Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Oral Administration of SDACNFs on Body Weight Change, Food and Water Intake, and Organ Weights
Control | SDACNF | CS | CLNF | |
---|---|---|---|---|
(a) Body weight (g) | ||||
day 0 | 187.2 ± 7.3 | 186.4 ± 5.8 | 187.6 ± 5.5 | 185.9 ± 5.5 |
day 7 | 233.5 ± 14.4 | 231.0 ± 7.9 | 236.7 ± 7.4 | 231.4 ± 10.6 |
day 14 | 285.5 ± 15.1 | 282.1 ± 11.0 | 291.4 ± 10.1 | 288.3 ± 10.6 |
day 21 | 288.1 ± 16.8 | 300.6 ± 10.3 | 293.9 ± 12.2 | 307.2 ± 12.5 |
day 28 | 333.3 ± 19.9 | 316.5 ± 13.2 | 341.4 ± 16.3 | 351.1 ± 12.5 |
(b) Food intake (g/day) | ||||
day 7 | 22.6 ± 0.7 | 21.3 ± 1.4 | 22.6 ± 1.0 | 21.9 ± 2.2 |
day 14 | 29.4 ± 1.2 | 29.1 ± 1.9 | 30.5 ± 1.4 | 30.1 ± 1.4 |
day 21 | 28.8 ± 1.0 | 30.4 ± 1.9 | 29.1 ± 1.4 | 31.7 ± 1.7 * |
day 28 | 33.9 ± 1.9 | 33.4 ± 2.9 | 33.9 ± 2.2 | 34.4 ± 1.7 |
(c) Water intake (g/day) | ||||
day 7 | 37.9 ± 2.4 | 37.9 ± 6.2 | 36.9 ± 3.4 | 42.1 ± 3.4 |
day 14 | 45.8 ± 2.9 | 46.7 ± 6.0 | 48.2 ± 4.6 | 52.8 ± 3.1 † |
day 21 | 50.3 ± 3.4 | 52.7 ± 7.7 | 51.1 ± 2.9 | 64.3 ± 4.1 ‡‡ |
day 28 | 53.3 ± 3.8 | 55.2 ± 5.8 | 52.6 ± 3.4 | 67.2 ± 5.0 ‡‡ |
(g) | Control | SDACNF | CS | CLNF |
---|---|---|---|---|
Liver | 12.9 ± 1.2 | 12.5 ± 0.7 | 12.9 ± 1.2 | 13.2 ± 1.2 |
Kidney | 2.3 ± 0.2 | 2.2 ± 0.2 | 2.2 ± 0.2 | 2.3 ± 0.2 |
Pancreas | 1.3 ± 0.2 | 1.2 ± 0.2 | 1.5 ± 0.2 | 1.4 ± 0.2 |
Cecum | 7.7 ± 1.7 | 8.1 ± 0.7 | 7.9 ± 1.0 | 8.0 ± 0.5 |
Abdominal fat tissue | 6.5 ± 1.0 | 6.3 ± 1.4 | 5.8 ± 1.0 | 6.6 ± 1.0 |
2.2. Effects of Orally Administered SDACNFs on Serum Chemistry
Control | SDACNF | CS | CLNF | |
---|---|---|---|---|
(a) day 14 | ||||
T-cho (mg/dL) | 105.2 ± 21.0 | 66.5 ± 6.2 ** | 68.2 ± 7.0 ** | 83.7 ± 8.2 * |
T-TG (mg/dL) | 78.7 ± 22.8 | 68.8 ± 14.9 | 60.0 ± 5.8 | 59.7 ± 10.8 |
PL (mg/dL) | 152.0 ± 23.8 | 110.8 ± 6.5 † | 133.7 ± 10.1 | 153.2 ± 11.5 |
(b) day 29 | ||||
T-cho (mg/dL) | 60.2 ± 18.5 | 47.6 ± 3.8 † | 58.2 ± 10.6 | 63.2 ± 11.0 |
T-TG (mg/dL) | 47.7 ± 19.4 | 44.0 ± 7.0 † | 44.5 ± 10.3 | 57.7 ± 10.6 |
PL (mg/dL) | 89.8 ± 19.6 | 75.5 ± 9.6 | 83.2 ± 12.7 | 83.0 ± 5.5 |
ALT (U/L) | 40.8 ± 7.2 | 33.8 ± 2.6 ‡ | 40.0 ± 7.2 | 43.2 ± 5.5 |
2.3. Effects of Oral Administration of SDACNFs on Serum T-Cho Contents
mg/dL | Control | SDACNF | CS | CLNF |
---|---|---|---|---|
(a) day 14 | ||||
CM | 33.9 ± 23.0 | 18.9 ± 13.4 * | 18.5 ± 15.6 * | 23.6 ± 15.4 |
VLDL | 76.2 ± 44.9 | 54.4 ± 32.5 † | 62.9 ± 40.6 | 77.5 ± 44.9 |
LDL | 25.0 ± 13.2 | 24.1 ± 12.7 | 24.8 ± 13.4 | 29.7 ± 15.1 |
HDL | 34.0 ± 18.2 | 33.7 ± 17.5 | 39.9 ± 23.8 | 32.8 ± 18.0 |
(b) day 29 | ||||
CM | 14.6 ± 17.3 | 7.6 ± 6.2 | 7.4 ± 8.2 | 15.2 ± 11.5 |
VLDL | 38.6 ± 27.8 | 28.8 ± 15.8 | 23.9 ± 22.1 | 29.8 ± 17.8 |
LDL | 12.5 ± 6.0 | 11.6 ± 7.0 | 10.1 ± 6.0 | 11.3 ± 6.7 |
HDL | 25.6 ± 14.2 | 27.5 ± 15.1 | 30.5 ± 17.8 | 25.6 ± 15.1 |
2.4. Effects of Oral Administration of SDACNFs on the Lipid Contents and Pathological Examination in the Liver
mg/g | Control | SDACNF | CS | CLNF |
---|---|---|---|---|
T-cho | 17.8 ± 3.8 | 14.6 ± 3.4 | 15.5 ± 3.1 | 16.6 ± 2.4 |
T-TG | 32.6 ± 12.7 | 26.0 ± 3.4 | 38.1 ± 19.0 | 30.0 ± 6.2 |
PL | 17.3 ± 4.8 | 15.0 ± 1.9 | 13.0 ± 2.9 | 13.4 ± 4.8 |
3. Experimental Section
3.1. Animals and Reagents
3.2. Preparation of SDACNFs
3.3. Study Design
3.4. Serum Chemical Analysis
