HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Blood Analyses
4.3. Carotid Examination
4.4. Statistical Analyses
Author Contributions
Funding
Conflicts of Interest
References
- Rye, K.-A.; Bursill, C.A.; Lambert, G.; Tabet, F.; Barter, P.J. The metabolism and anti-atherogenic properties of HDL. J. Lipid Res. 2009, 50, S195–S200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spady, D.K. Reverse Cholesterol Transport and Atherosclerosis Regression. Circulation 1999, 100, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Rader, D.J.; Hovingh, G.K. HDL and cardiovascular disease. Lancet 2014, 384, 618–625. [Google Scholar] [CrossRef]
- The Emerging Risk Factors Collaboration; Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; et al. Major Lipids, Apolipoproteins, and Risk of Vascular Disease. JAMA 2009, 302, 1993. [Google Scholar] [PubMed]
- Ramasamy, I. Update on the molecular biology of dyslipidemias. Clin. Chim. Acta 2016, 454, 143–185. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, R.; Jiang, L.; Hopewell, J.C.; Li, J.; Chen, F.; Parish, S.; Landray, M.J.; Collins, R.; Armitage, J.; Collins, R.; et al. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: Trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 2013, 34, 1279–1291. [Google Scholar]
- AIM-HIGH Investigators; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar]
- Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet 2005, 366, 1849–1861. [Google Scholar] [CrossRef]
- ACCORD Study Group; Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R.; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; et al. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.-C.; Waters, D.D.; et al. Effects of Torcetrapib in Patients at High Risk for Coronary Events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N. Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Elam, M.; Lovato, L.; Ginsberg, H. The ACCORD-Lipid study: Implications for treatment of dyslipidemia in Type 2 diabetes mellitus. Clin. Lipidol. 2011, 6, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Cabré, A.; Heras, M.; Amigó, N.; Correig, X.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F.; Quesada, H.; Julve, J.; et al. Remarkable quantitative and qualitative differences in HDL after niacin or fenofibrate therapy in type 2 diabetic patients. Atherosclerosis 2015, 238, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.A.K. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol. Cell Biochem. 2018, 440, 167–187. [Google Scholar] [CrossRef]
- Vergès, B. Lipid modification in type 2 diabetes: The role of LDL and HDL. Fundam. Clin. Pharmacol. 2009, 23, 681–685. [Google Scholar] [CrossRef]
- Amigó, N.; Mallol, R.; Heras, M.; Martínez-Hervás, S.; Blanco-Vaca, F.; Escolà-Gil, J.C.; Plana, N.; Yanes, Ó.; Masana, L.; Correig, X. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: “Herniated” HDL, a common feature in diabetes. Sci. Rep. 2016, 6, 19249. [Google Scholar] [CrossRef]
- Holmes, M.V.; Millwood, I.Y.; Kartsonaki, C.; Hill, M.R.; Bennett, D.A.; Boxall, R.; Guo, Y.; Xu, X.; Bian, Z.; Hu, R.; et al. Lipids, Lipoproteins, and Metabolites and Risk of Myocardial Infarction and Stroke. J. Am. Coll. Cardiol. 2018, 71, 620–632. [Google Scholar] [CrossRef]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef]
- Shah, A.S.; Tan, L.; Long, J.L.; Davidson, W.S. Proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res. 2013, 54, 2575–2585. [Google Scholar] [CrossRef]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, C.; Santoro, N.; Caprio, S.; Kim, G.; Lartaud, D.; Shaw, M.; Pierpont, B.; Weiss, R. The triglyceride-to-HDL cholesterol ratio: Association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care 2011, 34, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhu, L.; Cui, X.; Feng, L.; Zhao, X.; He, S.; Ping, F.; Li, W.; Li, Y. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status. Lipids Health Dis. 2016, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Pantoja-Torres, B.; Toro-Huamanchumo, C.J.; Urrunaga-Pastor, D.; Guarnizo-Poma, M.; Lazaro-Alcantara, H.; Paico-Palacios, S.; del Carmen Ranilla-Seguin, V.; Benites-Zapata, V.A. Insulin Resistance and Metabolic Syndrome Research Group High triglycerides to HDL-cholesterol ratio is associated with insulin resistance in normal-weight healthy adults. Diabetes Metab Syndr. Clin. Res. Rev. 2019, 13, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Fu, J.; Jiang, Y.; Dong, G.; Wang, X.; Wu, W. TriGlycerides and high-density lipoprotein cholesterol ratio compared with homeostasis model assessment insulin resistance indexes in screening for metabolic syndrome in the chinese obese children: A cross section study. BMC Pediatr. 2015, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, A.-M.K.; Langsted, A.; Varbo, A.; Bang, L.E.; Kamstrup, P.R.; Nordestgaard, B.G. Increased Remnant Cholesterol Explains Part of Residual Risk of All-Cause Mortality in 5414 Patients with Ischemic Heart Disease. Clin. Chem. 2016, 62, 593–604. [Google Scholar] [CrossRef] [Green Version]
- Varbo, A.; Freiberg, J.J.; Nordestgaard, B.G. Remnant Cholesterol and Myocardial Infarction in Normal Weight, Overweight, and Obese Individuals from the Copenhagen General Population Study. Clin. Chem. 2018, 64, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Mallol, R.; Amigó, N.; Rodríguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L.; et al. Liposcale: A novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef]
Clinical and Biochemical Variables | n = 502 |
---|---|
Age (y) | 61.0 (52.0–67.0) |
Sex (%, women) | 50.9 |
BMI (kg/m2) | 30.0 (27.0–34.8) |
SBP (mm Hg) | 133.0 (124.0–146.0) |
DBP (mm Hg) | 80.0 (71.0–85.0) |
Total cholesterol (mg/dL) | 196.4 (172.8–231.2) |
Total triglycerides (mg/dL) | 135.9 (91.2–210.8) |
ApoB100 (mg/dL) | 97 (81–118) |
ApoA1 (mg/dL) | 138.4 ± 14.94 |
Disease | |
Type 2 diabetes (%, yes) | 78.1 |
Obesity (%, yes) | 51.2 |
Metabolic syndrome (%, yes) | 80.1 |
Atherogenic dyslipidemia (%, yes) | 30.6 |
Subclinical atherosclerosis | |
cIMT (mm) * | 0.68 (0.62–0.77) |
Carotid atherosclerotic plaque (%, yes) ** | 32.8 |
Lipidomics | |
Cholesterol | |
VLDL-C (mg/dL) | 19.4 (10.1–34.8) |
IDL-C (mg/dL) | 11.2 (7.6–15.2) |
LDL-C (mg/dL) | 110.1 (89.6–133.7) |
HDL-C (mg/dL) | 49.1 (40.9–60.3) |
Triglycerides | |
VLDL-TG (mg/dL) | 73.0 (44.5–130.8) |
IDL-TG (mg/dL) | 13.0 (9.7–16.2) |
LDL-TG (mg/dL) | 18.8 (14.5–24.0) |
HDL-TG (mg/dL) | 15.3 (12.2–19.5) |
Particle number | |
VLDL-P (nmol/L) | 58.2 (33.9–102.9) |
Large VLDL-P (nmol/L) | 1.28 (0.82–2.10) |
Medium VLDL-P (nmol/L) | 4.9 (2.9–8.9) |
Small VLDL-P (nmol/L) | 51.7 (30.1–89.7) |
LDL-P (nmol/L) | 831.8 (684.8–1020.6) |
Large LDL-P (nmol/L) | 108.1 (89.4–132.4) |
Medium LDL-P (nmol/L) | 269.2 (206.4–355.3) |
Small LDL-P (nmol/L) | 448.9 (370.7–543.9) |
HDL-P (µmol/L) | 27.9 (23.8–32.2) |
Large HDL-P (µmol/L) | 0.28 (0.24–0.32) |
Medium HDL-P (µmol/L) | 8.1 (6.7–9.6) |
Small HDL-P (µmol/L) | 19.6 (16.3–22.7) |
Particle size | |
VLDL-Z (nm) | 41.9 (41.8–42.1) |
LDL-Z (nm) | 20.9 (20.8–21.1) |
HDL-Z (nm) | 8.2 (8.2–8.3) |
Variables | HDL-TG | HDL-C | HDL-P | |||
---|---|---|---|---|---|---|
