Proteomic Analysis of Mouse Brain Subjected to Spaceflight
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Synaptic Function: Plasticity, Vesicles and Dendritic Spines
3.2. Intracellular Communication: Myelination and Protein/Organelle Transport
3.3. Metabolism: Glycolysis and Mitochondrial Function
3.4. Oxidative Stress and Tissue Damage Responses
3.5. Activation of Catecholamines
4. Materials and Methods
4.1. STS-135 Flight Mice and Control Conditions
4.2. Dissection and Preservation of Mouse Brains Post Flight
4.3. Brain Sectioning for Proteomic Analysis
4.4. Protein Extraction from Tissue
4.5. Trypsin Digestion
4.6. MS Analyses and Data Processing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rudobeck, E.; Nelson, G.A.; Sokolova, I.V.; Vlkolinsky, R. (28)silicon radiation impairs neuronal output in CA1 neurons of mouse ventral hippocampus without altering dendritic excitability. Radiat. Res. 2014, 181, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.J.; Kim, T.W.; Chung, K.Y. Intraocular pressure elevation during space flight. J. Glaucoma 2012, 21, 349. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.H.; Gibson, C.R.; Caputo, M.; Hunter, N.; Taylor, G.; Charles, J.; Meehan, R.T. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am. J. Ophthalmol. 1993, 115, 347–350. [Google Scholar] [CrossRef]
- Uva, B.M.; Masini, M.A.; Sturla, M.; Tagliafierro, G.; Strollo, F. Microgravity-induced programmed cell death in astrocytes. J. Gravit. Physiol. A J. Int. Soc. Gravit. Physiol. 2002, 9, P275–P276. [Google Scholar]
- De la Torre, G.G. Cognitive neuroscience in space. Life 2014, 4, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Strollo, F.; Vassilieva, G.; Ruscica, M.; Masini, M.; Santucci, D.; Borgia, L.; Magni, P.; Celotti, F.; Nikiporuc, I. Changes in stress hormones and metabolism during a 105-day simulated Mars mission. Aviat. Spaceand Environ. Med. 2014, 85, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Fields, R.D. White matter matters. Sci. Am. 2008, 298, 42–49. [Google Scholar]
- Mortamais, M.; Artero, S.; Ritchie, K. White matter hyperintensities as early and independent predictors of Alzheimer’s disease risk. J. Alzheimers Dis. 2014, 42 (Suppl. 4), S393–S400. [Google Scholar] [CrossRef]
- Gooijers, J.; Chalavi, S.; Beeckmans, K.; Michiels, K.; Lafosse, C.; Sunaert, S.; Swinnen, S.P. Subcortical Volume Loss in the Thalamus, Putamen, and Pallidum, Induced by Traumatic Brain Injury, Is Associated with Motor Performance Deficits. Neurorehabil. Neural Repair 2016, 30, 603–614. [Google Scholar] [CrossRef]
- Santucci, D.; Kawano, F.; Ohira, T.; Terada, M.; Nakai, N.; Francia, N.; Alleva, E.; Aloe, L.; Ochiai, T.; Cancedda, R.; et al. Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days. PLoS ONE 2012, 7, e40112. [Google Scholar] [CrossRef]
- Li, K.; Guo, X.; Jin, Z.; Ouyang, X.; Zeng, Y.; Feng, J.; Wang, Y.; Yao, L.; Ma, L. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter—Evidence from MRI. PLoS ONE 2015, 10, e0135835. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C. Calcium channel auxiliary α2δ and β subunits: Trafficking and one step beyond. Nat. Rev. Neurosci. 2012, 13, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, C.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Ozkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009, 139, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Spangler, S.A.; Jaarsma, D.; De Graaff, E.; Wulf, P.S.; Akhmanova, A.; Hoogenraad, C.C. Differential expression of liprin-α family proteins in the brain suggests functional diversification. J. Comp. Neurol. 