Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer
Abstract
:1. Introduction
2. Cellular Functions of miRNAs in GC
2.1. GC-Related miRNAs in Cell Proliferation, Cell Cycle, and Apoptosis
2.2. GC-Related miRNAs in Cell Migration, Invasion, and Metastasis
3. Clinical Applications of MicroRNAs in GC
3.1. GC-Related miRNAs as Diagnostic Biomarkers
3.2. GC-Related miRNAs as Prognostic Biomarkers
3.3. GC-Related miRNAs as Treatment Biomarkers
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Heise, K.; Bertran, E.; Andia, M.E.; Ferreccio, C. Incidence and survival of stomach cancer in a high-risk population of Chile. World J. Gastroenterol. 2009, 15, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
 - Wu, C.W.; Hsiung, C.A.; Lo, S.S.; Hsieh, M.C.; Chen, J.H.; Li, A.F.; Lui, W.Y.; Whang-Peng, J. Nodal dissection for patients with gastric cancer: A randomised controlled trial. Lancet Oncol. 2006, 7, 309–315. [Google Scholar] [CrossRef]
 - Wu, C.W.; Lo, S.S.; Shen, K.H.; Hsieh, M.C.; Lui, W.Y.; P’Eng, F.K. Surgical mortality, survival, and quality of life after resection for gastric cancer in the elderly. World J. Surg. 2000, 24, 465–472. [Google Scholar] [CrossRef] [PubMed]
 - Sharma, M.R.; Schilsky, R.L. GI cancers in 2010: New standards and a predictive biomarker for adjuvant therapy. Nat. Rev. Clin. Oncol. 2011, 8, 70–72. [Google Scholar] [CrossRef] [PubMed]
 - Smyth, E.C.; Cunningham, D. Gastric cancer in 2012: Defining treatment standards and novel insights into disease biology. Nat. Rev. Clin. Oncol. 2013, 10, 73–74. [Google Scholar] [CrossRef] [PubMed]
 - Dassen, A.E.; Lemmens, V.E.; van de Poll-Franse, L.V.; Creemers, G.J.; Brenninkmeijer, S.J.; Lips, D.J.; Vd Wurff, A.A.; Bosscha, K.; Coebergh, J.W. Trends in incidence, treatment and survival of gastric adenocarcinoma between 1990 and 2007: A population-based study in the Netherlands. Eur. J. Cancer 2010, 46, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
 - Oba, K.; Paoletti, X.; Bang, Y.J.; Bleiberg, H.; Burzykowski, T.; Fuse, N.; Michiels, S.; Morita, S.; Ohashi, Y.; Pignon, J.P.; et al. Role of chemotherapy for advanced/recurrent gastric cancer: An individual-patient-data meta-analysis. Eur. J. Cancer 2013, 49, 1565–1577. [Google Scholar] [PubMed]
 - Emoto, S.; Ishigami, H.; Yamashita, H.; Yamaguchi, H.; Kaisaki, S.; Kitayama, J. Clinical significance of CA125 and CA72–4 in gastric cancer with peritoneal dissemination. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2012, 15, 154–161. [Google Scholar] [CrossRef] [PubMed]
 - Wang, A.B.; Cheng, C.W.; Lin, I.C.; Lu, F.Y.; Tsai, H.J.; Lin, C.C.; Yang, C.H.; Pan, P.T.; Kuan, C.C.; Chen, Y.C.; et al. A novel DNA selection and direct extraction process and its application in DNA recombination. Electrophoresis 2011, 32, 423–430. [Google Scholar] [CrossRef] [PubMed]
 - Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Radmark, O.; Kim, S.; et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef] [PubMed]
 - Fernandez, L.A.; Northcott, P.A.; Taylor, M.D.; Kenney, A.M. Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle 2009, 8, 4049–4054. [Google Scholar] [CrossRef] [PubMed]
 - Tachibana, A.; Yamada, Y.; Ida, H.; Saito, S.; Tanabe, T. LidNA, a novel miRNA inhibitor constructed with unmodified DNA. FEBS Lett. 2012, 586, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
 - Weiler, J.; Hunziker, J.; Hall, J. Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 2006, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
 - Fujiwara, T. Genetically engineered adenovirus for human cancer therapy. Nihon Rinsho Jpn. J. Clin. Med. 2010, 68, 627–633. [Google Scholar]
 - Ihloff, A.S.; Petersen, C.; Hoffmann, M.; Knecht, R.; Tribius, S. Human papilloma virus in locally advanced stage III/IV squamous cell cancer of the oropharynx and impact on choice of therapy. Oral Oncol. 2010, 46, 705–711. [Google Scholar] [CrossRef] [PubMed]
 - Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer 2009, 9, 501–507. [Google Scholar] [CrossRef] [PubMed]
 - Kim, C.H.; Kim, H.K.; Rettig, R.L.; Kim, J.; Lee, E.T.; Aprelikova, O.; Choi, I.J.; Munroe, D.J.; Green, J.E. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med. Genom. 2011, 4, 79. [Google Scholar] [CrossRef] [PubMed]
 - Wang, Y.Y.; Li, L.; Ye, Z.Y.; Zhao, Z.S.; Yan, Z.L. MicroRNA-10b promotes migration and invasion through Hoxd10 in human gastric cancer. World J. Surg. Oncol. 2015, 13, 259. [Google Scholar] [CrossRef] [PubMed]
 - Hersey, P.; Zhang, X.D. Treatment combinations targeting apoptosis to improve immunotherapy of melanoma. Cancer Immunol. Immunother. CII 2009, 58, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
 - Nakayama, I.; Shibazaki, M.; Yashima-Abo, A.; Miura, F.; Sugiyama, T.; Masuda, T.; Maesawa, C. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int. J. Oncol. 2013, 43, 63–71. [Google Scholar] [PubMed]
 - Glatz, J.F.; Luiken, J.J.; van Bilsen, M.; van der Vusse, G.J. Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. Mol. Cell. Biochem. 2002, 239, 3–7. [Google Scholar] [CrossRef] [PubMed]
 - Xiao, B.; Guo, J.; Miao, Y.; Jiang, Z.; Huan, R.; Zhang, Y.; Li, D.; Zhong, J. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin. Chim. Acta Int. J. Clin. Chem. 2009, 400, 97–102. [Google Scholar] [CrossRef] [PubMed]
 - Katada, T.; Ishiguro, H.; Kuwabara, Y.; Kimura, M.; Mitui, A.; Mori, Y.; Ogawa, R.; Harata, K.; Fujii, Y. microRNA expression profile in undifferentiated gastric cancer. Int. J. Oncol. 2009, 34, 537–542. [Google Scholar] [PubMed]
 - Ueda, T.; Volinia, S.; Okumura, H.; Shimizu, M.; Taccioli, C.; Rossi, S.; Alder, H.; Liu, C.G.; Oue, N.; Yasui, W.; et al. Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 2010, 11, 136–146. [Google Scholar] [CrossRef]
 - Song, J.H.; Meltzer, S.J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology 2012, 143, 35–47. [Google Scholar] [CrossRef] [PubMed]
 - Petrocca, F.; Visone, R.; Onelli, M.R.; Shah, M.H.; Nicoloso, M.S.; de Martino, I.; Iliopoulos, D.; Pilozzi, E.; Liu, C.G.; Negrini, M.; et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008, 13, 272–286. [Google Scholar] [CrossRef] [PubMed]
 - Kim, Y.K.; Yu, J.; Han, T.S.; Park, S.Y.; Namkoong, B.; Kim, D.H.; Hur, K.; Yoo, M.W.; Lee, H.J.; Yang, H.K.; et al. Functional links between clustered microRNAs: Suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009, 37, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
 - Li, X.; Zhang, Y.; Shi, Y.; Dong, G.; Liang, J.; Han, Y.; Wang, X.; Zhao, Q.; Ding, J.; Wu, K.; et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J. Cell. Mol. Med. 2011, 15, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
 - Inoue, T.; Iinuma, H.; Ogawa, E.; Inaba, T.; Fukushima, R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol. Rep. 2012, 27, 1759–1764. [Google Scholar] [PubMed]
 - Feng, L.; Xie, Y.; Zhang, H.; Wu, Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med. Oncol. 2012, 29, 856–863. [Google Scholar] [CrossRef] [PubMed]
 - Yang, O.; Huang, J.; Lin, S. Regulatory effects of miRNA on gastric cancer cells. Oncol. Lett. 2014, 8, 651–656. [Google Scholar] [CrossRef] [PubMed]
 - Fesler, A.; Zhai, H.; Ju, J. miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer. OncoTargets Ther. 2014, 7, 1481–1485. [Google Scholar]
 - Yu, X.; Luo, L.; Wu, Y.; Liu, Y.; Zhao, X.; Zhang, X.; Cui, L.; Ye, G.; Le, Y.; Guo, J. Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med. Oncol. 2013, 30, 365. [Google Scholar] [CrossRef] [PubMed]
 - Du, Y.; Wang, D.; Luo, L.; Guo, J. miR-129-1-3p promote BGC-823 cell proliferation by targeting PDCD2. Anat. Rec. 2014, 297, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
 - Shen, R.; Pan, S.; Qi, S.; Lin, X.; Cheng, S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem. Biophys. Res. Commun. 2010, 394, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
 - Jiang, H.; Yu, W.W.; Wang, L.L.; Peng, Y. miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol. Rep. 2015, 34, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
 - Lai, K.W.; Koh, K.X.; Loh, M.; Tada, K.; Subramaniam, M.M.; Lim, X.Y.; Vaithilingam, A.; Salto-Tellez, M.; Iacopetta, B.; Ito, Y.; et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur. J. Cancer 2010, 46, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
 - Shin, J.Y.; Kim, Y.I.; Cho, S.J.; Lee, M.K.; Kook, M.C.; Lee, J.H.; Lee, S.S.; Ashktorab, H.; Smoot, D.T.; Ryu, K.W.; et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS ONE 2014, 9, e85205. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, X.; Yan, Z.; Zhang, J.; Gong, L.; Li, W.; Cui, J.; Liu, Y.; Gao, Z.; Li, J.; Shen, L.; et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2011, 22, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
 - Naito, Y.; Sakamoto, N.; Oue, N.; Yashiro, M.; Sentani, K.; Yanagihara, K.; Hirakawa, K.; Yasui, W. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 2014, 105, 228–235. [Google Scholar] [CrossRef] [PubMed]
 - Gao, P.; Xing, A.Y.; Zhou, G.Y.; Zhang, T.G.; Zhang, J.P.; Gao, C.; Li, H.; Shi, D.B. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 2013, 32, 491–501. [Google Scholar] [CrossRef] [PubMed]
 - Naito, Y.; Yasuno, K.; Tagawa, H.; Sakamoto, N.; Oue, N.; Yashiro, M.; Sentani, K.; Goto, K.; Shinmei, S.; Oo, H.Z.; et al. MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer. Oncol. Rep. 2014, 32, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
 - Sha, M.; Ye, J.; Zhang, L.X.; Luan, Z.Y.; Chen, Y.B. Celastrol induces apoptosis of gastric cancer cells by miR-146a inhibition of NF-kappaB activity. Cancer Cell Int. 2013, 13, 50. [Google Scholar] [CrossRef] [PubMed]
 - Xiao, B.; Zhu, E.D.; Li, N.; Lu, D.S.; Li, W.; Li, B.S.; Zhao, Y.L.; Mao, X.H.; Guo, G.; Yu, P.W.; et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol. Rep. 2012, 27, 559–566. [Google Scholar] [PubMed]
 - Zhou, L.; Zhao, X.; Han, Y.; Lu, Y.; Shang, Y.; Liu, C.; Li, T.; Jin, Z.; Fan, D.; Wu, K. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J. 2013, 27, 4929–4939. [Google Scholar] [CrossRef] [PubMed]
 - Tseng, C.W.; Lin, C.C.; Chen, C.N.; Huang, H.C.; Juan, H.F. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst. Biol. 2011, 5, 99. [Google Scholar] [CrossRef] [PubMed]
 - Xia, L.; Zhang, D.; Du, R.; Pan, Y.; Zhao, L.; Sun, S.; Hong, L.; Liu, J.; Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 2008, 123, 372–379. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, W.; Shan, X.; Wang, T.; Shu, Y.; Liu, P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer 2010, 127, 2520–2529. [Google Scholar] [CrossRef] [PubMed]
 - Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, M.; Wang, M.; Yang, F.; Tian, Y.; Cai, J.; Yang, H.; Fu, H.; Mao, F.; Zhu, W.; Qian, H.; et al. miR-155–5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-kappaB p65 activation. Oncotarget 2016, 7, 16567–16580. [Google Scholar] [PubMed]
 - Han, S.; Yang, S.; Cai, Z.; Pan, D.; Li, Z.; Huang, Z.; Zhang, P.; Zhu, H.; Lei, L.; Wang, W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des. Dev. Ther. 2015, 9, 2695–2703. [Google Scholar]
 - Li, H.; Xie, S.; Liu, M.; Chen, Z.; Liu, X.; Wang, L.; Li, D.; Zhou, Y. The clinical significance of downregulation of mir-124–3p, mir-146a-5p, mir-155–5p and mir-335–5p in gastric cancer tumorigenesis. Int. J. Oncol. 2014, 45, 197–208. [Google Scholar] [CrossRef] [PubMed]
 - Liu, L.; Chen, Q.; Lai, R.; Wu, X.; Liu, F.; Xu, G.; Ji, Y. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer. J. Biomed. Res. 2010, 24, 187–197. [Google Scholar] [CrossRef]
 - Wang, M.; Gu, H.; Wang, S.; Qian, H.; Zhu, W.; Zhang, L.; Zhao, C.; Tao, Y.; Xu, W. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep. 2012, 5, 1514–1520. [Google Scholar] [PubMed]
 - Cui, M.; Yue, L.; Fu, Y.; Yu, W.; Hou, X.; Zhang, X. Association of microRNA-181c expression with the progression and prognosis of human gastric carcinoma. Hepato GasTroenterol. 2013, 60, 961–964. [Google Scholar]
 - Hashimoto, Y.; Akiyama, Y.; Otsubo, T.; Shimada, S.; Yuasa, Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 2010, 31, 777–784. [Google Scholar] [CrossRef] [PubMed]
 - Xu, Y.J.; Fan, Y. MiR-215/192 participates in gastric cancer progression. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst Mex. 2015, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
 - Brenner, B.; Hoshen, M.B.; Purim, O.; David, M.B.; Ashkenazi, K.; Marshak, G.; Kundel, Y.; Brenner, R.; Morgenstern, S.; Halpern, M.; et al. MicroRNAs as a potential prognostic factor in gastric cancer. World J. Gastroenterol. 2011, 17, 3976–3985. [Google Scholar] [CrossRef] [PubMed]
 - Tsai, M.M.; Wang, C.S.; Tsai, C.Y.; Chen, C.Y.; Chi, H.C.; Tseng, Y.H.; Chung, P.J.; Lin, Y.H.; Chung, I.H.; Lin, K.H. MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett. 2014, 351, 222–231. [Google Scholar] [CrossRef] [PubMed]
 - Mu, Y.P.; Tang, S.; Sun, W.J.; Gao, W.M.; Wang, M.; Su, X.L. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac. J. Cancer Prev. 2014, 15, 8893–8900. [Google Scholar] [CrossRef] [PubMed]
 - Li, H.L.; Xie, S.P.; Yang, Y.L.; Cheng, Y.X.; Zhang, Y.; Wang, J.; Wang, Y.; Liu, D.L.; Chen, Z.F.; Zhou, Y.N.; et al. Clinical significance of upregulation of miR-196a-5p in gastric cancer and enriched KEGG pathway analysis of target genes. Asian Pac. J. Cancer Prev. 2015, 16, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
 - Sakurai, K.; Furukawa, C.; Haraguchi, T.; Inada, K.; Shiogama, K.; Tagawa, T.; Fujita, S.; Ueno, Y.; Ogata, A.; Ito, M.; et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 2011, 71, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
 - Song, G.; Zeng, H.; Li, J.; Xiao, L.; He, Y.; Tang, Y.; Li, Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol. Pharm. Bull. 2010, 33, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, X.; He, L.; Li, T.; Lu, Y.; Miao, Y.; Liang, S.; Guo, H.; Bai, M.; Xie, H.; Luo, G.; et al. SRF expedites metastasis and modulates the epithelial to mesenchymal transition by regulating miR-199a-5p expression in human gastric cancer. Cell Death Differ. 2014, 21, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, Y.; Fan, K.J.; Sun, Q.; Chen, A.Z.; Shen, W.L.; Zhao, Z.H.; Zheng, X.F.; Yang, X. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-beta signalling pathway. Nucleic Acids Res. 2012, 40, 9286–9297. [Google Scholar] [CrossRef] [PubMed]
 - Xue, T.M.; Tao, L.D.; Zhang, M.; Xu, G.C.; Zhang, J.; Zhang, P.J. miR-20b overexpression is predictive of poor prognosis in gastric cancer. OncoTargets Ther. 2015, 8, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
 - Chang, L.; Guo, F.; Wang, Y.; Lv, Y.; Huo, B.; Wang, L.; Liu, W. MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol. Oncol. Res. 2014, 20, 93–98. [Google Scholar] [CrossRef] [PubMed]
 - Dejana, E.; Tournier-Lasserve, E.; Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 2009, 16, 209–221. [Google Scholar] [CrossRef] [PubMed]
 - Xu, Y.; Sun, J.; Xu, J.; Li, Q.; Guo, Y.; Zhang, Q. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol. Res. Pract. 2012, 2012, 640168. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, B.G.; Li, J.F.; Yu, B.Q.; Zhu, Z.G.; Liu, B.Y.; Yan, M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol. Rep. 2012, 27, 1019–1026. [Google Scholar] [PubMed]
 - Yamanaka, S.; Olaru, A.V.; An, F.; Luvsanjav, D.; Jin, Z.; Agarwal, R.; Tomuleasa, C.; Popescu, I.; Alexandrescu, S.; Dima, S.; et al. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2012, 44, 589–596. [Google Scholar] [CrossRef] [PubMed]
 - De Val, S.; Black, B.L. Transcriptional control of endothelial cell development. Dev. Cell 2009, 16, 180–195. [Google Scholar] [CrossRef] [PubMed]
 - Kiga, K.; Mimuro, H.; Suzuki, M.; Shinozaki-Ushiku, A.; Kobayashi, T.; Sanada, T.; Kim, M.; Ogawa, M.; Iwasaki, Y.W.; Kayo, H.; et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat. Commun. 2014, 5, 4497. [Google Scholar] [CrossRef] [PubMed]
 - Xiong, X.; Ren, H.Z.; Li, M.H.; Mei, J.H.; Wen, J.F.; Zheng, C.L. Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol. Oncol. Res. 2011, 17, 931–937. [Google Scholar] [CrossRef] [PubMed]
 - Liu, K.; Li, G.; Fan, C.; Diao, Y.; Wu, B.; Li, J. Increased Expression of MicroRNA-221 in gastric cancer and its clinical significance. J. Int. Med. Res. 2012, 40, 467–474. [Google Scholar] [CrossRef] [PubMed]
 - Li, X.; Zhang, Y.; Zhang, H.; Liu, X.; Gong, T.; Li, M.; Sun, L.; Ji, G.; Shi, Y.; Han, Z.; et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol. Cancer Res. 2011, 9, 824–833. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, L.H.; Liu, T.; Tang, H.; Tian, R.Q.; Su, C.; Liu, M.; Li, X. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010, 277, 3726–3734. [Google Scholar] [CrossRef] [PubMed]
 - Ma, G.; Dai, W.; Sang, A.; Yang, X.; Gao, C. Upregulation of microRNA-23a/b promotes tumor progression and confers poor prognosis in patients with gastric cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 8833–8840. [Google Scholar] [PubMed]
 - Liu, X.; Ru, J.; Zhang, J.; Zhu, L.H.; Liu, M.; Li, X.; Tang, H. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS ONE 2013, 8, e64707. [Google Scholar] [CrossRef] [PubMed]
 - Gong, J.; Cui, Z.; Li, L.; Ma, Q.; Wang, Q.; Gao, Y.; Sun, H. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015, 36, 7831–7840. [Google Scholar] [CrossRef] [PubMed]
 - Liu, T.; Tang, H.; Lang, Y.; Liu, M.; Li, X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009, 273, 233–242. [Google Scholar] [CrossRef] [PubMed]
 - Yan, Z.; Xiong, Y.; Xu, W.; Gao, J.; Cheng, Y.; Wang, Z.; Chen, F.; Zheng, G. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS ONE 2012, 7, e40037. [Google Scholar] [CrossRef] [PubMed]
 - Yang, B.; Huang, J.; Liu, H.; Guo, W.; Li, G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015, 37, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
 - Kim, J.M.; Yoon, M.Y.; Kim, J.; Kim, S.S.; Kang, I.; Ha, J. Phosphatidylinositol 3-kinase regulates differentiation of H9c2 cardiomyoblasts mainly through the protein kinase B/Akt-independent pathway. Arch. Biochem. Biophys. 1999, 367, 67–73. [Google Scholar] [CrossRef] [PubMed]
 - Lo, S.S.; Hung, P.S.; Chen, J.H.; Tu, H.F.; Fang, W.L.; Chen, C.Y.; Chen, W.T.; Gong, N.R.; Wu, C.W. Overexpression of miR-370 and downregulation of its novel target TGFbeta-RII contribute to the progression of gastric carcinoma. Oncogene 2012, 31, 226–237. [Google Scholar] [CrossRef] [PubMed]
 - Ikeda-Kawakatsu, K.; Yasuno, N.; Oikawa, T.; Iida, S.; Nagato, Y.; Maekawa, M.; Kyozuka, J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol. 2009, 150, 736–747. [Google Scholar] [CrossRef] [PubMed]
 - Ding, L.; Xu, Y.; Zhang, W.; Deng, Y.; Si, M.; Du, Y.; Yao, H.; Liu, X.; Ke, Y.; Si, J.; et al. miR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010, 20, 784–793. [Google Scholar] [CrossRef] [PubMed]
 - Migliore, C.; Petrelli, A.; Ghiso, E.; Corso, S.; Capparuccia, L.; Eramo, A.; Comoglio, P.M.; Giordano, S. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008, 68, 10128–10136. [Google Scholar] [CrossRef] [PubMed]
 - Yoon, J.H.; Swiderski, P.M.; Kaplan, B.E.; Takao, M.; Yasui, A.; Shen, B.; Pfeifer, G.P. Processing of UV damage in vitro by FEN-1 proteins as part of an alternative DNA excision repair pathway. Biochemistry 1999, 38, 4809–4817. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, X.; Cui, L.; Ye, G.; Zheng, T.; Song, H.; Xia, T.; Yu, X.; Xiao, B.; Le, Y.; Guo, J. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2012, 33, 2349–2355. [Google Scholar] [CrossRef] [PubMed]
 - Kang, C.D.; Do, I.R.; Kim, K.W.; Ahn, B.K.; Kim, S.H.; Chung, B.S.; Jhun, B.H.; Yoo, M.A. Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562 cells. Exp. Mol. Med. 1999, 31, 76–82. [Google Scholar] [CrossRef] [PubMed]
 - Guo, X.; Jing, C.; Li, L.; Zhang, L.; Shi, Y.; Wang, J.; Liu, J.; Li, C. Down-regulation of VEZT gene expression in human gastric cancer involves promoter methylation and miR-43c. Biochem. Biophys. Res. Commun. 2011, 404, 622–627. [Google Scholar] [CrossRef] [PubMed]
 - Omura, T.; Shimada, Y.; Nagata, T.; Okumura, T.; Fukuoka, J.; Yamagishi, F.; Tajika, S.; Nakajima, S.; Kawabe, A.; Tsukada, K. Relapse-associated microRNA in gastric cancer patients after S-1 adjuvant chemotherapy. Oncol. Rep. 2014, 31, 613–618. [Google Scholar] [CrossRef] [PubMed]
 - Davidson, G.; Shen, J.; Huang, Y.L.; Su, Y.; Karaulanov, E.; Bartscherer, K.; Hassler, C.; Stannek, P.; Boutros, M.; Niehrs, C. Cell cycle control of wnt receptor activation. Dev. Cell 2009, 17, 788–799. [Google Scholar] [CrossRef] [PubMed]
 - Blanchet, E.; Annicotte, J.S.; Fajas, L. Cell cycle regulators in the control of metabolism. Cell Cycle 2009, 8, 4029–4031. [Google Scholar] [CrossRef] [PubMed]
 - Moran-Jones, K.; Grindlay, J.; Jones, M.; Smith, R.; Norman, J.C. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res. 2009, 69, 9219–9227. [Google Scholar] [CrossRef] [PubMed]
 - Wang, T.; Ge, G.; Ding, Y.; Zhou, X.; Huang, Z.; Zhu, W.; Shu, Y.; Liu, P. MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin. Med. J. 2014, 127, 2357–2362. [Google Scholar] [PubMed]
 - Saito, Y.; Suzuki, H.; Tsugawa, H.; Nakagawa, I.; Matsuzaki, J.; Kanai, Y.; Hibi, T. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 2009, 28, 2738–2744. [Google Scholar] [CrossRef] [PubMed]
 - Altunoglu, E.; Guntas, G.; Erdenen, F.; Akkaya, E.; Topac, I.; Irmak, H.; Derici, H.; Yavuzer, H.; Gelisgen, R.; Uzun, H. Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer’s disease. Geriatr. Gerontol. Int. 2014, 15, 872–880. [Google Scholar] [CrossRef] [PubMed]
 - Chu, D.; Zhao, Z.; Li, Y.; Li, J.; Zheng, J.; Wang, W.; Zhao, Q.; Ji, G. Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS ONE 2014, 9, e90526. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, X.; Zhu, W.; Zhang, J.; Huo, S.; Zhou, L.; Gu, Z.; Zhang, M. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem. Biophys. Res. Commun. 2010, 395, 275–280. [Google Scholar] [CrossRef] [PubMed]
 - Li, H.; Wu, W.K.; Zheng, Z.; Che, C.T.; Yu, L.; Li, Z.J.; Wu, Y.C.; Cheng, K.W.; Yu, J.; Cho, C.H.; et al. 2,3′,4,4′,5′-Pentamethoxy-trans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem. Pharmacol. 2009, 78, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
 - Duan, J.H.; Fang, L. MicroRNA-92 promotes gastric cancer cell proliferation and invasion through targeting FXR. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014, 35, 11013–11019. [Google Scholar] [CrossRef] [PubMed]
 - Tang, Y.; Zheng, J.; Sun, Y.; Wu, Z.; Liu, Z.; Huang, G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 2009, 50, 377–387. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, H.H.; Wang, X.J.; Li, G.X.; Yang, E.; Yang, N.M. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J. Gastroenterol. 2007, 13, 2883–2888. [Google Scholar] [PubMed]
 - Yang, Q.; Jie, Z.; Cao, H.; Greenlee, A.R.; Yang, C.; Zou, F.; Jiang, Y. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011, 32, 713–722. [Google Scholar] [CrossRef] [PubMed]
 - Briscoe, J. Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO J. 2009, 28, 457–465. [Google Scholar] [CrossRef] [PubMed]
 - Yoo, Y.D.; Choi, J.Y.; Lee, S.J.; Kim, J.S.; Min, B.R.; Lee, Y.I.; Kang, Y.K. TGF-beta-induced cell-cycle arrest through the p21(WAF1/CIP1)-G1 cyclin/Cdks-p130 pathway in gastric-carcinoma cells. Int. J. Cancer 1999, 83, 512–517. [Google Scholar] [CrossRef]
 - Wu, X.M.; Shao, X.Q.; Meng, X.X.; Zhang, X.N.; Zhu, L.; Liu, S.X.; Lin, J.; Xiao, H.S. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol. Sin. 2011, 32, 259–269. [Google Scholar] [CrossRef] [PubMed]
 - Okada, E.; Murai, Y.; Matsui, K.; Isizawa, S.; Cheng, C.; Masuda, M.; Takano, Y. Survivin expression in tumor cell nuclei is predictive of a favorable prognosis in gastric cancer patients. Cancer Lett. 2001, 163, 109–116. [Google Scholar] [CrossRef]
 - Gravante, G.; Ong, S.L.; Metcalfe, M.S.; Bhardwaj, N.; Maddern, G.J.; Lloyd, D.M.; Dennison, A.R. Experimental application of electrolysis in the treatment of liver and pancreatic tumours: Principles, preclinical and clinical observations and future perspectives. Surg. Oncol. 2011, 20, 106–120. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, Y.; Chen, Z.D.; Du, C.J.; Xu, G.; Luo, W. siRNA targeting survivin inhibits growth and induces apoptosis in human renal clear cell carcinoma 786-O cells. Pathol. Res. Pract. 2009, 205, 823–827. [Google Scholar] [CrossRef] [PubMed]
 - Gobeil, P.A.; Yuan, Z.; Gault, E.A.; Morgan, I.M.; Campo, M.S.; Nasir, L. Small interfering RNA targeting bovine papillomavirus type 1 E2 induces apoptosis in equine sarcoid transformed fibroblasts. Virus Res. 2009, 145, 162–165. [Google Scholar] [CrossRef] [PubMed]
 - Cai, M.; Wang, G.B.; Tao, K.X.; Cai, C.X. Apoptosis induction effect of siRNA recombinant expression vector targeting Livin and Survivin gene simultaneously on human colon cancer cells. Chin. J. Gastrointest. Surg. 2009, 12, 399–403. [Google Scholar]
 - Foster, F.M.; Owens, T.W.; Tanianis-Hughes, J.; Clarke, R.B.; Brennan, K.; Bundred, N.J.; Streuli, C.H. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res. BCR 2009, 11, R41. [Google Scholar] [CrossRef] [PubMed]
 - Kim, K.; Lee, H.C.; Park, J.L.; Kim, M.; Kim, S.Y.; Noh, S.M.; Song, K.S.; Kim, J.C.; Kim, Y.S. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 2011, 6, 740–751. [Google Scholar] [CrossRef] [PubMed]
 - Betin, V.M.; Lane, J.D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 2009, 122, 2554–2566. [Google Scholar] [CrossRef] [PubMed]
 - Zhou, X.; Xia, Y.; Li, L.; Zhang, G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol. Ther. 2015, 16, 160–169. [Google Scholar] [CrossRef] [PubMed]
 - Rubenstein, M.; Tsui, P.; Guinan, P. Treatment of prostate and breast tumors employing mono- and bi-specific antisense oligonucleotides targeting apoptosis inhibitory proteins clusterin and bcl-2. Med. Oncol. 2010, 27, 592–599. [Google Scholar] [CrossRef] [PubMed]
 - Gao, J.; Zhang, R.L.; Zhou, C.Q.; Ma, Y.; Zhuang, G.L. RNA interference targeting of sphingomyelin phosphodiesterase 1 protects human granulosa cells from apoptosis. J. Obstet. Gynaecol. Res. 2009, 35, 421–428. [Google Scholar] [CrossRef] [PubMed]
 - Huang, K.H.; Lan, Y.T.; Fang, W.L.; Chen, J.H.; Lo, S.S.; Li, A.F.; Chiou, S.H.; Wu, C.W.; Shyr, Y.M. The correlation between miRNA and lymph node metastasis in gastric cancer. BioMed Res. Int. 2015, 2015, 543163. [Google Scholar] [CrossRef] [PubMed]
 - Hu, C.B.; Li, Q.L.; Hu, J.F.; Zhang, Q.; Xie, J.P.; Deng, L. miR-124 inhibits growth and invasion of gastric cancer by targeting ROCK1. Asian Pac. J. Cancer Prev. 2014, 15, 6543–6546. [Google Scholar] [CrossRef] [PubMed]
 - Pei, L.; Xia, J.Z.; Huang, H.Y.; Zhang, R.R.; Yao, L.B.; Zheng, L.; Hong, B. Role of miR-124a methylation in patients with gastric cancer. Chin. J. Gastrointest. Surg. 2011, 14, 136–139. [Google Scholar]
 - Hirasawa, K.; Jun, H.S.; Han, H.S.; Zhang, M.L.; Hollenberg, M.D.; Yoon, J.W. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signalling pathway and subsequent suppression of nitric oxide production in macrophages. J. Virol. 1999, 73, 8541–8548. [Google Scholar] [PubMed]
 - Hashiguchi, Y.; Nishida, N.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Mochizuki, H.; Hase, K.; Doki, Y.; et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int. J. Oncol. 2012, 40, 1477–1482. [Google Scholar] [PubMed]
 - Nishida, N.; Mimori, K.; Fabbri, M.; Yokobori, T.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Mori, M. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 2725–2733. [Google Scholar] [CrossRef] [PubMed]
 - Xu, Y.; Huang, Z.; Liu, Y. Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3. Mol. Med. Rep. 2014, 10, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
 - Feng, R.; Chen, X.; Yu, Y.; Su, L.; Yu, B.; Li, J.; Cai, Q.; Yan, M.; Liu, B.; Zhu, Z. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010, 298, 50–63. [Google Scholar] [CrossRef] [PubMed]
 - Liu, L.Y.; Wang, W.; Zhao, L.Y.; Guo, B.; Yang, J.; Zhao, X.G.; Hou, N.; Ni, L.; Wang, A.Y.; Song, T.S.; et al. Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int. J. Oncol. 2014, 45, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
 - Li, X.; Wang, F.; Qi, Y. MiR-126 inhibits the invasion of gastric cancer cell in part by targeting Crk. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2031–2037. [Google Scholar] [PubMed]
 - Li, L.P.; Wu, W.J.; Sun, D.Y.; Xie, Z.Y.; Ma, Y.C.; Zhao, Y.G. miR-449a and CDK6 in gastric carcinoma. Oncol. Lett. 2014, 8, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
 - Zuo, Q.F.; Zhang, R.; Li, B.S.; Zhao, Y.L.; Zhuang, Y.; Yu, T.; Gong, L.; Li, S.; Xiao, B.; Zou, Q.M. MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis. 2015, 6, e1623. [Google Scholar] [CrossRef] [PubMed]
 - Takagi, T.; Iio, A.; Nakagawa, Y.; Naoe, T.; Tanigawa, N.; Akao, Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009, 77, 12–21. [Google Scholar] [CrossRef] [PubMed]
 - Kogo, R.; Mimori, K.; Tanaka, F.; Komune, S.; Mori, M. Clinical significance of miR-146a in gastric cancer cases. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
 - Zheng, B.; Liang, L.; Wang, C.; Huang, S.; Cao, X.; Zha, R.; Liu, L.; Jia, D.; Tian, Q.; Wu, J.; et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 7574–7583. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, A.; Xia, J.; Zuo, J.; Jin, S.; Zhou, H.; Yao, L.; Huang, H.; Han, Z. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med. Oncol. 2012, 29, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
 - Guo, S.L.; Peng, Z.; Yang, X.; Fan, K.J.; Ye, H.; Li, Z.H.; Wang, Y.; Xu, X.L.; Li, J.; Wang, Y.L.; et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int. J. Biol. Sci. 2011, 7, 567–574. [Google Scholar] [CrossRef] [PubMed]
 - Song, Y.X.; Yue, Z.Y.; Wang, Z.N.; Xu, Y.Y.; Luo, Y.; Xu, H.M.; Zhang, X.; Jiang, L.; Xing, C.Z.; Zhang, Y. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer 2011, 10, 1. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, Z.; Sun, J.; Bai, Z.; Li, H.; He, S.; Chen, R.; Che, X. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. OncoTargets Ther. 2015, 8, 357–364. [Google Scholar]
 - Tan, Z.; Jiang, H.; Wu, Y.; Xie, L.; Dai, W.; Tang, H.; Tang, S. miR-185 is an independent prognosis factor and suppresses tumor metastasis in gastric cancer. Mol. Cell. Biochem. 2014, 386, 223–231. [Google Scholar] [CrossRef] [PubMed]
 - Fulda, S.; Kroemer, G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today 2009, 14, 885–890. [Google Scholar] [CrossRef] [PubMed]
 - Chiang, Y.; Zhou, X.; Wang, Z.; Song, Y.; Liu, Z.; Zhao, F.; Zhu, J.; Xu, H. Expression levels of microRNA-192 and -215 in gastric carcinoma. Pathol. Oncol. Res. 2012, 18, 585–591. [Google Scholar] [CrossRef] [PubMed]
 - Kurashige, J.; Kamohara, H.; Watanabe, M.; Hiyoshi, Y.; Iwatsuki, M.; Tanaka, Y.; Kinoshita, K.; Saito, S.; Baba, Y.; Baba, H. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann. Surg. Oncol. 2012, 19, S656–S664. [Google Scholar] [CrossRef] [PubMed]
 - Shinozaki, A.; Sakatani, T.; Ushiku, T.; Hino, R.; Isogai, M.; Ishikawa, S.; Uozaki, H.; Takada, K.; Fukayama, M. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 2010, 70, 4719–4727. [Google Scholar] [CrossRef] [PubMed]
 - Korpal, M.; Lee, E.S.; Hu, G.; Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008, 283, 14910–14914. [Google Scholar] [CrossRef] [PubMed]
 - Park, S.M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [PubMed]
 - Xia, H.F.; He, T.Z.; Liu, C.M.; Cui, Y.; Song, P.P.; Jin, X.H.; Ma, X. miR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2009, 23, 347–358. [Google Scholar] [CrossRef] [PubMed]
 - Zhou, X.; Xu, G.; Yin, C.; Jin, W.; Zhang, G. Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK. Oncotarget 2014, 5, 11631–11640. [Google Scholar] [CrossRef] [PubMed]
 - Zhou, X.; Li, L.; Su, J.; Zhang, G. Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. PLoS ONE 2014, 9, e101457. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, L.; Liu, X.; Jin, H.; Guo, X.; Xia, L.; Chen, Z.; Bai, M.; Liu, J.; Shang, X.; Wu, K.; et al. miR-206 inhibits gastric cancer proliferation in part by repressing cyclinD2. Cancer Lett. 2013, 332, 94–101. [Google Scholar] [CrossRef] [PubMed]
 - Yang, Q.; Zhang, C.; Huang, B.; Li, H.; Zhang, R.; Huang, Y.; Wang, J. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur. J. Gastroenterol. Hepatol. 2013, 25, 953–957. [Google Scholar] [CrossRef] [PubMed]
 - Wada, R.; Akiyama, Y.; Hashimoto, Y.; Fukamachi, H.; Yuasa, Y. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int. J. Cancer 2010, 127, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
 - Chen, D.L.; Zhang, D.S.; Lu, Y.X.; Chen, L.Z.; Zeng, Z.L.; He, M.M.; Wang, F.H.; Li, Y.H.; Zhang, H.Z.; Pelicano, H.; et al. microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 2015, 6, 10868–10879. [Google Scholar] [CrossRef] [PubMed]
 - Tie, J.; Pan, Y.; Zhao, L.; Wu, K.; Liu, J.; Sun, S.; Guo, X.; Wang, B.; Gang, Y.; Zhang, Y.; et al. miR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010, 6, e1000879. [Google Scholar] [CrossRef] [PubMed]
 - Gao, C.; Zhang, Z.; Liu, W.; Xiao, S.; Gu, W.; Lu, H. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 2010, 116, 41–49. [Google Scholar] [CrossRef] [PubMed]
 - Forger, N.G. Control of cell number in the sexually dimorphic brain and spinal cord. J. Neuroendocrinol. 2009, 21, 393–399. [Google Scholar] [CrossRef] [PubMed]
 - Huertas, P.; Jackson, S.P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 2009, 284, 9558–9565. [Google Scholar] [CrossRef] [PubMed]
 - Aguilo, J.I.; Garaude, J.; Pardo, J.; Villalba, M.; Anel, A. Protein kinase C-theta is required for NK cell activation and in vivo control of tumor progression. J. Immunol. 2009, 182, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
 - Cooks, T.; Arazi, L.; Efrati, M.; Schmidt, M.; Marshak, G.; Kelson, I.; Keisari, Y. Interstitial wires releasing diffusing alpha emitters combined with chemotherapy improved local tumor control and survival in squamous cell carcinoma-bearing mice. Cancer 2009, 115, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
 - Su, Y.Q.; Sugiura, K.; Eppig, J.J. Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 2009, 27, 32–42. [Google Scholar] [CrossRef] [PubMed]
 - Guo, M.M.; Hu, L.H.; Wang, Y.Q.; Chen, P.; Huang, J.G.; Lu, N.; He, J.H.; Liao, C.G. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med. Oncol. 2013, 30, 542. [Google Scholar] [CrossRef] [PubMed]
 - Xingi, E.; Smirlis, D.; Myrianthopoulos, V.; Magiatis, P.; Grant, K.M.; Meijer, L.; Mikros, E.; Skaltsounis, A.L.; Soteriadou, K. 6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: Exploitation of GSK-3 for treating leishmaniasis. Int. J. Parasitol. 2009, 39, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
 - Bhutia, S.K.; Mallick, S.K.; Maiti, S.; Mishra, D.; Maiti, T.K. Abrus abrin derived peptides induce apoptosis by targeting mitochondria in HeLa cells. Cell Biol. Int. 2009, 33, 720–727. [Google Scholar] [CrossRef] [PubMed]
 - Shen, W.W.; Wu, J.; Cai, L.; Liu, B.Y.; Gao, Y.; Chen, G.Q.; Fu, G.H. Expression of anion exchanger 1 sequestrates p16 in the cytoplasm in gastric and colonic adenocarcinoma. Neoplasia 2007, 9, 812–819. [Google Scholar] [CrossRef] [PubMed]
 - Wu, J.; Zhang, Y.C.; Suo, W.H.; Liu, X.B.; Shen, W.W.; Tian, H.; Fu, G.H. Induction of anion exchanger-1 translation and its opposite roles in the carcinogenesis of gastric cancer cells and differentiation of K562 cells. Oncogene 2010, 29, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
 - Ryu, S.J.; Park, S.C. Targeting major vault protein in senescence-associated apoptosis resistance. Expert Opin. Ther. Targets 2009, 13, 479–484. [Google Scholar] [CrossRef] [PubMed]
 - Contassot, E.; French, L.E. Targeting apoptosis defects in cutaneous T-cell lymphoma. J. Investig. Dermatol. 2009, 129, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
 - Liu, T.B.; Zou, S.B.; Chen, Z.Z. Apoptosis of human myeloid leukemia cell line HL-60 cells induced by siRNA targeting gene c-myc. J. Exp. Hematol. Chin. Assoc. Pathophysiol. 2009, 17, 331–334. [Google Scholar]
 - Gong, J.; Li, J.; Wang, Y.; Liu, C.; Jia, H.; Jiang, C.; Luo, M.; Zhao, H.; Dong, L.; Song, W.; et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis 2014, 35, 497–506. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, E.D.; Li, N.; Li, B.S.; Li, W.; Zhang, W.J.; Mao, X.H.; Guo, G.; Zou, Q.M.; Xiao, B. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS ONE 2014, 9, e106049. [Google Scholar] [CrossRef] [PubMed]
 - Xu, Y.; Zhao, F.; Wang, Z.; Song, Y.; Luo, Y.; Zhang, X.; Jiang, L.; Sun, Z.; Miao, Z.; Xu, H. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 2012, 31, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
 - Ji, Q.; Hao, X.; Meng, Y.; Zhang, M.; Desano, J.; Fan, D.; Xu, L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008, 8, 266. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, H.; Li, S.; Yang, J.; Liu, S.; Gong, X.; Yu, X. The prognostic value of miR-34a expression in completely resected gastric cancer: Tumor recurrence and overall survival. Int. J. Clin. Exp. Med. 2015, 8, 2635–2641. [Google Scholar] [PubMed]
 - Luo, H.; Zhang, H.; Zhang, Z.; Zhang, X.; Ning, B.; Guo, J.; Nie, N.; Liu, B.; Wu, X. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J. Exp. Clin. Cancer Res. CR 2009, 28, 82. [Google Scholar] [CrossRef] [PubMed]
 - Xu, Y.; Jin, J.; Liu, Y.; Huang, Z.; Deng, Y.; You, T.; Zhou, T.; Si, J.; Zhuo, W. Snail-regulated MiR-375 inhibits migration and invasion of gastric cancer cells by targeting JAK2. PLoS ONE 2014, 9, e99516. [Google Scholar] [CrossRef] [PubMed]
 - Shen, J.; Niu, W.; Zhou, M.; Zhang, H.; Ma, J.; Wang, L. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer. PLoS ONE 2014, 9, e104510. [Google Scholar] [CrossRef] [PubMed]
 - Sun, T.; Wang, C.; Xing, J.; Wu, D. miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur. J. Cancer 2011, 47, 2552–2559. [Google Scholar] [CrossRef] [PubMed]
 - Bou Kheir, T.; Futoma-Kazmierczak, E.; Jacobsen, A.; Krogh, A.; Bardram, L.; Hother, C.; Gronbaek, K.; Federspiel, B.; Lund, A.H.; Friis-Hansen, L. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 2011, 10, 29. [Google Scholar] [CrossRef] [PubMed]
 - Tsiftsoglou, A.S.; Bonovolias, I.D.; Tsiftsoglou, S.A. Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol. Ther. 2009, 122, 264–280. [Google Scholar] [CrossRef] [PubMed]
 - Flygare, J.A.; Vucic, D. Development of novel drugs targeting inhibitors of apoptosis. Future Oncol. 2009, 5, 141–144. [Google Scholar] [CrossRef] [PubMed]
 - Wang, J.; Zhang, J.; Wu, J.; Luo, D.; Su, K.; Shi, W.; Liu, J.; Tian, Y.; Wei, L. MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur. J. Cancer 2012, 48, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, X.; Dou, W.; He, L.; Liang, S.; Tie, J.; Liu, C.; Li, T.; Lu, Y.; Mo, P.; Shi, Y.; et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013, 32, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
 - Wan, H.Y.; Guo, L.M.; Liu, T.; Liu, M.; Li, X.; Tang, H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol. Cancer 2010, 9, 16. [Google Scholar] [CrossRef] [PubMed]
 - Konishi, H.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Tsujiura, M.; Takeshita, H.; Morimura, R.; Nagata, H.; Arita, T.; Kawaguchi, T.; et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br. J. Cancer 2012, 106, 740–747. [Google Scholar] [CrossRef] [PubMed]
 - Tsujiura, M.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Takeshita, H.; Kosuga, T.; Konishi, H.; Morimura, R.; Deguchi, K.; Fujiwara, H.; et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 2010, 102, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, R.; Wang, W.; Li, F.; Zhang, H.; Liu, J. MicroRNA-106b~25 expressions in tumor tissues and plasma of patients with gastric cancers. Med. Oncol. 2014, 31, 243. [Google Scholar] [CrossRef] [PubMed]
 - Su, Z.X.; Zhao, J.; Rong, Z.H.; Wu, Y.G.; Geng, W.M.; Qin, C.K. Diagnostic and prognostic value of circulating miR-18a in the plasma of patients with gastric cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014, 35, 12119–12125. [Google Scholar] [CrossRef] [PubMed]
 - Tsujiura, M.; Komatsu, S.; Ichikawa, D.; Shiozaki, A.; Konishi, H.; Takeshita, H.; Moriumura, R.; Nagata, H.; Kawaguchi, T.; Hirajima, S.; et al. Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015, 18, 271–279. [Google Scholar] [CrossRef] [PubMed]
 - Chen, Q.; Ge, X.; Zhang, Y.; Xia, H.; Yuan, D.; Tang, Q.; Chen, L.; Pang, X.; Leng, W.; Bi, F. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol. Rep. 2014, 31, 1863–1870. [Google Scholar] [PubMed]
 - Li, C.; Li, J.F.; Cai, Q.; Qiu, Q.Q.; Yan, M.; Liu, B.Y.; Zhu, Z.G. MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J. Surg. Oncol. 2013, 108, 89–92. [Google Scholar] [CrossRef] [PubMed]
 - Li, C.; Li, J.F.; Cai, Q.; Qiu, Q.Q.; Yan, M.; Liu, B.Y.; Zhu, Z.G. miRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Ann. Surg. Oncol. 2013, 20, S397–S405. [Google Scholar] [CrossRef] [PubMed]
 - Valladares-Ayerbes, M.; Reboredo, M.; Medina-Villaamil, V.; Iglesias-Diaz, P.; Lorenzo-Patino, M.J.; Haz, M.; Santamarina, I.; Blanco, M.; Fernandez-Tajes, J.; Quindos, M.; et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med. 2012, 10, 186. [Google Scholar] [CrossRef] [PubMed]
 - Zhu, W.; Xu, H.; Zhu, D.; Zhi, H.; Wang, T.; Wang, J.; Jiang, B.; Shu, Y.; Liu, P. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. 2012, 69, 723–731. [Google Scholar] [CrossRef] [PubMed]
 - Wang, B.; Zhang, Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J. Cancer Res. Clin. Oncol. 2012, 138, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
 - Ma, G.J.; Gu, R.M.; Zhu, M.; Wen, X.; Li, J.T.; Zhang, Y.Y.; Zhang, X.M.; Chen, S.Q. Plasma post-operative miR-21 expression in the prognosis of gastric cancers. Asian Pac. J. Cancer Prev. 2013, 14, 7551–7554. [Google Scholar] [CrossRef] [PubMed]
 - Komatsu, S.; Ichikawa, D.; Tsujiura, M.; Konishi, H.; Takeshita, H.; Nagata, H.; Kawaguchi, T.; Hirajima, S.; Arita, T.; Shiozaki, A.; et al. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013, 33, 271–276. [Google Scholar] [PubMed]
 - Song, J.; Bai, Z.; Zhang, J.; Meng, H.; Cai, J.; Deng, W.; Bi, J.; Ma, X.; Zhang, Z. Serum microRNA-21 levels are related to tumor size in gastric cancer patients but cannot predict prognosis. Oncol. Lett. 2013, 6, 1733–1737. [Google Scholar] [PubMed]
 - Xin, S.Y.; Feng, X.S.; Zhou, L.Q.; Sun, J.J.; Gao, X.L.; Yao, G.L. Reduced expression of circulating microRNA-218 in gastric cancer and correlation with tumor invasion and prognosis. World J. Gastroenterol. WJG 2014, 20, 6906–6911. [Google Scholar] [CrossRef] [PubMed]
 - Song, M.Y.; Pan, K.F.; Su, H.J.; Zhang, L.; Ma, J.L.; Li, J.Y.; Yuasa, Y.; Kang, D.; Kim, Y.S.; You, W.C. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE 2012, 7, e33608. [Google Scholar] [CrossRef] [PubMed]
 - Chun-Zhi, Z.; Lei, H.; An-Ling, Z.; Yan-Chao, F.; Xiao, Y.; Guang-Xiu, W.; Zhi-Fan, J.; Pei-Yu, P.; Qing-Yu, Z.; Chun-Sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010, 10, 367. [Google Scholar]
 - Li, N.; Tang, B.; Zhu, E.D.; Li, B.S.; Zhuang, Y.; Yu, S.; Lu, D.S.; Zou, Q.M.; Xiao, B.; Mao, X.H. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012, 586, 722–728. [Google Scholar] [CrossRef] [PubMed]
 - Fu, Z.; Qian, F.; Yang, X.; Jiang, H.; Chen, Y.; Liu, S. Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. Med. Oncol. 2014, 31, 164. [Google Scholar] [CrossRef] [PubMed]
 - Li, B.S.; Zuo, Q.F.; Zhao, Y.L.; Xiao, B.; Zhuang, Y.; Mao, X.H.; Wu, C.; Yang, S.M.; Zeng, H.; Zou, Q.M.; et al. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene 2015, 34, 2556–2565. [Google Scholar] [CrossRef] [PubMed]
 - Huang, D.; Wang, H.; Liu, R.; Li, H.; Ge, S.; Bai, M.; Deng, T.; Yao, G.; Ba, Y. miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J. Cell. Biochem. 2014, 115, 549–556. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, Z.; Liu, S.; Shi, R.; Zhao, G. miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011, 204, 486–491. [Google Scholar] [CrossRef] [PubMed]
 - Liu, H.; Zhu, L.; Liu, B.; Yang, L.; Meng, X.; Zhang, W.; Ma, Y.; Xiao, H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012, 316, 196–203. [Google Scholar] [CrossRef] [PubMed]
 - Wu, J.; Li, G.; Yao, Y.; Wang, Z.; Sun, W.; Wang, J. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2015, 20, 58–63. [Google Scholar] [CrossRef] [PubMed]
 - Zhou, H.; Guo, J.M.; Lou, Y.R.; Zhang, X.J.; Zhong, F.D.; Jiang, Z.; Cheng, J.; Xiao, B.X. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J. Mol. Med. 2010, 88, 709–717. [Google Scholar] [CrossRef] [PubMed]
 - Meder, B.; Backes, C.; Haas, J.; Leidinger, P.; Stahler, C.; Grossmann, T.; Vogel, B.; Frese, K.; Giannitsis, E.; Katus, H.A.; et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin. Chem. 2014, 60, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, W.H.; Gui, J.H.; Wang, C.Z.; Chang, Q.; Xu, S.P.; Cai, C.H.; Li, Y.N.; Tian, Y.P.; Yan, L.; Wu, B. The identification of miR-375 as a potential biomarker in distal gastric adenocarcinoma. Oncol. Res. 2012, 20, 139–147. [Google Scholar] [CrossRef] [PubMed]
 - Imaoka, H.; Toiyama, Y.; Okigami, M.; Yasuda, H.; Saigusa, S.; Ohi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Kusunoki, M. Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015. [Google Scholar] [CrossRef] [PubMed]
 - Canepa, E.T.; Scassa, M.E.; Ceruti, J.M.; Marazita, M.C.; Carcagno, A.L.; Sirkin, P.F.; Ogara, M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007, 59, 419–426. [Google Scholar] [CrossRef] [PubMed]
 - Shou, W.; Dunphy, W.G. Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol. Biol. Cell 1996, 7, 457–469. [Google Scholar] [CrossRef] [PubMed]
 - Pateras, I.S.; Apostolopoulou, K.; Niforou, K.; Kotsinas, A.; Gorgoulis, V.G. p57KIP2: “Kip”ing the cell under control. Mol. Cancer Res. MCR 2009, 7, 1902–1919. [Google Scholar] [CrossRef] [PubMed]
 - Wu, Q.; Jin, H.; Yang, Z.; Luo, G.; Lu, Y.; Li, K.; Ren, G.; Su, T.; Pan, Y.; Feng, B.; et al. MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem. Biophys. Res. Commun. 2010, 392, 340–345. [Google Scholar] [CrossRef] [PubMed]
 - Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2, 647–656. [Google Scholar] [CrossRef] [PubMed]
 - Qiao, L.; Wong, B.C. Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2009, 12, 55–64. [Google Scholar] [CrossRef] [PubMed]
 - Ning, S.; Tian, J.; Marshall, D.J.; Knox, S.J. Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats. Cancer Res. 2010, 70, 7591–7599. [Google Scholar] [CrossRef] [PubMed]
 - Hosono, Y.; Osada, S.; Nawa, M.; Takahashi, T.; Yamaguchi, K.; Kawaguchi, Y.; Yoshida, K. Combination therapy of 5-fluorouracil with rapamycin for hormone receptor-negative human breast cancer. Anticancer Res. 2010, 30, 2625–2630. [Google Scholar] [PubMed]
 - Talebi Bezmin Abadi, A.; Rafiei, A.; Ajami, A.; Hosseini, V.; Taghvaei, T.; Jones, K.R.; Merrell, D.S. Helicobacter pylori homB, but not cagA, is associated with gastric cancer in Iran. J. Clin. Microbiol. 2011, 49, 3191–3197. [Google Scholar] [CrossRef] [PubMed]
 - Gilad, S.; Meiri, E.; Yogev, Y.; Benjamin, S.; Lebanony, D.; Yerushalmi, N.; Benjamin, H.; Kushnir, M.; Cholakh, H.; Melamed, N.; et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008, 3, e3148. [Google Scholar] [CrossRef] [PubMed]
 - Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
 - Shimizu, Y.; Takamori, A.; Utsunomiya, A.; Kurimura, M.; Yamano, Y.; Hishizawa, M.; Hasegawa, A.; Kondo, F.; Kurihara, K.; Harashima, N.; et al. Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci. 2009, 100, 481–489. [Google Scholar] [CrossRef] [PubMed]
 - Wickliffe, K.; Williamson, A.; Jin, L.; Rape, M. The multiple layers of ubiquitin-dependent cell cycle control. Chem. Rev. 2009, 109, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
 - Hsu, H.J.; Drummond-Barbosa, D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl. Acad. Sci. USA 2009, 106, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
 - Ahn, H.S.; Shin, Y.S.; Park, P.J.; Kang, K.N.; Kim, Y.; Lee, H.J.; Yang, H.K.; Kim, C.W. Serum biomarker panels for the diagnosis of gastric adenocarcinoma. Br. J. Cancer 2012, 106, 733–739. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, Z.; Li, M.; Zhang, G.; Fang, P.; Yao, H.; Xiao, Z.; Chen, Z. Identification of human gastric carcinoma biomarkers by differential protein expression analysis using 18O labeling and nanoLC-MS/MS coupled with laser capture microdissection. Med. Oncol. 2010, 27, 296–303. [Google Scholar] [PubMed]
 - Wang, Y.Y.; Ye, Z.Y.; Zhao, Z.S.; Li, L.; Wang, Y.X.; Tao, H.Q.; Wang, H.J.; He, X.J. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum. Pathol. 2013, 44, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
 - Li, X.; Zhang, Y.; Ding, J.; Wu, K.; Fan, D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2010, 59, 579–585. [Google Scholar] [CrossRef] [PubMed]
 - Bandres, E.; Bitarte, N.; Arias, F.; Agorreta, J.; Fortes, P.; Agirre, X.; Zarate, R.; Diaz-Gonzalez, J.A.; Ramirez, N.; Sola, J.J.; et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
 - Lee, Y.S.; Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007, 21, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
 - Saito, Y.; Liang, G.; Egger, G.; Friedman, J.M.; Chuang, J.C.; Coetzee, G.A.; Jones, P.A. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006, 9, 435–443. [Google Scholar] [CrossRef] [PubMed]
 - Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sanchez-Cespedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13556–13561. [Google Scholar] [CrossRef] [PubMed]
 - Sotiropoulou, G.; Pampalakis, G.; Lianidou, E.; Mourelatos, Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 2009, 15, 1443–1461. [Google Scholar] [CrossRef] [PubMed]
 - Ebert, M.S.; Neilson, J.R.; Sharp, P.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 2007, 4, 721–726. [Google Scholar] [CrossRef] [PubMed]
 - Wang, Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol. Biol. 2011, 676, 43–49. [Google Scholar] [PubMed]
 - Elmen, J.; Lindow, M.; Schutz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjarn, M.; Hansen, H.F.; Berger, U.; et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452, 896–899. [Google Scholar] [CrossRef] [PubMed]
 - Kota, J.; Chivukula, R.R.; O’Donnell, K.A.; Wentzel, E.A.; Montgomery, C.L.; Hwang, H.W.; Chang, T.C.; Vivekanandan, P.; Torbenson, M.; Clark, K.R.; et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009, 137, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
 - Xiang, S.; Fruehauf, J.; Li, C.J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 2006, 24, 697–702. [Google Scholar] [CrossRef] [PubMed]
 - Cheng, J.; Zhou, Y.; Zuo, M.; Dai, L.; Guo, X. Application of dispersive liquid-liquid microextraction and reversed phase-high performance liquid chromatography for the determination of two fungicides in environmental water samples. Int. J. Environ. Anal. Chem. 2010, 90, 845–855. [Google Scholar] [CrossRef] [PubMed]
 - Chen, L.; Lu, M.H.; Zhang, D.; Hao, N.B.; Fan, Y.H.; Wu, Y.Y.; Wang, S.M.; Xie, R.; Fang, D.C.; Zhang, H.; et al. miR-1207–5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 2014, 5, e1034. [Google Scholar] [CrossRef] [PubMed]
 - Wu, Y.; Crawford, M.; Yu, B.; Mao, Y.; Nana-Sinkam, S.P.; Lee, L.J. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm. 2011, 8, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
 - Yang, X.; Haurigot, V.; Zhou, S.; Luo, G.; Couto, L.B. Inhibition of hepatitis C virus replication using adeno-associated virus vector delivery of an exogenous anti-hepatitis C virus microRNA cluster. Hepatology 2010, 52, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
 - Ng, E.K.; Chong, W.W.; Jin, H.; Lam, E.K.; Shin, V.Y.; Yu, J.; Poon, T.C.; Ng, S.S.; Sung, J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
 
| Tissue OncomiRs | Samples | Cell Functions | Target (Official Gene Name) | Clinical Application | References | 
|---|---|---|---|---|---|
| let-7b | Systematic integrative bioinformatics framework | ND | ND | Diagnosis | [16] | 
| let-7g | GCCLs | Chemosensitivity | ND | ND | [17] | 
| miR-10b | GCCLs | Metastasis | HOXD10 | ND | [18,19,20] | 
| miR-105 | GCTs | ND | ND | Diagnosis | [21] | 
| miR-106a | GCCLs | Cell cycle | RB1  TIMP2 FAS  | ND | [22] | 
| miR-106b-93-25 cluster | GCTs  GCCLs  | Apoptosis  Cell cycle  | BIM  E2F1 CDKN1A CDKN1B CDKN1C  | Diagnosis | [23,24,25,26,27] | 
| miR-107 | GCTs  GCCLs  | Invasion  Metastasis  | CDK6  DICER1  | LNM  Tumor stage Prognosis  | [28,29,30] | 
| miR-1271 | GCCLs | ND | IGFIR  MTOR BCL2  | ND | [31] | 
| miR-129 | GCTs  GCCLs  | Cell proliferation  Cell cycle  | SOX2  SOX4 CDK6 PDCD2  | Prognosis  Diagnosis  | [32,33,34,35] | 
| miR-130a | GCCLs | Metastasis  Invasion Cell proliferation  | ND | ND | [36] | 
| miR-130b | GCCLs | Apoptosis  Epigenetic regulation Cell proliferation  | RUNX3  BIM  | ND | [37] | 
| miR-135a | GCTs | ND | ND | Prognosis | [38] | 
| miR-142-5p | GCTs | ND | ND | Poor Survival  Prognosis  | [39] | 
| miR-143 | GCTs | ND | ND | Tumor stage  Scirrhous type Prognosis  | [40] | 
| miR-145 | GCTs  GCCLs  | Angiogenesis | CDH2  ETS1  | Tumor stage  Scirrhous type Prognosis  | [41,42] | 
| miR-146a | GCCLs | Apoptosis  Cell proliferation  | IRAK1  TRAF6 SMAD4  | ND | [43,44,45] | 
| miR-148a | GCCLs | Invasion  Metastasis Cell proliferation Cell cycle  | CDKN1B | ND | [46] | 
| miR-150 | GCTs  GCCLs  | Apoptosis  Cell proliferation  | EGR2 | Poor Survival  Prognosis  | [23] | 
| miR-15b | GCCLs | Apoptosis | BCL-2 | ND | [47,48,49] | 
| miR-155 | GCCLs | Apoptosis | IKK-ε  SMAD4 FADD PLIα  | ND | [50,51,52,53] | 
| miR-16 | GCCLs | Chemosensitivity  Apoptosis  | BCL-2 | ND | [17,47,48,49] | 
| miR-17 | GCCLs | Cell cycle | CDKN1A  UBE2C FBXO31  | ND | [54] | 
| miR-181 | GCCLs | ND | ND | ND | |
| miR-181b/c | GCTs  GCCLs  | Apoptosis  Chemosensitivity  | NOTCH4  K-RAS BCL-2  | Differentiation  Invasive depth Tumor stage Prognosis  | [17,47,48,55,56] | 
| miR-192 | GCTs | ND | ND | LNM  Prognosis  | [57] | 
| miR-195 | GCTs | ND | ND | Recurrence | [58] | 
| miR-196a | GCTs  GCCLs  | Metastasis  Invasion Migration  | RADIXIN | Invasion depth  Serosal invasion Lymphatic invasion LNM Distant metastasis TNM stage Peritoneal seeding Gross type Lauren subtype Prognosis  | [59] | 
| miR-196a | GCTs  GCCLs  | ND | ND | Differentiation | [60] | 
| miR-196a-5p | GCTs | ND | ND | LNM  TNM stage Prognosis  | [61] | 
| miR-196b | GCTs  GCCLs  | Metastasis  Invasion Migration  | RADIXIN | Invasion depth  Serosal invasion Lymphatic invasion LNM Distant metastasis TNM stage Peritoneal seeding Gross type Prognosis  | [59] | 
| miR-199a | GCTs  GCCLs  | Cell proliferation  Metastasis  | SMARCA2  SMAD4 MAP3K11 ZHX1  | Recurrence  Diagnosis Relapse  | [39,58,62,63,64,65] | 
| miR-1952 | GCTs | ND | ND | Relapse | [58] | 
| miR-20a | GCTs  GCCLs  | Cell cycle | CDKN1A | Diagnosis | [23,24,25] | 
| miR-20b | GCTs | ND | ND | Poor Survival  LNM Distance metastasis TNM stage Prognosis  | [23,66] | 
| miR-200c | GCTs  GCCLs  | Metastasis  Chemoresistance  | E-CDH  ZEB2 RHO E  | ND | [67] | 
| miR-21 | GCTs  GCCLs  | Apoptosis  Cell proliferation Invasion Cell cycle Metastasis Differentiation  | RECK  PTEN SERPINI1 PDCD4 NF-KB CDKN1A E2F5 CDKN1C  | LNM  Prognosis  | [68,69,70,71,72] | 
| miR-210 | Hp-positive human gastric biopsies/Hp-negative controls | ND | STMN1  DIMT1  | ND | [73] | 
| miR-211 | Systematic integrative bioinformatics framework | ND | ND | Diagnosis | [16] | 
| miR-213 | GCTs | ND | ND | Diagnosis | [21] | 
| miR-214 | GCTs | ND | ND | Poor Survival  Invasion depth Lymph node metastasis Prognosis  | [24,74] | 
| miR-215 | GCTs  GCCLs  | Metastasis | ALCAM | Prognosis | [71] | 
| miR-221/222 | GCTs  GCCLs  | Radioresistance  Cell cycle  | CDKN1A  CDKN1B CDKN1C  | Prognosis | [27,68] | 
| miR-2214 | GCTs | ND | ND | Advanced GC  Prognosis  | [75] | 
| miR-223 | GCCLs | Invasion  Metastasis  | EPB41L3  FBXW7 HCDC4 STMN1  | ND | [76] | 
| miR-23a/b | GCTs  GCCLs  | Invasion  Cell proliferation  | IL6R  IRF1  | LNM  TNM stage Prognosis  | [77,78,79] | 
| miR-25 | GCTs  GCCLs  | Invasion  Cell proliferation Migration  | CDKN1C  BCL2L11 FBXW7 LASTS2 RECK  | LNM  Prognosis  | [26,27,80] | 
| miR-27a | GCTs  GCCLs  | Metastasis  Cell proliferation  | APC  PHB  | Lymph node metastasis  Prognosis  | [23,81] | 
| miR-335 | GCTs | Metastasis | ND | Recurrence  Prognosis  | [82,83] | 
| miR-34 | GCTs  GCCLs  | Chemosensitivity  Apoptosis  | BCL-2 | Tumor stage  Prognosis  | [17,47,48,55,56] | 
| miR-342 | GCCLs | Chemosensitivity | ND | ND | [17] | 
| miR-362 | GCCLs | Apoptosis | NF-KB | ND | [84] | 
| miR-363 | GCCLs | Chemoresistance | ND | ND | [17] | 
| miR-370 | GCCLs | Metastasis | TGF-β-RII | ND | [85] | 
| miR-375 | GCTs  GCCLs  | Apoptosis  Inhibits Helicobacter pylori-induced gastric carcinogenesis  | PDK1  YWHAZ JAK2 STAT3  | Poor Survival  Relapse/Recurrence Prognosis  | [39,74,86,87,88] | 
| miR-382 | GCTs  GCCLs  | Angiogenesis | PTEN | ND | [89] | 
| miR-421 | GCTs  GCCLs  | ND | BAX  BCL-2  | Diagnosis | [90,91] | 
| miR-43c | GCTs  GCCLs  | Cell proliferation  Cell cycle  | VEZT | Epigenetic regulation  Prognosis  | [92] | 
| miR-442a | GCCLs | Chemoresistance | ND | ND | [93] | 
| miR-451 | GCTs  GCCLs  | Apoptosis  Radiosensitivity  | MIF | Recurrence | [58,94,95,96] | 
| miR-4512 | GCTs | ND | ND | Relapse | [39] | 
| miR-4732-5p | GCCLs | Chemoresistance | ND | ND | [93] | 
| miR-4758-3p | GCCLs | Chemoresistance | ND | ND | [93] | 
| miR-503 | GCCLs | ND | IGFIR  BCL2  | ND | [97] | 
| miR-512-5p | GCCLs | Apoptosis | MCL-1 | ND | [98] | 
| miR-514b | GCTs | ND | ND | Diagnosis | [21] | 
| miR-517 | GCCLs | Chemoresistance | ND | ND | [17] | 
| miR-518f | GCCLs | Chemoresistance | ND | ND | [17] | 
| miR-519e | GCCLs | Chemoresistance | ND | ND | [17] | 
| miR-520a | GCCLs | Chemoresistance | ND | ND | [17] | 
| miR-520d/h | GCCLs | Chemoresistance | HDAC1 | ND | [17] | 
| miR-520d-3p | GCTs  GCCLs  | Cell proliferation  Migration Invasion  | EPHA2 | ND | [99] | 
| miR-548N | GCTs | ND | ND | Diagnosis | [21] | 
| miR-630 | GCTs  GCCLs  | Invasion | ND | LNM  Distant metastasis TNM stage Prognosis  | [100] | 
| miR-650 | GCTs | ND | ND | Lymph node Metastasis  Prognosis  | [101] | 
| miR-708 | GCTs | ND | ND | Diagnosis | [16] | 
| miR-9 | GCCLs | Cell proliferation  Cell cycle  | CDX2 | ND | [102] | 
| miR-92 | GCCLs | Cell proliferation  Invasion  | FXR | ND | [103] | 
| miR-92a | GCTs | ND | E2F1  HIPK1  | Tumor growth  Prognosis  | [93,104] | 
| miR-93 | GCCLs | Apoptosis | BIM  DAB2  | ND | [23,24,25] | 
| Tissue Tumor Suppressor miRs | Samples | Cell Functions | Target (Official Gene Name) | Clinical Application | References | 
|---|---|---|---|---|---|
| Let-7a | GCCLs | Cell proliferation  Cell cycle Invasion  | RAB40C  HMGA2 CDC34 CCR7  | ND | [105,106,107] | 
| Let-7f | GCCLs | Metastasis | MYH9 | ND | [108] | 
| Let-7g | GCTs | ND | ND | Diagnosis  Invasion depth Lymph node metastasis Poor Survival Chemoresistance Prognosis  | [24,109,110] | 
| miR-1 | GCTs | ND | ND | Tumor stage  Prognosis  | [111] | 
| miR-9 | GCTs  GCCLs  | Cell proliferation  Metastasis  | ETS1  NFKB1 CCND1 CUL4A CDX2  | ND | [102,112,113,114] | 
| miR-10b | GCTs  GCCLs  | Cell proliferation | MAPRE1  CCND1  | ND | [19,115,116] | 
| miR-101 | GCTs  GCCLs  | Metastasis | EZH2  COX2 MCL1 FOS  | ND | [117,118,119,120] | 
| miR-1207-5p | GCTs  GCCLs  | ND | ND | LNM  Lymphovascular invasion Stromal reaction type TNM stage Prognosis  | [121] | 
| miR-124 | GCCLs | Cell proliferation  Invasion  | ROCK1 | ND | [122] | 
| miR-124a | GCCLs | Cell cycle | CDK6 | ND | [123] | 
| miR-1246, miR-302a and miR-4448 | GCCLs | ND | DYRK1A | ND | [124] | 
| miR-125a-3p | GCTs  GCCLs  | ND | ND | Invasion  LNM Liver metastasis Tumor stage Tumor size Peritoneal dissemination Prognosis  | [125] | 
| miR-125a-5p | GCTs  GCCLs  | Cell proliferation  Metastasis Invasion Migration  | ERBB2  E2F3  | Invasion depth  Liver metastasis Tumor stage Tumor size Poor Survival Prognosis  | [24,126,127] | 
| miR-125-5p | GCTs | ND | ND | Poor Survival  Prognosis  | [126] | 
| miR-126 | GCTs  GCCLs  | Cell cycle  Cell proliferation Metastasis Invasion Migration  | CRK  PI3KR2 PLK2  | Lymph node metastasis  Prognosis  | [128,129,130] | 
| miR-126 | GCTs | ND | ND | Advanced GC | [128] | 
| miR-126 | GCCLs | Chemoresistance | ND | ND | [109] | 
| miR-129 | GCCLs | Proliferation  Cell cycle  | CDK6 | ND | [131] | 
| miR-129-1-3p | GCCLs | Migration | ND | ND | [34] | 
| miR-129-2 | GCTs  GCCLs  | Cell proliferation | SOX4 | Epigenetic regulation  Differentiation  | [35] | 
| miR-141 | GCCLs | Invasion  Cell proliferation Metastasis  | ND | ND | [132] | 
| miR-142-5p | GCTs | ND | ND | Relapse | [39] | 
| miR-143 | GCCLs | Cell proliferation | AKT | ND | [133] | 
| miR-145 | GCCLs | Cell proliferation | IRS1 | ND | [133] | 
| miR-146a | GCTs  GCCLs  | Invasion  Migration  | EGFR  IRAK1  | Lymph node metastasis  Venous invasion Poor Survival Prognosis  | [24,134] | 
| miR-148a | GCTs  GCCLs  | ND | ND | Advanced GC | [135] | 
| miR-148a | GCTs  GCCLs  | Metastasis | DNMT1  CDKN1B ROCK1  | Distant metastasis  Organ invasion Peritoneal invasion Prognosis  | [46,135,136,137] | 
| miR-148b | GCTs  GCCLs  | Cell proliferation | CCKBR | ND | [138] | 
| miR-148 | GCTs  GCCLs  | ND | ND | Lymph node metastasis  Prognosis  | [135] | 
| miR-15b | GCTs  GCCLs  | Chemoresistance | ND | ND | [47] | 
| miR-153 | GCTs  GCCLs  | Migration  Invasion  | ND | LNM  Prognosis  | [139] | 
| miR-155 | GCTs  GCCLs  | Cell proliferation  Invasion Migration  | C-MYC | ND | [130] | 
| miR-16 | GCTs  GCCLs  | Chemoresistance | ND | ND | [47] | 
| miR-181c | GCTs  GCCLs  | Cell proliferation | NOTCH4  KRAS  | Transcriptional activation | [56] | 
| miR-185 | GCTs  GCCLs  | ND | ND | Prognosis  TNM stage  | [140] | 
| miR-19b | GCTs  GCCLs  | ND | ND | Diagnosis | [104,141] | 
| miR-192 | GCTs  GCCLs  | ND | ND | Tumor sizes  Borrmann type Prognosis  | [142] | 
| miR-193b | GCTs  GCCLs  | Invasion  Metastasis  | ND | Differentiation  Lauren type Tumor stage Prognosis  | [60] | 
| miR-196a | GCTs  GCCLs  | Chemoresistance | ND | ND | [109] | 
| miR-20a | GCTs  GCCLs  | ND | ND | Tumor stage  Prognosis  | [111] | 
| miR-200b | GCTs  GCCLs  | Invasion  metastasis  | ND | ND | [143] | 
| miR-200 family | GCTs  GCCLs  | EMT  Chemoresistance Cell proliferation Invasion Migration Apoptosis  | ZEB1  ZEB2 CDH1 BCL2 XIAP  | ND | [109,144,145,146] | 
| miR-203 | GCTs  GCCLs  | Cell proliferation  Invasion  | ABL1 | ND | [147,148] | 
| miR-204 | GCTs  GCCLs  | Cell proliferation  Invasion  | EZR  SOX4  | ND | [149] | 
| miR-206 | GCTs  GCCLs  | ND | CCND2 | Venous invasion  LNM Hematogenous recurrence PStage Prognosis  | [150,151] | 
| miR-212 | GCTs  GCCLs  | Cell proliferation | MECP2 | ND | [152] | 
| miR-215 | GCTs  GCCLs  | ND | ND | Borrmann type  Tumor sizes pT stage Prognosis  | [142] | 