ρ (rho) | p | ρ (rho) | p | ρ (rho) | p | |
Age | 0.062 | 0.167 | 0.097 | 0.031 | 0.087 | 0.052 |
SBP | 0.217 | <0.001 | –0.201 | <0.001 | –0.101 | 0.044 |
DBP | 0.094 | 0.062 | –0.223 | <0.001 | –0.154 | 0.002 |
Waist circumference | 0.145 | 0.002 | –0.352 | <0.001 | –0.283 | <0.001 |
BMI | 0.157 | <0.001 | –0.250 | <0.001 | –0.183 | <0.001 |
Cholesterol | 0.233 | <0.001 | 0.033 | 0.468 | 0.135 | 0.002 |
Triglycerides | 0.652 | <0.001 | –0.536 | <0.001 | –0.197 | <0.001 |
Apo B100 | 0.199 | <0.001 | –0.237 | <0.001 | –0.153 | 0.001 |
Apo A1 | 0.003 | 0.938 | 0.525 | <0.001 | 0.528 | <0.001 |
Glucose | 0.183 | <0.001 | –0.200 | <0.001 | –0.102 | 0.022 |
Insulin * | 0.284 | <0.001 | –0.367 | <0.001 | –0.169 | 0.029 |
HbA1c ** | 0.047 | 0.380 | –0.130 | 0.015 | –0.133 | 0.014 |
Adiponectin | –0.020 | 0.674 | 0.421 | <0.001 | 0.362 | <0.001 |
Glycerol | 0.410 | <0.001 | –0.355 | <0.001 | –0.113 | 0.012 |
NEFA | 0.212 | <0.001 | –0.031 | 0.492 | 0.062 | 0.168 |
CETP activity | 0.264 | <0.001 | –0.110 | 0.022 | 0.071 | 0.139 |
LCAT activity | –0.006 | 0.901 | 0.282 | <0.001 | 0.211 | <0.001 |
FLI | 0.363 | <0.001 | –0.460 | <0.001 | –0.268 | <0.001 |
usCRP | 0.101 | 0.025 | –0.154 | 0.001 | –0.112 | 0.013 |
cIMT *** | –0.023 | 0.682 | –0.081 | 0.152 | –0.126 | 0.027 |
VLDL-C | 0.682 | <0.001 | –0.597 | <0.001 | –0.235 | <0.001 |
IDL-C | 0.534 | <0.001 | –0.312 | <0.001 | –0.136 | 0.002 |
LDL-C | –0.050 | 0.263 | 0.014 | 0.760 | –0.072 | 0.105 |
HDL-C | –0.135 | 0.002 | - | 0.857 | <0.001 | |
VLDL-TG | 0.631 | <0.001 | –0.607 | <0.001 | –0.251 | <0.001 |
IDL-TG | 0.695 | <0.001 | –0.337 | <0.001 | –0.045 | 0.319 |
LDL-TG | 0.427 | <0.001 | –0.099 | 0.029 | –0.008 | 0.851 |
HDL-TG | - | –0.135 | 0.002 | 0.275 | <0.001 | |
VLDL-P | 0.647 | <0.001 | –0.608 | <0.001 | –0.249 | <0.001 |
Large VLDL-P | 0.622 | <0.001 | –0.624 | <0.001 | –0.266 | <0.001 |
Medium VLDL-P | 0.600 | <0.001 | –0.540 | <0.001 | –0.205 | <0.001 |
Small VLDL-P | 0.646 | <0.001 | –0.609 | <0.001 | –0.251 | <0.001 |
LDL-P | 0.047 | 0.291 | –0.063 | <0.001 | –0.094 | 0.035 |
Large LDL-P | 0.032 | 0.471 | –0.041 | 0.354 | –0.111 | 0.012 |
Medium LDL-P | –0.060 | 0.183 | 0.180 | <0.001 | 0.042 | 0.350 |
Small LDL-P | 0.110 | 0.014 | –0.609 | <0.001 | –0.186 | <0.001 |
HDL-P | 0.275 | <0.001 | 0.857 | <0.001 | ||
Large HDL-P | 0.395 | <0.001 | 0.458 | <0.001 | 0.508 | <0.001 |
Medium HDL-P | 0.281 | <0.001 | 0.745 | <0.001 | 0.734 | <0.001 |
Small HDL-P | 0.234 | <0.001 | 0.771 | <0.001 | 0.955 | <0.001 |
VLDL-Z | –0.271 | <0.001 | 0.282 | <0.001 | 0.169 | <0.001 |
LDL-Z | –0.187 | <0.001 | 0.427 | <0.001 | 0.173 | <0.001 |
HDL-Z | 0.061 | 0.170 | –0.009 | 0.834 | –0.186 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girona, J.; Amigó, N.; Ibarretxe, D.; Plana, N.; Rodríguez-Borjabad, C.; Heras, M.; Ferré, R.; Gil, M.; Correig, X.; Masana, L. HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk. Int. J. Mol. Sci. 2019, 20, 3151. https://doi.org/10.3390/ijms20133151
Girona J, Amigó N, Ibarretxe D, Plana N, Rodríguez-Borjabad C, Heras M, Ferré R, Gil M, Correig X, Masana L. HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk. International Journal of Molecular Sciences. 2019; 20(13):3151. https://doi.org/10.3390/ijms20133151
Chicago/Turabian StyleGirona, Josefa, Núria Amigó, Daiana Ibarretxe, Núria Plana, Cèlia Rodríguez-Borjabad, Mercedes Heras, Raimon Ferré, Míriam Gil, Xavier Correig, and Lluís Masana. 2019. "HDL Triglycerides: A New Marker of Metabolic and Cardiovascular Risk" International Journal of Molecular Sciences 20, no. 13: 3151. https://doi.org/10.3390/ijms20133151