2011, 519, 3040–3060. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.I.; Inestrosa, N.C. Vertebrate Presynaptic Active Zone Assembly: A Role Accomplished by Diverse Molecular and Cellular Mechanisms. Mol. Neurobiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Taru, H.; Deken, S.L.; Grill, B.; Ackley, B.; Nonet, M.L.; Jin, Y. SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nat. Neurosci. 2006, 9, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Wollert, T.; Patel, A.; Lee, Y.L.; Provance, D.W., Jr.; Vought, V.E.; Cosgrove, M.S.; Mercer, J.A.; Langford, G.M. Myosin5a tail associates directly with Rab3A-containing compartments in neurons. J. Biol. Chem. 2011, 286, 14352–14361. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Kofuji, T.; Akagawa, K. Dysfunction of the hypothalamic-pituitary-adrenal axis in STX1A knockout mice. J. Neuroendocrinol. 2011, 23, 1222–1230. [Google Scholar] [CrossRef]
- Jahn, R.; Hanson, P.I. Membrane fusion. SNAREs line up in new environment. Nature 1998, 393, 14–15. [Google Scholar] [CrossRef]
- Sudhof, T.C. The synaptic vesicle cycle: A cascade of protein-protein interactions. Nature 1995, 375, 645–653. [Google Scholar] [CrossRef]
- Gorenberg, E.L.; Chandra, S.S. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Front. Neurosci. 2017, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Burre, J.; Sudhof, T.C. CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat. Cell Biol. 2011, 13, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Chacon, R.; Wolfel, M.; Nishimune, H.; Tabares, L.; Schmitz, F.; Castellano-Munoz, M.; Rosenmund, C.; Montesinos, M.L.; Sanes, J.R.; Schneggenburger, R.; et al. The synaptic vesicle protein CSP α prevents presynaptic degeneration. Neuron 2004, 42, 237–251. [Google Scholar] [CrossRef]
- Raimondi, A.; Ferguson, S.M.; Lou, X.; Armbruster, M.; Paradise, S.; Giovedi, S.; Messa, M.; Kono, N.; Takasaki, J.; Cappello, V.; et al. Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 2011, 70, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Tanifuji, S.; Funakoshi-Tago, M.; Ueda, F.; Kasahara, T.; Mochida, S. Dynamin isoforms decode action potential firing for synaptic vesicle recycling. J. Biol. Chem. 2013, 288, 19050–19059. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Funk, L.; Lou, X. Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 6097–6115. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Garcia, F.; McNiven, M.A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 1998, 9, 2595–2609. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Yao, Y.; Shang, C.; Xue, Y.; Ma, J.; Li, Z.; Liu, Y. MicroRNA-330 is an oncogenic factor in glioblastoma cells by regulating SH3GL2 gene. PLoS ONE 2012, 7, e46010. [Google Scholar] [CrossRef]
- Giachino, C.; Lantelme, E.; Lanzetti, L.; Saccone, S.; Bella Valle, G.; Migone, N. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics 1997, 41, 427–434. [Google Scholar] [CrossRef]
- Reutens, A.T.; Begley, C.G. Endophilin-1: A multifunctional protein. Int. J. Biochem. Cell Biol. 2002, 34, 1173–1177. [Google Scholar] [CrossRef]
- Peri, F.; Nusslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 2008, 133, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Pecaut, M.J.; Mao, X.W.; Bellinger, D.L.; Jonscher, K.R.; Stodieck, L.S.; Ferguson, V.L.; Bateman, T.A.; Mohney, R.P.; Gridley, D.S. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism? PLoS ONE 2017, 12, e0174174. [Google Scholar] [CrossRef] [PubMed]
