Next Article in Journal
Calcium-Binding Proteins in the Nervous System during Hibernation: Neuroprotective Strategies in Hypometabolic Conditions?
Next Article in Special Issue
A Robust Model for Circadian Redox Oscillations
Previous Article in Journal
PD-L1 Expression in Mastocytosis
Previous Article in Special Issue
Circadian Regulation in Tissue Regeneration
Open AccessReview

A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies

1
Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
2
Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
3
Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2019, 20(9), 2363; https://doi.org/10.3390/ijms20092363
Received: 1 April 2019 / Revised: 10 May 2019 / Accepted: 10 May 2019 / Published: 13 May 2019
(This article belongs to the Special Issue Circadian Rhythms: Molecular and Physiological Mechanisms)
The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery. View Full-Text
Keywords: circadian rhythms; central pacemaker; suprachiasmatic nucleus; Drosophila; neurotransmitters; neuropeptides; entrainment; synchrony; intercellular and intracellular signaling; protein kinases circadian rhythms; central pacemaker; suprachiasmatic nucleus; Drosophila; neurotransmitters; neuropeptides; entrainment; synchrony; intercellular and intracellular signaling; protein kinases
Show Figures

Graphical abstract

MDPI and ACS Style

Hegazi, S.; Lowden, C.; Rios Garcia, J.; Cheng, A.H.; Obrietan, K.; Levine, J.D.; Cheng, H.-Y.M. A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. Int. J. Mol. Sci. 2019, 20, 2363.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop