A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy
Abstract
:1. Introduction
2. Results
2.1. Description of the Study Cohort
Parameter | Value |
---|---|
Age (years) | 58.0 ± 9.8 |
Men | 834 (82.8%) |
Women | 173 (17.2%) |
BMI (kg/m2) | 28.9 ± 4.7 |
Current smoker | 257 (25.5%) |
eGFR * (mL × min−1 × 1.73 m−2) | 78.6 ± 21.0 |
eGFR < 60 (mL × min−1 × 1.73 m−2) | 135 (13.4%) |
Coronary heart disease | 823 (81.7%) |
Myocardial infarction | 545 (54.1%) |
Diabetes mellitus | 270 (26.8%) |
Mean 24 h BP (mmHg) | |
systolic | 125.0 ± 14.7 |
diastolic | 73.8 ± 9.5 |
Antihypertensive drugs | |
ACE inhibitors | 738 (73.3%) |
AT1-antagonists | 155 (15.4%) |
beta-blockers | 883 (87.7%) |
calcium antagonists | 142 (14.1%) |
diuretics | 436 (43.3%) |
other drugs | 55 (5.5%) |
2.2. Echocardiographic Parameters of Study Cohort
Parameter | Value |
---|---|
LVMI (g/m2.7) overall * | 52.1 ± 21.2 |
men | 52.2 ± 21.7 |
women | 51.6 ± 18.4 |
Left ventricular hypertrophy overall † | 485 (48.2%) |
men | 390 (46.8%) |
women | 95 (54.9%) |
LVEF (%) | 59.9 ± 9.3 |
LA (mm) | 41.1 ± 5.4 |
LVED (mm) | 51.1 ± 7.0 |
LVES (mm) | 34.2 ± 7.1 |
E/A | 1.13 ± 0.42 |
IVST (mm) | 11.3 ± 2.7 |
PWT (mm) | 11.0 ± 2.8 |
RWT | 0.45 ± 0.16 |
2.3. Genetic Analysis
2.3.1. Analysis of Polymorphisms in Relation to 24 h BP Parameters
2.3.2. Analysis of Polymorphisms in Relation to LVMI
SNP Region * | SNP ID | Comparison | LVMI Ratio [95% CI] | p ** |
---|---|---|---|---|
3ʹUTR | rs619824 | CC + CA vs. AA | 0.96 [0.91–1.01] | 0.119 |
3ʹUTR | rs619824 | CC vs. CA + AA | 1.01 [0.96–1.06] | 0.794 |
5ʹUTR(-34T/C) | rs743572 | AA + AG vs. GG | 0.96 [0.91–1.02] | 0.186 |
5ʹUTR(-34T/C) | rs743572 | AA vs. AG + GG | 1.01 [0.97–1.06] | 0.558 |
Intron 3 | rs1004467 | AA + AG vs. GG | 0.95 [0.78–1.14] | 0.569 |
Intron 3 | rs1004467 | AA vs. AG + GG | 0.95 [0.91–1.01] | 0.080 |
3ʹUTR | rs11191548 | TT + TC vs. CC | 1.02 [0.83–1.25] | 0.872 |
3ʹUTR | rs11191548 | TT vs. TC + CC | 0.93 [0.88–0.99] | 0.017 |
Intron 6 | rs17115100 | GG + GT vs. TT | 0.94 [0.78–1.13] | 0.496 |
Intron 6 | rs17115100 | GG vs. GT + TT | 0.95 [0.90–1.00] | 0.059 |
3. Discussion
3.1. Relation of Polymorphisms to 24 h BP Parameters
3.2. Relation of Polymorphisms to LVMI
3.3. Possible Clinical Implications
3.4. Limitations of the Study
4. Patients and Methods
4.1. Study Population and Clinical Evaluation
4.2. Determination of Genotypes
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, C.; Li, H.; Qi, Q.; Lu, L.; Gan, W.; Loos, R.J.; Lin, X. Common Variants in or Near FGF5, CYP17A1 and MTHFR Genes Are Associated with Blood Pressure and Hypertension in Chinese Hans. J. Hypertens. 2011, 29, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Porubek, D. CYP17A1: A Biochemistry, Chemistry, and Clinical Review. Curr. Top. Med. Chem. 2013, 13, 1364–1384. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Molecular Biology of Steroid Hormone Synthesis. Endocr. Rev. 1988, 9, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Nakajin, S.; Shively, J.E.; Yuan, P.M.; Hall, P.F. Microsomal Cytochrome P-450 From Neonatal Pig Testis: Two Enzymatic Activities (17 Alpha-Hydroxylase and C17,20-Lyase) Associated with One Protein. Biochemistry 1981, 20, 4037–4042. [Google Scholar] [CrossRef] [PubMed]
- Nakajin, S.; Hall, P.F. Side-Chain Cleavage of C21 Steroids to C19 Steroids by Testicular Microsomal Cytochrome P-450: 17alpha-Hydroxy C21 Steroids As Obligatory Intermediates. J. Steroid Biochem. 1981, 14, 1249–1252. [Google Scholar] [CrossRef]
- Picado-Leonard, J.; Miller, W.L. Cloning and Sequence of the Human Gene for P450c17 (Steroid 17 Alpha-Hydroxylase/17,20 Lyase): Similarity with the Gene for P450c21. DNA 1987, 6, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, R.S.; Klisak, I.; Miller, W.L. Regional Mapping of Genes Encoding Human Steroidogenic Enzymes: P450scc to 15q23-Q24, Adrenodoxin to 11q22; Adrenodoxin Reductase to 17q24–Q25; and P450c17 to 10q24-Q25. DNA Cell Biol. 1991, 10, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pei, J. Factors Influencing the Association Between CYP17 T34C Polymorphism and the Risk of Breast Cancer: Meta-Regression and Subgroup Analysis. Breast Cancer Res. Treat. 2010, 122, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Olson, S.H.; Orlow, I.; Bayuga, S.; Sima, C.; Bandera, E.V.; Pulick, K.; Faulkner, S.; Tommasi, D.; Egan, D.; Roy, P.; et al. Variants in Hormone Biosynthesis Genes and Risk of Endometrial Cancer. Cancer Causes Control 2008, 19, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Sharp, L.; Cardy, A.H.; Cotton, S.C.; Little, J. CYP17 Gene Polymorphisms: Prevalence and Associations With Hormone Levels and Related Factors. A HuGE Review. Am. J. Epidemiol. 2004, 160, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Madigan, M.P.; Gao, Y.T.; Deng, J.; Pfeiffer, R.M.; Chang, B.L.; Zheng, S.; Meyers, D.A.; Stanczyk, F.Z.; Xu, J.; Hsing, A.W. CYP17 Polymorphisms in Relation to Risks of Prostate Cancer and Benign Prostatic Hyperplasia: A Population-Based Study in China. Int. J. Cancer 2003, 107, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Auchus, R.J.; Yu, M.K.; Nguyen, S.; Mundle, S.D. Use of Prednisone with Abiraterone Acetate in Metastatic Castration-Resistant Prostate Cancer. Oncologist 2014, 19, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Simon-Sanchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; et al. Genome-Wide Association Study Reveals Genetic Risk Underlying Parkinson’s Disease. Nat. Genet. 2009, 41, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Chace, C.; Pang, D.; Weng, C.; Temkin, A.; Lax, S.; Silverman, W.; Zigman, W.; Ferin, M.; Lee, J.H.; Tycko, B.; et al. Variants in CYP17 and CYP19 Cytochrome P450 Genes Are Associated with Onset of Alzheimer’s Disease in Women with down Syndrome. J. Alzheimers Dis. 2012, 28, 601–612. [Google Scholar] [PubMed]
- Yan, H.; Guo, Y.; Yang, T.L.; Zhao, L.J.; Deng, H.W. A Family-Based Association Study Identified CYP17 as a Candidate Gene for Obesity Susceptibility in Caucasians. Genet. Mol. Res. 2012, 11, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- Biglieri, E.G.; Herron, M.A.; Brust, N. 17-Hydroxylation Deficiency in Man. J. Clin. Investig. 1966, 45, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.P.; Schmieder, R.E. Role of Neuroendocrine Activation for Left Ventricular Hypertrophy in Hypertension. J. Hypertens. 2012, 30, 1917–1919. [Google Scholar] [CrossRef] [PubMed]
- Duprez, D.; De, B.M.; Paelinck, M.; Rubens, R.; Dhooge, W.; Clement, D.L. Relationship Between Left Ventricular Mass Index and 24-h Urinary Free Cortisol and Cortisone in Essential Arterial Hypertension. J. Hypertens. 1999, 17, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Fallo, F.; Budano, S.; Sonino, N.; Muiesan, M.L.; Agabiti-Rosei, E.; Boscaro, M. Left Ventricular Structural Characteristics in Cushing’s Syndrome. J. Hum. Hypertens. 1994, 8, 509–513. [Google Scholar] [PubMed]
- Hayward, C.S.; Webb, C.M.; Collins, P. Effect of Sex Hormones on Cardiac Mass. Lancet 2001, 357, 1354–1356. [Google Scholar] [CrossRef]
- Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; Hwang, S.J.; et al. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, N.; Takeuchi, F.; Tabara, Y.; Kelly, T.N.; Go, M.J.; Sim, X.; Tay, W.T.; Chen, C.H.; Zhang, Y.; Yamamoto, K.; et al. Meta-Analysis of Genome-Wide Association Studies Identifies Common Variants Associated with Blood Pressure Variation in East Asians. Nat. Genet. 2011, 43, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.N.; Takeuchi, F.; Tabara, Y.; Edwards, T.L.; Kim, Y.J.; Chen, P.; Li, H.; Wu, Y.; Yang, C.F.; Zhang, Y.; et al. Genome-Wide Association Study Meta-Analysis Reveals Transethnic Replication of Mean Arterial and Pulse Pressure Loci. Hypertension 2013, 62, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Ehret, G.B.; Rice, K.; Verwoert, G.C.; Launer, L.J.; Dehghan, A.; Glazer, N.L.; Morrison, A.C.; Johnson, A.D.; Aspelund, T.; et al. Genome-Wide Association Study of Blood Pressure and Hypertension. Nat. Genet. 2009, 41, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Newton-Cheh, C.; Johnson, T.; Gateva, V.; Tobin, M.D.; Bochud, M.; Coin, L.; Najjar, S.S.; Zhao, J.H.; Heath, S.C.; Eyheramendy, S.; et al. Genome-Wide Association Study Identifies Eight Loci Associated with Blood Pressure. Nat. Genet. 2009, 41, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; Lin, X.; Huang, J.; Charles, G.C.; He, M.; Shen, H.; He, J.; Zhu, J.; Li, H.; et al. Genome-Wide Association Study in Chinese Identifies Novel Loci for Blood Pressure and Hypertension. Hum. Mol. Genet. 2015, 24, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.C.; Bis, J.C.; Hwang, S.J.; Ehret, G.B.; Lumley, T.; Rice, K.; Muzny, D.; Gibbs, R.A.; Boerwinkle, E.; Psaty, B.M.; et al. Sequence Analysis of Six Blood Pressure Candidate Regions in 4178 Individuals: The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study. PLoS ONE 2014, 9, e109155. [Google Scholar] [CrossRef] [PubMed]
- Natekar, A.; Olds, R.L.; Lau, M.W.; Min, K.; Imoto, K.; Slavin, T.P. Elevated Blood Pressure: Our Family’s Fault? The Genetics of Essential Hypertension. World J. Cardiol. 2014, 6, 327–337. [Google Scholar] [PubMed]
- Mancia, G.; De, B.G.; Dominiczak, A.; Cifkova, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.M.; Kjeldsen, S.E.; Laurent, S.; et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2007, 25, 1105–1187. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G.; Devereux, R.B.; Daniels, S.R.; Koren, M.J.; Meyer, R.A.; Laragh, J.H. Effect of Growth on Variability of Left Ventricular Mass: Assessment of Allometric Signals in Adults and Children and Their Capacity to Predict Cardiovascular Risk. J. Am. Coll. Cardiol. 1995, 25, 1056–1062. [Google Scholar] [CrossRef]
- Baessler, A.; Kwitek, A.E.; Fischer, M.; Koehler, M.; Reinhard, W.; Erdmann, J.; Riegger, G.; Doering, A.; Schunkert, H.; Hengstenberg, C. Association of the Ghrelin Receptor Gene Region with Left Ventricular Hypertrophy in the General Population: Results of the MONICA/KORA Augsburg Echocardiographic Substudy. Hypertension 2006, 47, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xi, B.; Zhang, M.; Shen, Y.; Zhao, X.; Wang, T.; Cheng, H.; Hou, D.; Liu, G.; Wang, X.; et al. A Sex-Specific Effect of the CYP17A1 SNP Rs11191548 on Blood Pressure in Chinese Children. J. Hum. Hypertens. 2012, 26, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Cheng, H.; Shen, Y.; Zhao, X.; Hou, D.; Wang, X.; Mi, J. Physical Activity Modifies the Associations Between Genetic Variants and Hypertension in the Chinese Children. Atherosclerosis 2012, 225, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Shen, Y.; Zhao, X.; Chandak, G.R.; Cheng, H.; Hou, D.; Li, Y.; Ott, J.; Zhang, Y.; Wang, X.; et al. Association of Common Variants in/Near Six Genes (ATP2B1, CSK, MTHFR, CYP17A1, STK39 and FGF5) With Blood Pressure/Hypertension Risk in Chinese Children. J. Hum. Hypertens. 