Analysis of the Barley Malt Rootlet Proteome
Abstract
:1. Introduction
2. Results
2.1. Overview of the Proteome Analysis Pipeline
2.2. Overview of the Mass Spectrometry Data of Barley Rootlets and Kilned Seeds
2.3. Comparative Analysis of the Rootlet and Kilned Seed Proteome
2.4. Gene Ontology (GO) Enrichment Analysis of the Rootlet Proteome
2.5. Pathway Enrichment Analysis of the Rootlet Proteome
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Malting
4.2. Protein Extraction
4.3. Enzymatic “In Liquid” Digestion
4.4. Mass Spectrometry
4.5. MS Data Analysis
4.6. GO Enrichment Analysis Using TopGO
4.7. Pathway Analysis Using KEGG and Plant Reactome
4.8. Phytohormone Analysis
4.9. Statistical Analysis
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GO | Gene Ontology |
BP | Biological Process |
MF | Molecular Function |
PEP | Phosphoenol pyruvate |
IAA | Indole acetic acid |
JA | Jasmonic acid |
MS | Mass Spectrometry |
KEGG | Kellogg Encyclopedia of Genes and Genomes |
LC-MS | Liquid chromatography mass spectrometry |
mgf | Mascot Generic Format |
FANN | Functional annotator |
PANNZER | Protein Annotation with Z-score |
Argot2 | Annotation retrieval of gene ontology terms |
References
- Briggs, D.E. Malts and Malting, 1st ed.; Blackie Academic and Professional: London, UK, 1998; pp. 341–474. [Google Scholar]
- Mahalingam, R. Temporal Analyses of Barley Malting Stages Using Shotgun Proteomics. Proteomics 2018, 18, e1800025. [Google Scholar] [CrossRef] [PubMed]
- Onyeneho, S.N.; Hettiarachchy, N.S. Antioxidant Activity of Durum-Wheat Bran. J. Agric. Food Chem. 1992, 40, 1496–1500. [Google Scholar] [CrossRef]
- Duh, P.D.; Yen, G.C. Antioxidant efficacy of methanolic extracts of peanut hulls in soybean and peanut oils. J. Am. Oil Chem. Soc. 1997, 74, 745–748. [Google Scholar] [CrossRef]
- Shahidi, F.; Amarowicz, R.; He, Y.H.; Wettasinghe, M. Antioxidant activity of phenolic extracts of evening primrose (Oenothera biennis): A preliminary study. J. Food Lipids 1997, 4, 75–86. [Google Scholar] [CrossRef]
- Bocco, A.; Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 1998, 46, 2123–2129. [Google Scholar] [CrossRef]
- Bonnely, S.; Peyrat-Maillard, M.N.; Rondini, L.; Masy, D.; Berset, C. Antioxidant activity of malt rootlet extracts. J. Agric. Food Chem. 2000, 48, 2785–2792. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Ren, Y.; Guo, Z.; Li, J.; Tong, Y.; Lin, T.; Cui, D. Comparative Proteomic Analysis Provides Insights into the Regulatory Mechanisms of Wheat Primary Root Growth. Sci. Rep. 2019, 9, 11741. [Google Scholar] [CrossRef] [Green Version]
- Hochholdinger, F.; Marcon, C.; Baldauf, J.A.; Yu, P.; Frey, F.P. Proteomics of Maize Root Development. Front. Plant Sci. 2018, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Nozu, Y.; Tsugita, A.; Kamijo, K. Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics 2006, 6, 3665–3670. [Google Scholar] [CrossRef]
- Mostek, A.; Borner, A.; Badowiec, A.; Weidner, S. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. J. Plant Physiol. 2015, 174, 166–176. [Google Scholar] [CrossRef]
- Shen, Q.F.; Yu, J.H.; Fu, L.B.; Wu, L.Y.; Dai, F.; Jiang, L.X.; Wu, D.Z.; Zhang, G.P. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiol. Biochem. 2018, 123, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Witzel, K.; Matros, A.; Moller, A.L.B.; Ramireddy, E.; Finnie, C.; Peukert, M.; Rutten, T.; Herzog, A.; Kunze, G.; Melzer, M.; et al. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Plant Cell Environ. 2018, 41, 1311–1330. [Google Scholar] [CrossRef] [PubMed]
- Witzel, K.; Weidner, A.; Surabhi, G.K.; Borner, A.; Mock, H.P. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J. Exp. Bot. 2009, 60, 3545–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielewska, K.; Rodziewicz, P.; Swarcewicz, B.; Sawikowska, A.; Krajewski, P.; Marczak, L.; Ciesiolka, D.; Kuczynska, A.; Mikolajczak, K.; Ogrodowicz, P.; et al. Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. Front. Plant Sci. 2016, 7, 1108. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe-Nelson, C.; Morris, P.C. Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics 2012, 12, 3374–3385. [Google Scholar] [CrossRef]
- Moller, A.L.B.; Pedas, P.; Andersen, B.; Svensson, B.; Schjoerring, J.K.; Finnie, C. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant Cell Environ. 2011, 34, 2024–2037. [Google Scholar] [CrossRef]
- Lawerence-Dill, C. GOMAP Barley Reference Sequences IBSC_PGSB_r1. 1.0, 1; CyVerse Data Commons University of Arizona: Tucson, AZ, USA, 2019. [Google Scholar]
- Wimalanathan, K.; Friedberg, I.; Andorf, C.M.; Lawrence-Dill, C.J. Maize GO Annotation-Methods, Evaluation, and Review (maize-GAMER). Plant Direct 2018, 2, e00052. [Google Scholar] [CrossRef]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, 122–129. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; He, L.N.; Huang, R.F. The Coordination of Ethylene and Other Hormones in Primary Root Development. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Hackett, C. A Study of Root System of Barley I. Effects of Nutrition on 2 Varieties. New Phytol. 1968, 67, 287–299. [Google Scholar] [CrossRef]
- Robards, A.W.; Jackson, S.M.; Clarkson, D.T.; Sanderson, J. Structure of Barley Roots in Relation to Transport of Ions into Stele. Protoplasma 1973, 77, 291–311. [Google Scholar] [CrossRef]
- Ishikawa, H.; Evans, M.L. Specialized zones of development in roots. Plant Physiol. 1995, 109, 725–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorzolka, K.; Lissel, M.; Kessler, N.; Loch-Ahring, S.; Niehaus, K. Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting. J. Biotechnol. 2012, 159, 177–187. [Google Scholar] [CrossRef]
- Lin, L.; Tian, S.; Kaeppler, S.; Liu, Z.; An, Y.Q. Conserved transcriptional regulatory programs underlying rice and barley germination. PLoS ONE 2014, 9, e87261. [Google Scholar] [CrossRef]
- Yang, J.; An, D.; Zhang, P. Gene Expression Profiling of Developing Cassava Storage Roots Reveals an Active Process of Glycolysis/Gluconeogenesis. In Vitro Cell. Dev. Biol. Anim. 2010, 46, S180–S181. [Google Scholar]
- Alonso, A.P.; Val, D.L.; Shachar-Hill, Y. Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab. Eng. 2011, 13, 96–107. [Google Scholar] [CrossRef]
- Farrar, J.F. Fluxes of Carbon in Roots of Barley Plants. New Phytol. 1985, 99, 57–69. [Google Scholar] [CrossRef]
- Walker, R.P.; Benincasa, P.; Battistelli, A.; Moscatello, S.; Tecsi, L.; Leegood, R.C.; Famiani, F. Gluconeogenesis and nitrogen metabolism in maize. Plant Physiol. Biochem. 2018, 130, 324–333. [Google Scholar] [CrossRef]
- Famiani, F.; Moscatello, S.; Ferradini, N.; Gardi, T.; Battistelli, A.; Walker, R.P. Occurrence of a number of enzymes involved in either gluconeogenesis or other processes in the pericarp of three cultivars of grape (Vitis vinifera L.) during development. Plant Physiol. Biochem. 2014, 84, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Leegood, R.C.; Walker, R.P. Regulation and roles of phosphoenolpyruvate carboxykinase in plants. Arch. Biochem. Biophys. 2003, 414, 204–210. [Google Scholar] [CrossRef]
