly substitution in Aerococcus viridans L-lactate oxidase revisited–structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors. FEBS J. 2015, 282, 562–578. [Google Scholar] [CrossRef]
- Yakovleva, M.E.; Gonaus, C.; Schropp, K.; Conghaile, P.Ó.; Leech, D.; Peterbauer, C.K.; Gorton, L. Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells. Phys. Chem. Chem. Phys. 2015, 17, 9074–9081. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gonaus, C.; Maresch, D.; Schropp, K.; Conghaile, P.Ó.; Leech, D.; Gorton, L.; Peterbauer, C.K. Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes. Enzym. Microb. Technol. 2017, 99, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Yorita, K.; Aki, K.; Ohkuma-Soyejima, T.; Kokubo, T.; Misaki, H.; Massey, V. Conversion of L-lactate oxidase to a long chain α-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine. J. Biol. Chem. 1996, 271, 28300–28305. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Prévoteau, A.; Courjean, O.; Mano, N. Deglycosylation of glucose oxidase to improve biosensors and biofuel cells. Electrochem. Commun. 2010, 12, 213–215. [Google Scholar] [CrossRef]
- Murata, K.; Akatsuka, W.; Sadakane, T.; Matsunaga, A.; Tsujimura, S. Glucose oxidation catalyzed by FAD-dependent glucose dehydrogenase within Os complex-tethered redox polymer hydrogel. Electrochim. Acta 2014, 136, 537–541. [Google Scholar] [CrossRef]
- Yakovleva, M.E.; Killyéni, A.; Seubert, O.; Conghaile, P.Ó.; Macaodha, D.; Leech, D.; Gonaus, C.; Popescu, I.C.; Peterbauer, C.K.; Kjellström, S.; et al. Further insights into the catalytical properties of deglycosylated pyranose dehydrogenase from Agaricus meleagris recombinantly expressed in Pichia pastoris. Anal. Chem. 2013, 85, 9852–9858. [Google Scholar] [CrossRef] [PubMed]
- Yakovleva, M.E.; Killyéni, A.; Ortiz, R.; Schulz, C.; MacAodha, D.; Conghaile, P.Ó.; Leech, D.; Popescu, I.C.; Gonaus, C.; Peterbauer, C.K.; et al. Recombinant pyranose dehydrogenase—A versatile enzyme possessing both mediated and direct electron transfer. Electrochem. Commun. 2012, 24, 120–122. [Google Scholar] [CrossRef]
- Killyéni, A.; Yakovleva, M.E.; MacAodha, D.; Conghaile, P.Ó.; Gonaus, C.; Ortiz, R.; Leech, D.; Popescu, I.C.; Peterbauer, C.K.; Gorton, L. Effect of deglycosylation on the mediated electrocatalytic activity of recombinantly expressed Agaricus meleagris pyranose dehydrogenase wired by osmium redox polymer. Electrochim. Acta 2014, 126, 61–67. [Google Scholar] [CrossRef]
- Shao, M.; Zafar, M.N.; Falk, M.; Ludwig, R.; Sygmund, C.; Peterbauer, C.K.; Guschin, D.A.; MacAodha, D.; Conghaile, P.Ó.; Leech, D.; et al. Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density. ChemPhysChem 2013, 14, 2260–2269. [Google Scholar] [CrossRef]
- Tan, T.C.; Spadiut, O.; Wongnate, T.; Sucharitakul, J.; Krondorfer, I.; Sygmund, C.; Haltrich, D.; Chaiyen, P.; Peterbauer, C.K.; Divne, C. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate. PLoS ONE 2013, 8, e53567. [Google Scholar] [CrossRef][Green Version]
Enzyme (Source) | Family (EC: Number) | Co-Factor | Mutation Site | Mutated Position | Effects of Mutation | Reference |
---|---|---|---|---|---|---|
(1) Investigation/engineering of the putative residues which are predicted oxygen binding site | ||||||
Glucose oxidase (Penicillium amagasakiense) | GMC (EC: 1.1.3.16) | FAD | S114A, F355L | Predicted oxygen binding site | Decreased oxidase activity | [26,27] |
Glucose oxidase (Aspergillus niger) | GMC (EC: 1.1.3.16) | FAD | T110A, F351L | Predicted oxygen binding site | Decreased oxidase activity | [26] |
Cholesterol oxidase (Streptomyces sp. SA-COO) | GMC (EC: 1.1.3.6) | FAD | V191A, F359W | Oxygen binding site of crystal structure | Decreased oxidase activity | [28,29] |
(2) Investigation/engineering of the cavity in vicinity of isoalloxazine ring | ||||||
Glucose oxidase (Penicillium amagasakiense) | GMC (EC: 1.1.3.16) | FAD | V564S | Vicinity of FAD | Decreased oxidase activity | [30] |
Glucose oxidase (Aspergillus niger) | GMC (EC: 1.1.3.16) | FAD | V560T (random mutation) | Vicinity of FAD | Decreased oxidase activity | [31] |
Pyranose oxidase (Trametes multicolor) | GMC (EC: 1.1.3.10) | FAD (covalent) | L547R, N593C | Vicinity of FAD | Decreased oxidase activity | [32,33] |
Choline oxidase (Arthrobacter globiformis) | GMC (EC: 1.1.3.17) | FAD (covalent) | V464T, V464A | Vicinity of FAD | Decreased oxidase activity | [34] |
Aryl-alcohol oxidase (Pleurotus eryngii) | GMC (EC: 1.1.3.7) | FAD | F501A, F397W | Vicinity of FAD | Decreased oxidase activity | [35,36] |
