Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures
Abstract
:1. Introduction
2. Results
2.1. Impedance-Based Monitoring of Cell Viability
2.2. Metabolic Activity
2.3. Expression of Osteolytic Mediators
2.4. Determination of Particle Accumulation by Darkfield Microscopy
2.5. Particle Detection by Field Emission Scanning Electron Microscopy (FESEM) Techniques
3. Discussion
3.1. Determination of Cellular Viability by Impedance-Based Monitoring
3.2. Induction of Pro-Osteolytic Mediators
3.3. Determination of Particle Ingestion
4. Materials and Methods
4.1. Isolation of Human Fibroblasts
4.2. Particle Exposure
4.3. Determination of Cell Viability and Toxicity
4.4. Gene Expression Analyses
4.5. High-Resolution Optical Darkfield Microscopy (HR-ODM)
4.6. Field Emission Scanning Electron Microscopy (FESEM) and Elementary Analysis (EDX)
4.7. Data Illustration and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sadoghi, P.; Liebensteiner, M.; Agreiter, M.; Leithner, A.; Bohler, N.; Labek, G. Revision surgery after total joint arthroplasty: A complication-based analysis using worldwide arthroplasty registers. J. Arthroplasty 2013, 28, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Campbell, P.A.; Konttinen, T. How has the biologic reaction to wear particles changed with newer bearing surfaces? J. Am. Acad. Orthop. Surg. 2008, 16, S49–S55. [Google Scholar] [CrossRef] [PubMed]
- Amirhosseini, M.; Andersson, G.; Aspenberg, P.; Fahlgren, A. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening. Bone Rep. 2017, 7, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Rader, C.P. Partikelkrankheit. In Revisionsendoprothetik der Hüftpfanne; Wirtz, D.C., Rader, C.P., Reichel, H., Eds.; Springer: Heidelberg, Germany, 2008; pp. 19–32. [Google Scholar]
- Kadoya, Y.; Revell, P.A.; al-Saffar, N.; Kobayashi, A.; Scott, G.; Freeman, M.A. Bone formation and bone resorption in failed total joint arthroplasties: Histomorphometric analysis with histochemical and immunohistochemical technique. J. Orthop. Res. 1996, 14, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Trindade, M.C.; Lind, M.; Sun, D.; Schurman, D.J.; Goodman, S.B.; Smith, R.L. In vitro reaction to orthopaedic biomaterials by macrophages and lymphocytes isolated from patients undergoing revision surgery. Biomaterials 2001, 22, 253–259. [Google Scholar] [CrossRef]
- Ollivere, B.; Wimhurst, J.A.; Clark, I.M.; Donell, S.T. Current concepts in osteolysis. J. Bone Joint Surg. Br. 2012, 94, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Jacobs, J.J. Biologic effects of implant debris. Bull. NYU Hosp. Jt. Dis. 2009, 67, 182–188. [Google Scholar] [PubMed]
- Jacobs, J.J.; Roebuck, K.A.; Archibeck, M.; Hallab, N.J.; Glant, T.T. Osteolysis: Basic science. Clin. Orthop. Relat. Res. 2001, 71–77. [Google Scholar] [CrossRef]
- Goodman, S.B.; Gibon, E.; Yao, Z. The basic science of periprosthetic osteolysis. Instr. Course Lect. 2013, 62, 201–206. [Google Scholar] [PubMed]
- Gill, H.S.; Grammatopoulos, G.; Adshead, S.; Tsialogiannis, E.; Tsiridis, E. Molecular and immune toxicity of CoCr nanoparticles in MoM hip arthroplasty. Trends Mol. Med. 2012, 18, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Potnis, P.A.; Dutta, D.K.; Wood, S.C. Toll-like receptor 4 signaling pathway mediates proinflammatory immune response to cobalt-alloy particles. Cell Immunol. 2013, 282, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J.I.; Ma, T.; Irani, A.R.; Huang, Z.; Robinson, W.H.; Smith, R.L.; Goodman, S.B. Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles. Biomaterials 2011, 32, 5535–5542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nich, C.; Goodman, S.B. Role of macrophages in the biological reaction to wear debris from joint replacements. J. Long Term. Eff. Med. Implants 2014, 24, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Shi, Q.; Yang, H. The role of TLR and chemokine in wear particle-induced aseptic loosening. J. Biomed. Biotechnol. 2012, 2012, 596870. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, C.H.; Schwartz, Z.; Koster, G.; Jahn, U.; Buchhorn, G.H.; MacDougall, M.J.; Casasola, D.; Liu, Y.; Sylvia, V.L.; Dean, D.D.; et al. Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition. Biomaterials 2000, 21, 551–561. [Google Scholar] [CrossRef]
- Lohmann, C.H.; Dean, D.D.; Koster, G.; Casasola, D.; Buchhorn, G.H.; Fink, U.; Schwartz, Z.; Boyan, B.D. Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials 2002, 23, 1855–1863. [Google Scholar] [CrossRef]
- Lochner, K.; Fritsche, A.; Jonitz, A.; Hansmann, D.; Mueller, P.; Mueller-Hilke, B.; Bader, R. The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles. Int. J. Mol. Med. 2011, 28, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Klinder, A.; Seyfarth, A.; Hansmann, D.; Bader, R.; Jonitz-Heincke, A. Inflammatory response of human PBMCs and osteoblasts incubated with metallic and ceramic submicron particles. Front. Immunol. 2018, 9, 831. [Google Scholar] [CrossRef] [PubMed]