- Toyo-oka, K.; Shionoya, A.; Gambello, M.J.; Cardoso, C.; Leventer, R.; Ward, H.L.; Ayala, R.; Tsai, L.H.; Dobyns, W.; Ledbetter, D.; et al. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: A molecular explanation for Miller-Dieker syndrome. Nat. Genet. 2003, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Cornell, B.; Wachi, T.; Zhukarev, V.; Toyo-Oka, K. Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin. Hum. Mol. Genet. 2016, 25, 4405–4418. [Google Scholar] [CrossRef] [PubMed]
- Hafner, A.; Obermajer, N.; Kos, J. γ-1-syntrophin mediates trafficking of γ-enolase towards the plasma membrane and enhances its neurotrophic activity. Neurosignals 2010, 18, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Hafner, A.; Obermajer, N.; Kos, J. γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem. J. 2012, 443, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, N.W.; Kruchten, A.E.; Chen, J.; McNiven, M.A. A dynamin-3 spliced variant modulates the actin/cortactin-dependent morphogenesis of dendritic spines. J. Cell Sci. 2005, 118, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wei, M.; Xiong, Y.; Du, X.; Zhu, S.; Yang, L.; Zhang, C.; Liu, J.J. Endophilin A1 regulates dendritic spine morphogenesis and stability through interaction with p140Cap. Cell Res. 2015, 25, 496–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyszynski, M.; Kharazia, V.; Shanghvi, R.; Rao, A.; Beggs, A.H.; Craig, A.M.; Weinberg, R.; Sheng, M. Differential regional expression and ultrastructural localization of α-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 1383–1392. [Google Scholar] [CrossRef]
- Walikonis, R.S.; Oguni, A.; Khorosheva, E.M.; Jeng, C.J.; Asuncion, F.J.; Kennedy, M.B. Densin-180 forms a ternary complex with the α-subunit of Ca2+/calmodulin-dependent protein kinase II and α-actinin. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 423–433. [Google Scholar] [CrossRef]
- Waites, G.T.; Graham, I.R.; Jackson, P.; Millake, D.B.; Patel, B.; Blanchard, A.D.; Weller, P.A.; Eperon, I.C.; Critchley, D.R. Mutually exclusive splicing of calcium-binding domain exons in chick α-actinin. J. Biol. Chem. 1992, 267, 6263–6271. [Google Scholar] [PubMed]
- Labno, A.; Warrier, A.; Wang, S.; Zhang, X. Local plasticity of dendritic excitability can be autonomous of synaptic plasticity and regulated by activity-based phosphorylation of Kv4.2. PLoS ONE 2014, 9, e84086. [Google Scholar] [CrossRef] [PubMed]
- Sjostrom, P.J.; Rancz, E.A.; Roth, A.; Hausser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 2008, 88, 769–840. [Google Scholar] [CrossRef] [PubMed]
- Petkovic, M.; Jemaiel, A.; Daste, F.; Specht, C.G.; Izeddin, I.; Vorkel, D.; Verbavatz, J.M.; Darzacq, X.; Triller, A.; Pfenninger, K.H.; et al. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nat. Cell Biol. 2014, 16, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.H.; Halliday, G.M.; Kim, W.S. Exploring myelin dysfunction in multiple system atrophy. Exp. Neurobiol. 2014, 23, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Boggs, J.M. Myelin basic protein: A multifunctional protein. Cell. Mol. Life Sci. 2006, 63, 1945–1961. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Ludwin, S.; Prat, A.; Antel, J.; Bruck, W.; Lassmann, H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017, 133, 13–24. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Serra, A.; Lee, B.S.T.; Guo, X.; Sze, S.K. Brain ureido degenerative protein modifications are associated with neuroinflammation and proteinopathy in Alzheimer’s disease with cerebrovascular disease. J. Neuroinflamm. 2017, 14, 175. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Ee, S.M.; Jittiwat, J.; Ong, E.S.; Farooqui, A.A.; Jenner, A.M.; Ong, W.Y. Increased expression of acyl-coenzyme A: Cholesterol acyltransferase-1 and elevated cholesteryl esters in the hippocampus after excitotoxic injury. Neuroscience 2011, 185, 125–134. [Google Scholar] [CrossRef]