3.5. Measurements of the Lipid Contents and Pathological Examination in the Liver
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McNamara, D.J. Dietary cholesterol and atherosclerosis. Biochim. Biophys. Acta 2000, 1529, 310–320. [Google Scholar] [CrossRef]
- Nijjar, P.S.; Burke, F.M.; Bloesch, A.; Rader, D.J. Role of dietary supplements in lowering low-density lipoprotein cholesterol: A review. J. Clin. Lipidol. 2010, 4, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Mannarino, M.R.; Ministrini, S.; Pirro, M. Nutraceuticals for the treatment of hypercholesterolemia. Eur. J. Intern. Med. 2014, 25, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A. Chitin nanostructures in living organisms. In Chitin: Formation and Diagenesis; Gupta, N.S., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 34, pp. 1–34. [Google Scholar]
- Azuma, K.; Ifuku, S.; Osaki, T.; Okamoto, Y.; Minami, S. Preparation and biomedical applications of chitin and chitosan nanofibers. J. Biomed. Nanotechnol. 2014, 10, 2891–2920. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 2001, 269, 1921–1971. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Pillai, K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Kerch, G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar. Drugs 2015, 13, 2158–2182. [Google Scholar] [CrossRef] [PubMed]
- Anraku, M.; Fujii, T.; Furutani, N.; Kadowaki, D.; Maruyama, T.; Otagiri, M.; Gebicki, J.M.; Tomida, H. Antioxidant effects of a dietary supplement: Reduction of indices of oxidative stress in normal subjects by water-soluble chitosan. Food Chem. Toxicol. 2009, 47, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Anraku, M.; Michihara, A.; Yasufuku, T.; Akasaki, K.; Tsuchiya, D.; Nishio, H.; Maruyama, T.; Otagiri, M.; Maezaki, Y.; Kondo, Y.; et al. The antioxidative and antilipidemic effects of different molecular weight chitosans in metabolic syndrome model rats. Biol. Pharm. Bull. 2010, 33, 1994–1998. [Google Scholar] [CrossRef] [PubMed]
- Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H. Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 2009, 10, 1584–1588. [Google Scholar] [CrossRef] [PubMed]
- Ifuku, S.; Saimoto, H. Chitin nanofibers: Preparations, modifications, and applications. Nanoscale 2012, 4, 3308–3318. [Google Scholar] [CrossRef] [PubMed]
- Ifuku, S. Chitin and chitosan nanofibers: Preparation and chemical modifications. Molecules 2014, 19, 18367–18380. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Saito, T.; Isogai, A. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr. Polym. 2010, 79, 1046–1051. [Google Scholar] [CrossRef]
- Azuma, K.; Osaki, T.; Ifuku, S.; Maeda, H.; Morimoto, M.; Takashima, O.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Saimoto, H.; et al. Suppressive effects of cellulose nanofibers—Made from adlay and seaweed—On colon inflammation in an inflammatory bowel-disease model. Bioact. Carbohydr. Dietary Fibre 2013, 2, 65–72. [Google Scholar] [CrossRef]
- Azuma, K.; Osaki, T.; Ifuku, S.; Morimoto, M.; Takashima, O.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Saimoto, H.; Minami, S. Anti-inflammatory effects of cellulose nanofiber made from pear in inflammatory bowel disease model. Bioact. Carbohydr. Dietary Fibre 2014, 3, 1–10. [Google Scholar] [CrossRef]