2014, 28, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lai, X.; Chen, B.; Xu, Y.; Huang, B.; Chen, Z.; Zhu, S.; Yao, J.; Jiang, Q.; Huang, H.; et al. Genetic Variations in CYP17A1, CACNB2 and PLEKHA7 Are Associated with Blood Pressure and/or Hypertension in She Ethnic Minority of China. Atherosclerosis 2011, 219, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ling, Y.; Lu, D.; Lu, Z.; Liu, Y.; Chen, H.; Gao, X. Common Polymorphism Rs11191548 Near the CYP17A1 Gene Is Associated with Hypertension and Systolic Blood Pressure in the Han Chinese Population. Am. J. Hypertens. 2013, 26, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Liljedahl, U.; Kahan, T.; Malmqvist, K.; Melhus, H.; Syvanen, A.C.; Lind, L.; Kurland, L. Single Nucleotide Polymorphisms Predict the Change in Left Ventricular Mass in Response to Antihypertensive Treatment. J. Hypertens. 2004, 22, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, G.; Verdecchia, P.; Porcellati, C.; Cuccurullo, O.; Cosco, C.; Perticone, F. Continuous Relation between Left Ventricular Mass and Cardiovascular Risk in Essential Hypertension. Hypertension 2000, 35, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Hakki, T.; Bernhardt, R. CYP17- and CYP11B-Dependent Steroid Hydroxylases as Drug Development Targets. Pharmacol. Ther. 2006, 111, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Bhangoo, A.; Aisenberg, J.; Chartoffe, A.; Ten, S.; Wallerstein, R.J.; Wolf, R.; Auchus, R.J. Novel Mutation in Cytochrome P450c17 Causes Complete Combined 17alpha-Hydroxylase/17,20-Lyase Deficiency. J. Pediatr. Endocrinol. Metab. 2008, 21, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Kater, C.E.; Biglieri, E.G. Disorders of Steroid 17 Alpha-Hydroxylase Deficiency. Endocrinol. Metab Clin. N. Am. 1994, 23, 341–357. [Google Scholar]
- Shima, H.; Kawanaka, H.; Yabumoto, Y.; Okamoto, E.; Ikoma, F. A Case of 17 Alpha-Hydroxylase Deficiency with Chromosomal Karyotype 46,XY and High Plasma Aldosterone Concentration. Int. Urol. Nephrol. 1991, 23, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Dooley, R.; Harvey, B.J.; Thomas, W. The Regulation of Cell Growth and Survival by Aldosterone. Front. Biosci. (Landmark. Ed) 2011, 16, 440–457. [Google Scholar] [CrossRef] [PubMed]
- Mannic, T.; Mouffok, M.; Python, M.; Yoshida, T.; Maturana, A.D.; Vuilleumier, N.; Rossier, M.F. DHEA Prevents Mineralo- and Glucocorticoid Receptor-Induced Chronotropic and Hypertrophic Actions in Isolated Rat Cardiomyocytes. Endocrinology 2013, 154, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Rossier, M.F.; Python, M.; Maturana, A.D. Contribution of Mineralocorticoid and Glucocorticoid Receptors to the Chronotropic and Hypertrophic Actions of Aldosterone in Neonatal Rat Ventricular Myocytes. Endocrinology 2010, 151, 2777–2787. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Ball, S.G.; Worthy, G.; Struthers, A.D.; Mary, D.A.; Greenwood, J.P. Hypertensive Left Ventricular Hypertrophy: A Mechanistic Approach to Optimizing Regression Assessed by Cardiovascular Magnetic Resonance. J. Hypertens. 2012, 30, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Mule, G.; Nardi, E.; Cusimano, P.; Cottone, S.; Seddio, G.; Geraci, C.; Palermo, A.; Andronico, G.; Cerasola, G. Plasma Aldosterone and Its Relationships with Left Ventricular Mass in Essential Hypertensive Patients with the Metabolic Syndrome. Am. J. Hypertens. 2008, 21, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Takata, Y.; Hirayama, Y.; Asano, K.; Adachi, H.; Shiokawa, G.; Sumi, T.; Ogawa, T.; Yamashina, A. Left Ventricular Hypertrophy and Geometry in Untreated Essential Hypertension Is Associated with Blood Levels of Aldosterone and Procollagen Type III Amino-Terminal Peptide. Circ. J. 2007, 71, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.D.; Millasseau, S.C.; Dawes, M.; Kyd, P.A.; Chambers, J.B.; Ritter, J.M.; Chowienczyk, P.J. Aldosterone and Left Ventricular Hypertrophy in Afro-Caribbean Subjects with Low Renin Hypertension. Am. J. Hypertens. 