F501W | Vicinity of FAD | Increased oxidase activity | [35] | |||
Fructosyl amino acid oxidase (Pichia sp. N1-1) | DAO (EC: 1.5.3) | FAD (covalent) | K276M, N47A | Proton relay system (Vicinity of FAD) | Decreased oxidase activity | [37] |
Fructosyl peptide oxidase (Phaeosphaeria nodorum) | DAO (EC: 1.5.3) | FAD (covalent) | N56A | Proton relay system (Vicinity of FAD) | Decreased oxidase activity | [38] |
Monomeric sarcosine oxidase (Bacillus sp. B-0618) | DAO (EC: 1.5.3.1) | FAD (covalent) | K265M | Proton relay system (Vicinity of FAD) | Decreased oxidase activity | [39] |
Berberine bridge enzyme (Reticuline oxidase) (Eschscholzia californica) | VAO (EC: 1.21.3.3) | FAD (covalent) | G164A, V169I | Vicinity of FAD | Decreased oxidase activity | [40] |
Cellobiose dehydrogenase (Myriococcum thermophilum) | GMC (EC: 1.1.99.18) | FAD | N700S | Vicinity of FAD | Increased oxidase activity | [41] |
Pyranose dehydrogenase (Agaricus meleagris) | GMC (EC: 1.1.99.29) | FAD (covalent) | H103Y | Vicinity of FAD (Covalent bond with FAD) | Breaking of covalent bond with FAD Increased oxidase activity | [42] |
L-Galactono-γ-lactone dehydrogenase (Arabidopsis thaliana) | VAO (EC: 1.3.2.3) | FAD (covalent) | A113G | Vicinity of FAD | Increased oxidase reactivity | [43] |
Pollen allergen Phl p 4 (Phleum pretense) | VAO (EC: -) | FAD (covalent) | I153V | Vicinity of FAD | Increased oxidase activity | [40] |
(2S)-methylsuccinyl-CoA dehydrogenase (Rhodobacter sphaeroides) | ACO (EC: 1.3.8.12) | FAD | W315F/T317G/E377N | Vicinity of FAD | Increased oxidase activity | [44,45] |
(3) Investigation/engineering of possible oxygen access route from external enzyme to the isoalloxazine ring | ||||||
Choline oxidase (Arthrobacter globiformis) | GMC (EC: 1.1.3.17) | FAD (covalent) | F357A | Predicted oxygen accessible pathway | Decreased oxidase activity | [46] |
D-amino acid oxidase (Rhodotorula gracilis) | DAO (EC: 1.4.3.3) | FAD | G52V | Predicted oxygen accessible pathway | Decreased oxidase activity | [47] |
L-lactate oxidase (Aerococcus viridans) | HAO (EC: 1.1.3.15) | FMN | A96L, N212K, A96L/N212K | Predicted oxygen accessible pathway | Decreased oxidase activity | [48,49] |
Enzyme (Source) | Family (EC: Number) | Co-Factor | Mutation Site | Mutated Position | Effects of Mutation | Reference |
---|---|---|---|---|---|---|
(1) Engineering of surface residue around the substrate entrance | ||||||
Glucose oxidase (Penicillium amagasakiense) | GMC (EC: 1.1.3.16) | FAD | K424E | Surface charged residue | Increased reactivity for osmium polymer | [59] |
Glucose oxidase (Aspergillus niger) | GMC (EC: 1.1.3.16) | FAD | D416A, D416H | Surface charged residue | Decreased reactivity for hexaammineruthenium (III) | [55] |
Glucose dehydrogenase (Aspergillus flavus) | GMC (EC: 1.1.5.9) | FAD | H403D | Surface charged residue | Increased reactivity for hexaammineruthenium (III) | [55] |
(2) Engineering of a cavity in the vicinity of flavin | ||||||
Glucose oxidase V7 mutant (Aspergillus niger) | GMC (EC: 1.1.3.16) | FAD | I414M, I414Y | Vicinity of FAD | Increased reactivity for quinone diamine based electron acceptors | [60] |
Cytokinin oxidase (Zea mays) | VAO (EC: 1.5.99.12) | FAD (covalent) | D169E, L492A | Vicinity of FAD | Increased reactivity for several artificial electron acceptors | [61] |
L-lactate oxidase (Aerococcus viridans) | HAO (EC: 1.1.3.15) | FMN | A95G | Vicinity of FMN | artificial electron acceptor Decreased substrate specificity | [62] |
(3) Decreasing the glycosylation degree of the enzyme | ||||||
Pyranose dehydrogenase (Agaricus meleagris) | GMC (EC: 1.1.99.29) | FAD (covalent) | N75G, N175Q, N252Q | Glycosylation site | Decreased glycosylation degree Increased reactivity for osmium polymer Decreased thermal stability | [63,64] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiraka, K.; Tsugawa, W.; Sode, K. Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. Int. J. Mol. Sci. 2020, 21, 3797. https://doi.org/10.3390/ijms21113797
Hiraka K, Tsugawa W, Sode K. Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. International Journal of Molecular Sciences. 2020; 21(11):3797. https://doi.org/10.3390/ijms21113797
Chicago/Turabian StyleHiraka, Kentaro, Wakako Tsugawa, and Koji Sode. 2020. "Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases" International Journal of Molecular Sciences 21, no. 11: 3797. https://doi.org/10.3390/ijms21113797