- Hinman, J.D.; Chen, C.D.; Oh, S.Y.; Hollander, W.; Abraham, C.R. Age-dependent accumulation of ubiquitinated 2’,3’-cyclic nucleotide 3’-phosphodiesterase in myelin lipid rafts. Glia 2008, 56, 118–133. [Google Scholar] [CrossRef]
- Sprinkle, T.J. 2’,3’-cyclic nucleotide 3’-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit. Rev. Neurobiol. 1989, 4, 235–301. [Google Scholar] [PubMed]
- Rao, M.V.; Houseweart, M.K.; Williamson, T.L.; Crawford, T.O.; Folmer, J.; Cleveland, D.W. Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J. Cell Biol. 1998, 143, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.J.; Hoffman, P.N.; Gearhart, J.D.; Cleveland, D.W. Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: Increased neurofilament density in axons without affecting caliber. J. Cell Biol. 1990, 111, 1543–1557. [Google Scholar] [CrossRef]
- Wagner, W.; Fodor, E.; Ginsburg, A.; Hammer, J.A., 3rd. The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin’s coiled-coil domain. Biochemistry 2006, 45, 11564–11577. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Gerwin, C.; Sheng, Z.H. Dynein light chain LC8 regulates syntaphilin-mediated mitochondrial docking in axons. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 9429–9438. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.T.; Chen, X.; Moore, D.J. VPS35, the Retromer Complex and Parkinson’s Disease. J. Parkinsons Dis. 2017, 7, 219–233. [Google Scholar] [CrossRef]
- Trousdale, C.; Kim, K. Retromer: Structure, function, and roles in mammalian disease. Eur. J. Cell Biol. 2015, 94, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, M.H.; Van Nostrand, W.E. The absence of myelin basic protein promotes neuroinflammation and reduces amyloid β-protein accumulation in Tg-5xFAD mice. J. Neuroinflamm. 2013, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonscher, K.R.; Alfonso-Garcia, A.; Suhalim, J.L.; Orlicky, D.J.; Potma, E.O.; Ferguson, V.L.; Bouxsein, M.L.; Bateman, T.A.; Stodieck, L.S.; Levi, M.; et al. Spaceflight activates lipotoxic pathways in mouse liver. PLoS ONE 2016, 11, e0152877. [Google Scholar] [CrossRef]
- Mao, X.W.; Pecaut, M.J.; Stodieck, L.S.; Ferguson, V.L.; Bateman, T.A.; Bouxsein, M.L.; Gridley, D.S. Biological and metabolic response in STS-135 space-flown mouse skin. Free Radic. Res. 2014, 48, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Alb, J.G., Jr.; Phillips, S.E.; Wilfley, L.R.; Philpot, B.D.; Bankaitis, V.A. The pathologies associated with functional titration of phosphatidylinositol transfer protein α activity in mice. J. Lipid Res. 2007, 48, 1857–1872. [Google Scholar] [CrossRef] [PubMed]
- Liscovitch, M.; Cantley, L.C. Signal transduction and membrane traffic: The PITP/phosphoinositide connection. Cell 1995, 81, 659–662. [Google Scholar] [CrossRef]
- Chalimoniuk, M.; Snoek, G.T.; Adamczyk, A.; Malecki, A.; Strosznajder, J.B. Phosphatidylinositol transfer protein expression altered by aging and Parkinson disease. Cell. Mol. Neurobiol. 2006, 26, 1153–1166. [Google Scholar] [CrossRef]