2006, 19, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Velagaleti, R.S.; Gona, P.; Levy, D.; Aragam, J.; Larson, M.G.; Tofler, G.H.; Lieb, W.; Wang, T.J.; Benjamin, E.J.; Vasan, R.S. Relations of Biomarkers Representing Distinct Biological Pathways to Left Ventricular Geometry. Circulation 2008, 118, 2252–2258. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, C.; Goda, A.; Naito, Y.; Nakaboh, A.; Matsumoto, M.; Otsuka, M.; Ohyanagi, M.; Hirotani, S.; Lee-Kawabata, M.; Tsujino, T.; et al. Role of Plasma Aldosterone Concentration in Regression of Left-Ventricular Mass following Antihypertensive Medication. J. Hypertens. 2011, 29, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Colussi, G.; Catena, C.; Sechi, L.A. Spironolactone, Eplerenone and the New Aldosterone Blockers in Endocrine and Primary Hypertension. J. Hypertens. 2013, 31, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Nakajin, S.; Takahashi, M.; Shinoda, M.; Hall, P.F. Cytochrome B5 Promotes the Synthesis of Delta 16-C19 Steroids by Homogeneous Cytochrome P-450 C21 Side-Chain Cleavage From Pig Testis. Biochem. Biophys. Res. Commun. 1985, 132, 708–713. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.; et al. Recommendations for Chamber Quantification. Eur. J. Echocardiogr. 2006, 7, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.R.; Musani, S.K.; Barbalic, M.; Lin, H.; Yu, B.; Ogunyankin, K.O.; Smith, N.L.; Kutlar, A.; Glazer, N.L.; Post, W.S.; et al. Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans: The Candidate Gene Association Resource (CARe) Study. Circ. Cardiovasc. Genet. 2013, 6, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Biederman, R.W.; Doyle, M.; Young, A.A.; Devereux, R.B.; Kortright, E.; Perry, G.; Bella, J.N.; Oparil, S.; Calhoun, D.; Pohost, G.M.; et al. Marked Regional Left Ventricular Heterogeneity in Hypertensive Left Ventricular Hypertrophy Patients: A Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Cardiovascular Magnetic Resonance and Echocardiographic Substudy. Hypertension 2008, 52, 279–286. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G.; Kizer, J.R.; Chinali, M.; Roman, M.J.; Bella, J.N.; Best, L.G.; Lee, E.T.; Devereux, R.B. Normalization for Body Size and Population-Attributable Risk of Left Ventricular Hypertrophy: The Strong Heart Study. Am. J. Hypertens. 2005, 18, 191–196. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, M.; Lezius, S.; Reibis, R.; Treszl, A.; Kujawinska, D.; Jakob, S.; Wegscheider, K.; Völler, H.; Kreutz, R. A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy. Int. J. Mol. Sci. 2015, 16, 17456-17468. https://doi.org/10.3390/ijms160817456
Huber M, Lezius S, Reibis R, Treszl A, Kujawinska D, Jakob S, Wegscheider K, Völler H, Kreutz R. A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy. International Journal of Molecular Sciences. 2015; 16(8):17456-17468. https://doi.org/10.3390/ijms160817456
Chicago/Turabian StyleHuber, Matthias, Susanne Lezius, Rona Reibis, Andras Treszl, Dorota Kujawinska, Stefanie Jakob, Karl Wegscheider, Heinz Völler, and Reinhold Kreutz. 2015. "A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy" International Journal of Molecular Sciences 16, no. 8: 17456-17468. https://doi.org/10.3390/ijms160817456
APA StyleHuber, M., Lezius, S., Reibis, R., Treszl, A., Kujawinska, D., Jakob, S., Wegscheider, K., Völler, H., & Kreutz, R. (2015). A Single Nucleotide Polymorphism near the CYP17A1 Gene Is Associated with Left Ventricular Mass in Hypertensive Patients under Pharmacotherapy. International Journal of Molecular Sciences, 16(8), 17456-17468. https://doi.org/10.3390/ijms160817456