- Walker, R.P.; Battistelli, A.; Moscatello, S.; Tecsi, L.; Leegood, R.C.; Famiani, F. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp. Plant Physiol. Biochem. 2015, 97, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Crit. Rev. Food Sci. 2015, 55, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.C. Ascorbic-Acid Metabolism in Protection against Free-Radicals—A Radiation Model. Biochem. Biophys. Res. Commun. 1990, 169, 430–436. [Google Scholar] [CrossRef]
- Mokhtari, V.; Afsharian, P.; Shahhoseini, M.; Kalantar, S.M.; Moini, A. A Review on Various Uses of N-Acetyl Cysteine. Cell J. 2017, 19, 11–17. [Google Scholar]
- An, Y.Q.; Lin, L. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid. BMC Plant Biol. 2011, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.P.; Montgomery, T.A.; Fahlgren, N.; Kasschau, K.D.; Nonogaki, H.; Carrington, J.C. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007, 52, 133–146. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D.L. Plant hormones and seed germination. Environ. Exp. Bot. 2014, 99, 110–121. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef] [Green Version]
- Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: Current status and future challenges. Pharm. J. 2007, 7, 99–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beavis, R.C.; Chait, B.T. Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation. Rapid Commun. Mass Spectrom. 1989, 3, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Niciforovic, N.; Abramovic, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Harden, L.A. Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J. Agric. Food Chem. 2000, 48, 5702–5709. [Google Scholar] [CrossRef]
- Cheng, S.S.; Liu, J.Y.; Tsai, K.H.; Chen, W.J.; Chang, S.T. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
- Wang, X.; Shen, S.; Rasam, S.S.; Qu, J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. Mass Spectrom. Rev. 2019, 38, 461–482. [Google Scholar] [CrossRef]
- Mahalingam, R. Shotgun proteomics of the barley seed proteome. BMC Genom. 2017, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Clark, W.T.; Radivojac, P. Analysis of protein function and its prediction from amino acid sequence. Proteins 2011, 79, 2086–2096. [Google Scholar] [CrossRef]
- Naithani, S.; Preece, J.; D’Eustachio, P.; Gupta, P.; Amarasinghe, V.; Dharmawardhana, P.D.; Wu, G.; Fabregat, A.; Elser, J.L.; Weiser, J.; et al. Plant Reactome: A resource for plant pathways and comparative analysis. Nucleic Acids Res. 2017, 45, 1029–1039. [Google Scholar] [CrossRef]
Sample | No. of Spectra | No. Peptides | Peptides | Proteins | ||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R1 | R2 | Average | FDR (%) | Average | FDR (%) | |
Kiln seeds | 43,698 | 43,839 | 10,851 | 12,048 | 11,450 | 0.26 | 1330 | 0.54 |
Rootlets | 45,419 | 42,262 | 15,768 | 13,320 | 14,544 | 0.33 | 1668 | 0.60 |
Kiln rootlets | 45,758 | 45,651 | 15,740 | 15,142 | 15,441 | 0.33 | 1694 | 0.52 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahalingam, R. Analysis of the Barley Malt Rootlet Proteome. Int. J. Mol. Sci. 2020, 21, 179. https://doi.org/10.3390/ijms21010179
Mahalingam R. Analysis of the Barley Malt Rootlet Proteome. International Journal of Molecular Sciences. 2020; 21(1):179. https://doi.org/10.3390/ijms21010179
Chicago/Turabian StyleMahalingam, Ramamurthy. 2020. "Analysis of the Barley Malt Rootlet Proteome" International Journal of Molecular Sciences 21, no. 1: 179. https://doi.org/10.3390/ijms21010179
APA StyleMahalingam, R. (2020). Analysis of the Barley Malt Rootlet Proteome. International Journal of Molecular Sciences, 21(1), 179. https://doi.org/10.3390/ijms21010179