- Alb, J.G., Jr.; Cortese, J.D.; Phillips, S.E.; Albin, R.L.; Nagy, T.R.; Hamilton, B.A.; Bankaitis, V.A. Mice lacking phosphatidylinositol transfer protein-α exhibit spinocerebellar degeneration, intestinal and hepatic steatosis, and hypoglycemia. J. Biol. Chem. 2003, 278, 33501–33518. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharm. Physiol. 2012, 39, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.; Sen, T.; Sen, N. Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol. Cell 2014, 56, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, J.J.; Wu, Y.P.; Zhang, G.Y. Cerebral ischemia-reperfusion induces GAPDH S-nitrosylation and nuclear translocation. Biochemistry 2012, 77, 671–678. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Hardas, S.S.; Lange, M.L. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: Many pathways to neurodegeneration. J. Alzheimers Dis. 2010, 20, 369–393. [Google Scholar] [CrossRef]
- Schmechel, D.E.; Marangos, P.J.; Martin, B.M.; Winfield, S.; Burkhart, D.S.; Roses, A.D.; Ginns, E.I. Localization of neuron-specific enolase (NSE) mRNA in human brain. Neurosci. Lett. 1987, 76, 233–238. [Google Scholar] [CrossRef]
- Hafner, A.; Glavan, G.; Obermajer, N.; Zivin, M.; Schliebs, R.; Kos, J. Neuroprotective role of gamma-enolase in microglia in a mouse model of Alzheimer’s disease is regulated by cathepsin X. Aging Cell 2013, 12, 604–614. [Google Scholar] [CrossRef]
- Joglekar, A.P.; Hay, J.C. Evidence for regulation of ER/Golgi SNARE complex formation by hsc70 chaperones. Eur. J. Cell Biol. 2005, 84, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.; Chang, C.C.; Lee, W.; Chang, T.Y. Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J. Lipid Res. 1998, 39, 1722–1727. [Google Scholar] [PubMed]
- Ong, W.Y.; Kim, J.H.; He, X.; Chen, P.; Farooqui, A.A.; Jenner, A.M. Changes in brain cholesterol metabolome after excitotoxicity. Mol. Neurobiol. 2010, 41, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Fahrner, J.A.; Liu, R.; Perry, M.S.; Klein, J.; Chan, D.C. A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am. J. Med. Genet. A 2016, 170, 2002–2011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kageyama, Y.; Sesaki, H. Mitochondrial division prevents neurodegeneration. Autophagy 2012, 8, 1531–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azarashvili, T.; Krestinina, O.; Galvita, A.; Grachev, D.; Baburina, Y.; Stricker, R.; Evtodienko, Y.; Reiser, G. Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2’,3’-cyclic nucleotides and 2’,3’-cyclic nucleotide 3’-phosphodiesterase. Am. J. Physiol. Cell Physiol. 2009, 296, C1428–C1439. [Google Scholar] [CrossRef] [PubMed]
- Krestinina, O.; Azarashvili, T.; Baburina, Y.; Galvita, A.; Grachev, D.; Stricker, R.; Reiser, G. In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2’,3’-cyclic nucleotide-3’-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. Neurochem. Int. 2015, 80, 41–50. [Google Scholar] [CrossRef]
- Baburina, Y.; Odinokova, I.; Azarashvili, T.; Akatov, V.; Lemasters, J.J.; Krestinina, O. 2’,3’-Cyclic nucleotide 3’-phosphodiesterase as a messenger of protection of the mitochondrial function during melatonin treatment in aging. Biochim. Biophys. Acta 2017, 1859, 94–103. [Google Scholar] [CrossRef]
- Von der Malsburg, K.; Muller, J.M.; Bohnert, M.; Oeljeklaus, S.; Kwiatkowska, P.; Becker, T.; Loniewska-Lwowska, A.; Wiese, S.; Rao, S.; Milenkovic, D.; et al. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 2011, 21, 694–707. [Google Scholar] [CrossRef]
- Blaber, E.A.; Pecaut, M.J.; Jonscher, K.R. Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver. Int. J. Mol. Sci. 2017, 18, 2062. [Google Scholar] [CrossRef]