| miR-217 | GCTs  GCCLs  | Differentiation Distant Metastasis  Invasion  | ND | Tumor size  TNM stage Prognosis  | [153] | 
| miR-218 | GCTs  GCCLs  | Metastasis  Invasion  | ROBO1  COX2 NFkB ECOP VOPP1  | Lymph node metastasis  Transcriptional activation Prognosis Advanced gastric cancer Prognosis  | [154,155,156,157,158,159,160] | 
| miR-22 | GCTs  GCCLs  | ND | SP1 | LNM  Distant metastasis Tumor stage Prognosis  | [151,161] | 
| miR-223 | GCTs  GCCLs  | Metastasis | STMN1 | ND | [162,163] | 
| miR-24 | GCCLs | Cell cycle | AE1 | ND | [164,165] | 
| miR-27a | GCTs  GCCLs  | ND | ND | Tumor stage  Lymph node metastasis TNM stag Prognosis  | [111] | 
| miR-29a | GCTs  GCCLs  | Cell proliferation  Cell cycle Metastasis  | P42.3  CDC42  | ND | [166,167,168] | 
| miR-29c | GCTs  GCCLs  | ND | ND | Venous invasion  TNM stage Prognosis  | [169] | 
| miR-30b | GCTs  GCCLs  | Apoptosis | PAI-1 | ND | [170] | 
| miR-31 | GCTs  GCCLs  | Chemoresistance | ND | ND | [109] | 
| miR-335 | GCTs  GCCLs  | Metastasis  Cell invasion  | BCL-W  SP1  | Lymph node metastasis  Prognosis Invasion of lymphatic vessels  | [171] | 
| miR-338 | GCTs  GCCLs  | Chemoresistance | ND | ND | [109] | 
| miR-34a | GCTs  GCCLs  | ND | BCL2  PDGFR YY1  | Lymph node involvement  TNM stage Differentiation Recurrence Prognosis  | [172,173] | 
| miR-34 | GCTs  GCCLs  | Cell proliferation | BCL2  NOTCH1 HMGA2 C-MYC SIRT1  | TNM stage  Transcription Epigenetic regulation Prognosis  | [111,172] | 
| miR-370 | GCTs  GCCLs  | ND | ND | Diagnosis | [31] | 
| miR-375 | GCTs  GCCLs  | Apoptosis  Cell proliferation  | PDK1  YWHAZ JAK2 ERBB2 STAT3 TP53  | ND | [86,174,175] | 
| miR-410 | GCTs  GCCLs  | migration  invasion  | MDM2 | ND | [176] | 
| miR-423-5p | GCTs  GCCLs  | ND | ND | TNM stage  Prognosis  | [111] | 
| miR-429 | GCTs  GCCLs  | Cell proliferation  Apoptosis  | C-MYC  BCL2 XIAP  | Lymph node metastasis  Prognosis  | [177] | 
| miR-433 | GCTs  GCCLs  | ND | GRB2 | Diagnosis  Invasion depth Lymph node metastasis Poor Survival Prognosis  | [24,86,109,110,174] | 
| miR-449 | GCTs  GCCLs  | Cell proliferation  Apoptosis Cell cycle  | GEMININ  P42.3 CCNE2 GMNN MET CCNE3 SIRT1 CDK6  | ND | [131,166,178] | 
| miR-451 | GCTs  GCCLs  | Cell proliferation | MIF | Poor Survival  Prognosis  | [24,94] | 
| miR-486 | GCTs  GCCLs  | Cell proliferation | OLFM4 | ND | [179,180] | 
| miR-512-5p | GCTs  GCCLs  | Cell proliferation | MCI-1 | ND | [98] | 
| miR-520d-3p | GCTs  GCCLs  | ND | ND | Invasion depth  LNM Tumor stage Prognosis  | [99] | 
| miR-610 | GCTs  GCCLs  | Invasion  Metastasis  | ND | ND | [181] | 
| miR-7 | GCTs  GCCLs  | Invasion Metastasis  Chemoresistance  | ND | ND | [109,182] | 
| miR-9 | GCTs  GCCLs  | Cell proliferation  Cell cycle  | RAB34  CDX2 NFKB1  | Diagnosis | [24,172,183] | 
| miR-98 | GCTs  GCCLs  | Chemoresistance | ND | ND | [109] | 
| Circulating OncomiRs | Samples | Methods | Sensitivity | Specificity | AUC | Target (Official Gene Name) | Clinical Application | References | 
|---|---|---|---|---|---|---|---|---|
| miR-1 | 164 GC  127 HC  | Microarray + qRT-PCR | 79.3 | 86.5 | 0.879 | ND | Diagnosis | [111] | 
| miR-106a | 90 GC  27 HC  | Microarray + qRT-PCR | 48.2 | 90.2 | 0.684 | ND | Diagnosis | [184] | 
| miR-106a | 69 GC  30 HC  | Microarray + qRT-PCR | 85.5 | 80 | 0.879 | ND | Diagnosis | [185] | 
| miR-106b | 69 GC  30 HC  | Microarray + qRT-PCR | ND | ND | 0.72 | ND | Diagnosis | [185] | 
| miR-106b | 40 Pre GC  20 Post GC  | qRT-PCR | ND | ND | ND | ND | TNM stage  Diagnosis Prognosis  | [186] | 
| miR-17 | 90 GC  27 HC  | Microarray + qRT-PCR | 48.2 | 90.2 | 0.743 | ND | Diagnosis | [184] | 
| miR-17-5p | 79 Pre GC  30 Post GC 6 Relapse GC  | qRT-PCR | ND | ND | ND | ND | Diagnosis  Poor Survival Differentiation TNM stages Prognosis  | [54] | 
| miR-18a | 82 GC  65 HC  | qRT-PCR | ND | ND | ND | ND | Poor Survival  LNM Pathological grade Prognosis  | [54,187] | 
| miR-18a | 104 GC  65 HC  | qRT-PCR | ND | ND | ND | ND | Diagnosis | [188] | 
| miR-192 | 12 GC  12 HC  | qRT-PCR | ND | ND | 0.732 | ND | Diagnosis  Distant metastasis No Distant metastasis  | [189] | 
| miR-199a-3p | 30 EGC  70 HC  | Microarray + qRT-PCR | 0.76 | 0.74 | 0.818 | ND | Diagnosis | [190,191] | 
| miR-20a | 79 Pre GC  30 Post GC 6 Relapse GC  | qRT-PCR | ND | ND | ND | ND | Poor Survival  Differentiation TNM stages Prognosis  | [54] | 
| miR-20a | 164 GC  127 HC  | Microarray + qRT-PCR | 79.3 | 86.5 | 0.879 | ND | Diagnosis | [111] | 
| miR-200c | 67 GC  15 HC  | qRT-PCR | 65.4 | 100 | 0.715 | BCL2  XIAP  | Diagnosis  LNM Poor Survival Prognosis  | [192,193] | 
| miR-21 | 174 GC  39 HC  | Microarray + qRT-PCR | 56.7 | 94.9 | 0.81 | ND | Diagnosis | [194] | 
| miR-21 | 69 GC  42 Pre GC 42 Post GC  | qRT-PCR | ND | ND | ND | RECK  PTEN SERPINI1  | Venous invasion  Poor Survival Prognosis Differentiation LNM Poor Survival Prognosis  | [68,71,195,196] | 
| miR-21 | 103 GC  103 HC  | qRT-PCR | ND | ND | ND | ND | Diagnosis  Prognosis  | [197] | 
| miR-218 | 68 GC  56 HC  | qRT-PCR | ND | ND | ND | ECOP | Metastasis  Tumor stage Poor Survival Prognosis  | [155,198] | 
| miR-221 | 82 GC  46 Dysplasia 128 SG or CAG  | qRT-PCR | ND | ND | ND | CDKN1B  CDKN1C PTEN  | Differentiation  Poor Survival Prognosis  | [27,199,200] | 
| miR-221 | 82 GC  82 HC  | qRT-PCR | 82.4 | 58.8 | ND | ND | Diagnosis | [199] | 
| miR-222 | 114 GC  36 CAG 56 HC  | qRT-PCR | 66.1 | 88.3 | 0.85 | CDKN1B  CDKN1C PTEN RECK  | Diagnosis  LNM TNM stages Serosal Invasion Poor Survival Prognosis  | [27,200,201,202] | 
| miR-25 | 70 GC  70 HC  | qRT-PCR | ND | ND | ND | CDKN1C  BCL2L11 FBXW7  | LNM  TNM stage Poor Survival Prognosis  | [26,27,80,203] | 
| miR-25 | 40 Pre GC  20 Post GC  | qRT-PCR | ND | ND | ND | ND | TNM stage  Diagnosis Prognosis  | [186] | 
| miR-27a | 82 GC | qRT-PCR | ND | ND | ND | PHB  APC  | Metastasis  Poor Survival Recurrent Prognosis  | [81,204,205] | 
| miR-27a | 164 GC  127 HC  | Microarray + qRT-PCR | 79.3 | 86.5 | 0.879 | ND | Diagnosis | [111] | 
| miR-34 | 164 GC  127 HC  | Microarray + qRT-PCR | 79.3 | 86.5 | 0.879 | ND | Diagnosis | [111] | 
| miR-376c | 82 GC  82 HC 46 dysplasia 128 SG or CAG  | qRT-PCR | 82.4 | 58.8 | ND | ND | Diagnosis Differentiation  Poor Survival Prognosis  | [199] | 
| miR-378 | 61 GC  61 HC  | qRT-PCR | 87.5 | 70.7 | 0.861 | ND | Diagnosis | [206] | 
| miR-421 | 90 GC  90 HC  | qRT-PCR | ND | ND | ND | ND | Diagnosis | [207] | 
| miR-423-5P | 164 GC  127 HC  | Microarray + qRT-PCR | 79.3 | 86.5 | 0.879 | ND | Diagnosis | [111] | 
| miR-451 | 56 GC  30 HC  | Microarray + qRT-PCR | 96 | 100 | 0.96 | ND | Diagnosis | [208] | 
| miR-486 | 56 GC  30 HC  | Microarray + qRT-PCR | 86 | 97 | 0.92 | ND | Diagnosis | [208] | 
| miR-744 | 82 GC  82 HC 46 dysplasia 128 SG or CAG  | qRT-PCR | 82.4 | 58.8 | ND | ND | Diagnosis Differentiation  Poor Survival Prognosis  | [199] | 
| miR-93 | 40 Pre GC  20 Post GC  | qRT-PCR | ND | ND | ND | ND | TNM stage  Diagnosis Prognosis  | [186] | 
| Circulating Tumor Suppressor miRs | Samples | Methods | Sensitivity | Specificity | AUC | Target (Official Gene Name) | Clinical Application | References | 
|---|---|---|---|---|---|---|---|---|
| miR-122 | 12 GC  12 HC  | qRT-PCR | ND | ND | 0.808 | ND | Distance metastases  Poor Survival Prognosis No Distant metastasis Diagnosis  | [189] | 
| miR-195-5p | 20 GC  190 HC  | qRT-PCR | ND | ND | ND | ND | Prognosis | [209,210] | 
| miR-203 | 154 GC  22 HC  | qRT-PCR | ND | ND | ND | ND | Gender  Lymphatic invasion Venous invasion Peritoneal metastasis Distance metastasis LNM Liver metastasis TNM stage Poor Survival Prognosis  | [211] | 
| miR-218 | 68 GC  56 HC  | qRT-PCR | ND | ND | ND | ECOP | Metastasis  Tumor stage Poor Survival Prognosis  | [155,198] | 
| miR-375 | NA | Microarray + qRT-PCR | 0.85 | 0.80 | 0.835 | ND | Prognosis | [210] | 
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-M.; Wang, C.-S.; Tsai, C.-Y.; Huang, H.-W.; Chi, H.-C.; Lin, Y.-H.; Lu, P.-H.; Lin, K.-H. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int. J. Mol. Sci. 2016, 17, 945. https://doi.org/10.3390/ijms17060945
Tsai M-M, Wang C-S, Tsai C-Y, Huang H-W, Chi H-C, Lin Y-H, Lu P-H, Lin K-H. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. International Journal of Molecular Sciences. 2016; 17(6):945. https://doi.org/10.3390/ijms17060945
Chicago/Turabian StyleTsai, Ming-Ming, Chia-Siu Wang, Chung-Ying Tsai, Hsiang-Wei Huang, Hsiang-Cheng Chi, Yang-Hsiang Lin, Pei-Hsuan Lu, and Kwang-Huei Lin. 2016. "Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer" International Journal of Molecular Sciences 17, no. 6: 945. https://doi.org/10.3390/ijms17060945
APA StyleTsai, M.-M., Wang, C.-S., Tsai, C.-Y., Huang, H.-W., Chi, H.-C., Lin, Y.-H., Lu, P.-H., & Lin, K.-H. (2016). Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. International Journal of Molecular Sciences, 17(6), 945. https://doi.org/10.3390/ijms17060945
        
                                                