- Cimpan, M.R.; Mordal, T.; Schölermann, J.; Allouni, Z.E.; Pliquett, U.; Cimpan, E. An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles. J. Phys. Conf. Ser. 2013, 429, 12026. [Google Scholar] [CrossRef] [Green Version]
- Allouni, Z.E.; Hol, P.J.; Cauqui, M.A.; Gjerdet, N.R.; Cimpan, M.R. Role of physicochemical characteristics in the uptake of TiO2 nanoparticles by fibroblasts. Toxicol. In Vitro 2012, 26, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Pliquett, U. Bioimpedance: A review for food processing. Food Eng. Rev. 2010, 2, 74–94. [Google Scholar] [CrossRef]
- Schoelermann, J.; Burtey, A.; Allouni, Z.E.; Gerdes, H.H.; Cimpan, M.R. Contact-dependent transfer of TiO2 nanoparticles between mammalian cells. Nanotoxicology 2016, 10, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Jonitz-Heincke, A.; Lochner, K.; Schulze, C.; Pohle, D.; Pustlauk, W.; Hansmann, D.; Bader, R. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles. Mol. Med. Rep. 2016, 14, 1491–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, C.; Lochner, K.; Jonitz, A.; Lenz, R.; Duettmann, O.; Hansmann, D.; Bader, R. Cell viability, collagen synthesis and cytokine expression in human osteoblasts following incubation with generated wear particles using different bone cements. Int. J. Mol. Med. 2013, 32, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Urcan, E.; Haertel, U.; Styllou, M.; Hickel, R.; Scherthan, H.; Reichl, F.X. Real-time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent. Mater. 2010, 26, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Quereda, J.J.; Martinez-Alarcon, L.; Mendoca, L.; Majado, M.J.; Herrero-Medrano, J.M.; Pallares, F.J.; Rios, A.; Ramirez, P.; Munoz, A.; Ramis, G. Validation of xCELLigence real-time cell analyzer to assess compatibility in xenotransplantation with pig-to-baboon model. Transplant. Proc. 2010, 42, 3239–3243. [Google Scholar] [CrossRef] [PubMed]
- Jonitz-Heincke, A.; Tillmann, J.; Klinder, A.; Krueger, S.; Kretzer, J.P.; Hol, P.J.; Paulus, A.C.; Bader, R. The impact of metal ion exposure on the cellular behavior of human osteoblasts and PBMCs: In vitro analyses of osteolytic processes. Materials 2017, 10, E734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Fan, Y. Adverse biological effect of TiO(2) and hydroxyapatite nanoparticles used in bone repair and replacement. Int. J. Mol. Sci. 2016, 17, E798. [Google Scholar] [CrossRef] [PubMed]
- Purdue, P.E.; Koulouvaris, P.; Nestor, B.J.; Sculco, T.P. The central role of wear debris in periprosthetic osteolysis. HSS J. 2006, 2, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Bitar, D.; Parvizi, J. Biological response to prosthetic debris. World J. Orthop. 2015, 6, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Uertz, J.; Yohan, D.; Chithrani, B.D. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale 2014, 6, 12026–12033. [Google Scholar] [CrossRef] [PubMed]
- Curry, A.C.; Crow, M.; Wax, A. Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles. J. Biomed. Opt. 2008, 13, 014022. [Google Scholar] [CrossRef] [PubMed]
- Faye, P.A.; Roualdes, O.; Rossignol, F.; Hartmann, D.J.; Desmouliere, A. Engulfment of ceramic particles by fibroblasts does not alter cell behavior. Biomed. Mater. 2017, 12, 015023. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CoCr28Mo6 | Alumina Matrix Composite (AMC) |
---|---|---|
Particle mean size (dry, manufacturer’s specification) | 500 nm | 500 nm |
Equivalent diameter ([mean/min/max], in 70% EtOH, FESEM analyses) | 200 nm (100 nm; 1000 nm) | 300 nm (100 nm; 600 nm) |
Agglomerate mean size (in aqueous solution, DLS measurements) | ZD: 1.69 µm PdI: 0.22 | ZD: 1.21 µm PdI: 0.27 |
Particle morphology (according to ASTM-F1877-05) | flake-like to globular (cauliflower) | granular, irregular, angulated |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonitz-Heincke, A.; Tillmann, J.; Ostermann, M.; Springer, A.; Bader, R.; Høl, P.J.; Cimpan, M.R. Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures. Int. J. Mol. Sci. 2018, 19, 3486. https://doi.org/10.3390/ijms19113486
Jonitz-Heincke A, Tillmann J, Ostermann M, Springer A, Bader R, Høl PJ, Cimpan MR. Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures. International Journal of Molecular Sciences. 2018; 19(11):3486. https://doi.org/10.3390/ijms19113486
Chicago/Turabian StyleJonitz-Heincke, Anika, Jenny Tillmann, Melanie Ostermann, Armin Springer, Rainer Bader, Paul Johan Høl, and Mihaela R. Cimpan. 2018. "Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures" International Journal of Molecular Sciences 19, no. 11: 3486. https://doi.org/10.3390/ijms19113486
APA StyleJonitz-Heincke, A., Tillmann, J., Ostermann, M., Springer, A., Bader, R., Høl, P. J., & Cimpan, M. R. (2018). Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures. International Journal of Molecular Sciences, 19(11), 3486. https://doi.org/10.3390/ijms19113486