- Sin, Y.Y.; Baron, G.; Schulze, A.; Funk, C.D. Arginase-1 deficiency. J. Mol. Med. 2015, 93, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Munder, M.; Eichmann, K.; Moran, J.M.; Centeno, F.; Soler, G.; Modolell, M. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 1999, 163, 3771–3777. [Google Scholar] [PubMed]
- Cherry, J.D.; Olschowka, J.A.; O’Banion, M.K. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J. Neuroinflamm. 2015, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hein, T.W.; Wang, W.; Chang, C.I.; Kuo, L. Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15, 1264–1266. [Google Scholar] [CrossRef]
- Chang, C.I.; Liao, J.C.; Kuo, L. Arginase modulates nitric oxide production in activated macrophages. Am. J. Physiol. 1998, 274, H342–H348. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H.; Reddy, T.P.; Manczak, M.; Calkins, M.J.; Shirendeb, U.; Mao, P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Rev. 2011, 67, 103–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, G.B.; Shang, Y.; Li, L.; Renken, C.; Mannella, C.A.; Selker, J.M.; Rangell, L.; Bennett, M.J.; Zha, J. The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 2005, 16, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.F.; Zhao, G.W.; Liang, S.T.; Zhang, Y.; Sun, L.H.; Chen, H.Z.; Liu, D.P. Mitofilin regulates cytochrome c release during apoptosis by controlling mitochondrial cristae remodeling. Biochem. Biophys. Res. Commun. 2012, 428, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Barrera, M.; Koob, S.; Dikov, D.; Vogel, F.; Reichert, A.S. OPA1 functionally interacts with MIC60 but is dispensable for crista junction formation. FEBS Lett. 2016, 590, 3309–3322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabkowski, E.R.; Williamson, C.L.; Bukowski, V.C.; Chapman, R.S.; Leonard, S.S.; Peer, C.J.; Callery, P.S.; Hollander, J.M. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H359–H369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapa, D.; Nichols, C.E.; Lewis, S.E.; Shepherd, D.L.; Jagannathan, R.; Croston, T.L.; Tveter, K.J.; Holden, A.A.; Baseler, W.A.; Hollander, J.M. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J. Mol. Cell. Cardiol. 2015, 79, 212–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.J.; Shim, J.S.; Lee, J.; Song, Y.M.; Park, K.C.; Choi, S.H.; Kim, N.D.; Yoon, J.H.; Mungai, P.T.; Schumacker, P.T.; et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J. Biol. Chem. 2010, 285, 11584–11595. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kim, Y.; Chang, J.; Kang, S.W.; Kim, J.H.; Kwon, H.J. Mitochondrial UQCRB regulates VEGFR2 signaling in endothelial cells. J. Mol. Med. 2013, 91, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Jung, H.J.; Park, H.J.; Cho, S.W.; Lee, S.K.; Kwon, H.J. Cell-permeable mitochondrial ubiquinol-cytochrome c reductase binding protein induces angiogenesis in vitro and in vivo. Cancer Lett. 2015, 366, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Sudo, Y.; Sanechika, S.; Yamashita, J.; Shimaguchi, S.; Honda, S.; Sumi-Ichinose, C.; Mori-Kojima, M.; Nakata, R.; Furuta, T.; et al. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse. FEBS Lett. 2014, 588, 3924–3931. [Google Scholar] [CrossRef] [PubMed]
- Hsin, I.L.; Sheu, G.T.; Jan, M.S.; Sun, H.L.; Wu, T.C.; Chiu, L.Y.; Lue, K.H.; Ko, J.L. Inhibition of lysosome degradation on autophagosome formation and responses to GMI, an immunomodulatory protein from Ganoderma microsporum. Br. J. Pharmacol. 2012, 167, 1287–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uytterhoeven, V.; Lauwers, E.; Maes, I.; Miskiewicz, K.; Melo, M.N.; Swerts, J.; Kuenen, S.; Wittocx, R.; Corthout, N.; Marrink, S.J.; et al. Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Neuron 2015, 88, 735–748. [Google Scholar] [CrossRef]
- Yamanaka, K.; Urano, Y.; Takabe, W.; Saito, Y.; Noguchi, N. Induction of apoptosis and necroptosis by 24(S)-hydroxycholesterol is dependent on activity of acyl-CoA:cholesterol acyltransferase 1. Cell Death Dis. 2014, 5, e990. [Google Scholar] [CrossRef]
- Baburina, Y.; Azarashvili, T.; Grachev, D.; Krestinina, O.; Galvita, A.; Stricker, R.; Reiser, G. Mitochondrial 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNP) interacts with mPTP modulators and functional complexes (I-V) coupled with release of apoptotic factors. Neurochem. Int. 2015, 90, 46–55. [Google Scholar] [CrossRef]
- Craven, R.A.; Vasudev, N.S.; Banks, R.E. Proteomics and the search for biomarkers for renal cancer. Clin. Biochem. 2013, 46, 456–465. [Google Scholar] [CrossRef]
- Zhang, B.; Pirmoradian, M.; Chernobrovkin, A.; Zubarev, R.A. DeMix workflow for efficient identification of cofragmented peptides in high resolution data-dependent tandem mass spectrometry. Mol. Cell. Proteom. MCP 2014, 13, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kall, L.; Zubarev, R.A. DeMix-Q: Quantification-Centered Data Processing Workflow. Mol. Cell. Proteom. MCP 2016, 15, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pirmoradian, M.; Zubarev, R.; Kall, L. Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences. Mol. Cell. Proteom. MCP 2017, 16, 936–948. [Google Scholar] [CrossRef] [PubMed]
Symbol | Entrez Gene Name | Expr p-Value | Expr Log Ratio | Location | Type(s) |
---|---|---|---|---|---|
ARG1 | arginase 1 | 0.037 | 3.742 | Cytoplasm | enzyme |
CACNA2D1 | calcium voltage-gated channel auxiliary subunit alpha2delta 1 | 0.024 | 2.244 | Plasma Membrane | ion channel |
PPFIA3 | PTPRF interacting protein alpha 3 | 0.025 | 2.189 | Plasma Membrane | phosphatase |
PITPNA | phosphatidylinositol transfer protein alpha | 0.010 | 1.328 | Cytoplasm | transporter |
MYO5A | myosin VA | 0.034 | 1.304 | Cytoplasm | enzyme |
DYNLL2 | dynein light chain LC8-type 2 | 0.040 | 1.152 | Cytoplasm | other |
VPS35 | VPS35, retromer complex component | 0.046 | −1.164 | Cytoplasm | transporter |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase | 0.015 | −1.478 | Cytoplasm | enzyme |
MBP | myelin basic protein | 0.003 | −2.536 | Extracellular Space | other |
Symbol | Entrez Gene Name | Expr p-Value | Expr Log Ratio | Location | Type(s) |
---|---|---|---|---|---|
QDPR | quinoid dihydropteridine reductase | 0.0229 | 2.458 | Cytoplasm | enzyme |
DNM3 | dynamin 3 | 0.00186 | 1.781 | Cytoplasm | enzyme |
ACAT1 | acetyl-CoA acetyltransferase 1 | 0.0000214 | 1.637 | Cytoplasm | enzyme |
DNAJC5 | DnaJ heat shock protein family (Hsp40) member C5 | 0.00702 | 1.501 | Plasma Membrane | other |
SH3GL2 | SH3 domain containing GRB2-like 2, endophilin A1 | 0.0136 | 1.377 | Plasma Membrane | enzyme |
RAP1GDS1 | Rap1 GTPase-GDP dissociation stimulator 1 | 0.0284 | 1.363 | Cytoplasm | other |
DNM1L | dynamin 1-like | 0.0069 | 1.284 | Cytoplasm | enzyme |
CNP | 2′,3′-cyclic nucleotide 3′ phosphodiesterase | 0.000816 | 1.261 | Cytoplasm | enzyme |
YWHAE | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon | 0.00989 | 1.261 | Cytoplasm | other |
ACTN1 | actinin alpha 1 | 0.0308 | 1.254 | Cytoplasm | transcription regulator |
ATP6V0A1 | ATPase H+ transporting V0 subunit a1 | 0.00028 | 1.191 | Cytoplasm | transporter |
IMMT | inner membrane mitochondrial protein | 0.00436 | 1.154 | Cytoplasm | other |
NEFL | neurofilament light | 0.00557 | 1.153 | Cytoplasm | other |
ENO2 | enolase 2 | 0.0281 | 1.123 | Cytoplasm | enzyme |
STX1A | syntaxin 1A | 0.00859 | 1.074 | Cytoplasm | transporter |
UQCRB | ubiquinol-cytochrome c reductase binding protein | 0.0447 | −1.059 | Cytoplasm | enzyme |
SEC22B | SEC22 homolog B, vesicle trafficking protein (gene/pseudogene) | 0.00601 | −2.709 | Cytoplasm | other |
Region | Categories | Diseases or Functions Annotation | p-Value | Activation Z-Score |
---|---|---|---|---|
White Matter | Cell Morphology, Cellular Assembly and Organization, Cellular Function and Maintenance | formation of cellular protrusions | 1.69 × 10−3 | −1.982 |
Organismal Survival | organismal death | 3.76 × 10−2 | −1.156 | |
Cellular Assembly and Organization, Cellular Function and Maintenance | organization of cytoplasm | 6.40 × 10−5 | −1.154 | |
Cellular Assembly and Organization, Cellular Function and Maintenance | microtubule dynamics | 9.47 × 10−5 | −1.154 | |
Tissue Morphology | quantity of cells | 3.44 × 10−2 | −0.44 | |
Cell Death and Survival | apoptosis | 4.26 × 10−2 | 0.003 | |
Cell Death and Survival | necrosis | 1.41 × 10−2 | 0.014 | |
Cell Death and Survival | cell death of tumor cell lines | 4.40 × 10−3 | 0.028 | |
Cell Death and Survival | cell death | 1.41 × 10−2 | 0.166 | |
Cell Death and Survival | apoptosis of tumor cell lines | 3.86 × 10−2 | 0.176 | |
Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry | concentration of lipid | 7.47 × 10−3 | 0.333 | |
Gray Matter | Organismal Survival | organismal death | 1.22 × 10−3 | −3.257 |
Organismal Injury and Abnormalities | organ degeneration | 1.46 × 10−5 | −2.186 | |
Cellular Compromise | degeneration of cells | 1.36 × 10−4 | −1.982 | |
Developmental Disorder | growth failure | 1.45 × 10−2 | −1.982 | |
Neurological Disease | neurodegeneration | 8.36 × 10−5 | −1.981 | |
Cell Death and Survival | necrosis | 1.84 × 10−5 | −1.6 | |
Cell Death and Survival | apoptosis | 5.78 × 10−3 | −1.404 | |
Cell Death and Survival | neuronal cell death | 2.96 × 10−3 | −0.958 | |
Molecular Transport | transport of molecule | 9.80 × 10−3 | −0.722 | |
Cell Death and Survival | cell viability | 1.48 × 10−2 | 0.555 | |
Infectious Diseases | infection by HIV-1 | 2.45 × 10−3 | 1.98 | |
Infectious Diseases | Viral Infection | 1.12 × 10−2 | 2.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.W.; Sandberg, L.B.; Gridley, D.S.; Herrmann, E.C.; Zhang, G.; Raghavan, R.; Zubarev, R.A.; Zhang, B.; Stodieck, L.S.; Ferguson, V.L.; et al. Proteomic Analysis of Mouse Brain Subjected to Spaceflight. Int. J. Mol. Sci. 2019, 20, 7. https://doi.org/10.3390/ijms20010007
Mao XW, Sandberg LB, Gridley DS, Herrmann EC, Zhang G, Raghavan R, Zubarev RA, Zhang B, Stodieck LS, Ferguson VL, et al. Proteomic Analysis of Mouse Brain Subjected to Spaceflight. International Journal of Molecular Sciences. 2019; 20(1):7. https://doi.org/10.3390/ijms20010007
Chicago/Turabian StyleMao, Xiao Wen, Lawrence B. Sandberg, Daila S. Gridley, E. Clifford Herrmann, Guangyu Zhang, Ravi Raghavan, Roman A. Zubarev, Bo Zhang, Louis S. Stodieck, Virginia L. Ferguson, and et al. 2019. "Proteomic Analysis of Mouse Brain Subjected to Spaceflight" International Journal of Molecular Sciences 20, no. 1: 7. https://doi.org/10.3390/ijms20010007
APA StyleMao, X. W., Sandberg, L. B., Gridley, D. S., Herrmann, E. C., Zhang, G., Raghavan, R., Zubarev, R. A., Zhang, B., Stodieck, L. S., Ferguson, V. L., Bateman, T. A., & Pecaut, M. J. (2019). Proteomic Analysis of Mouse Brain Subjected to Spaceflight. International Journal of Molecular Sciences, 20(1), 7. https://doi.org/10.3390/ijms20010007