- Järvisalo, M.; Raitakari, O.; Gylling, H.; Miettinen, T.A. Cholesterol absorption and synthesis in children with type 1 diabetes. Diabetes Care 2006, 29, 2300–2304. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.O.; Doerfe, J.; Naeke, A.; Rohrer, T.; Wiemann, D.; Marg, W.; Hofer, S.E.; Holl, R.W. Influence of food intake, age, gender, HbA1c, and BMI levels on plasma cholesterol in 29,979 children and adolescents with type 1 diabetes—Reference data from the German diabetes documentation and quality management system (DPV). Pediatr. Diabetes 2009, 10, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Ranaldi, G.; Marigliano, I.; Vespignani, I.; Perozzi, G.; Sambuy, Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line1. J. Nutr. Biochem. 2002, 13, 157–167. [Google Scholar] [CrossRef]
- Ormrod, D.J.; Holmes, C.C.; Miller, T.E. Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis. Atherosclerosis 1998, 138, 329–334. [Google Scholar] [CrossRef]
- Gallaher, C.M.; Munion, J.; Hesslink, R., Jr.; Wise, J.; Gallaher, D.D. Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutr. 2000, 130, 2753–2759. [Google Scholar] [PubMed]
- Sugano, M.; Fujikawa, T.; Hiratsuji, Y.; Nakashima, K.; Fukuda, N.; Hasegawa, Y. A novel use of chitosan as a hypocholesterolemic agent in rats. Am. J. Clin. Nutr. 1980, 33, 787–793. [Google Scholar] [PubMed]
- Yazdanyar, A.; Yeang, C.; Jiang, X.C. Role of phospholipid transfer protein in high-density lipoprotein- mediated reverse cholesterol transport. Curr. Atheroscler. Rep. 2011, 13, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Day, J.R.; Albers, J.J.; Lofton-Day, C.E.; Gilbert, T.L.; Ching, A.F.; Grant, F.J.; O’Hara, P.J.; Marcovina, S.M.; Adolphson, J.L. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J. Biol. Chem. 1994, 269, 9388–9391. [Google Scholar] [PubMed]
- Jiang, X.C.; Bruce, C.; Mar, J.; Lin, M.; Ji, Y.; Francone, O.L.; Tall, A.R. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J. Clin. Investig. 1999, 103, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Hoy, C.E. The digestion of dietary triacylglycerols. Prog. Lipid Res. 2004, 43, 105–133. [Google Scholar] [CrossRef]
- Phan, C.T.; Tso, P. Intestinal lipid absorption and transport. Front. Biosci. 2001, 6, D299–D319. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Hussain, M.M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1183–E1194. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Hussain, M.M. Gut triglyceride production. Biochim. Biophys. Acta 2012, 1821, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.J.; Miller, N.E. Lymphatic transport of high-density lipoproteins and chylomicrons. J. Clin. Investig. 2014, 124, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Seiva, F.R.; Chuffa, L.G.; Braga, C.P.; Amorim, J.P.; Fernandes, A.A. Quercetin ameliorates glucose and lipid metabolism and improves antioxidant status in postnatally monosodium glutamate induced metabolic alterations. Food Chem. Toxicol. 2012, 50, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Usui, S.; Hara, Y.; Hosaki, S.; Okazaki, M. A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J. Lipid Res. 2002, 43, 805–814. [Google Scholar] [PubMed]
- Mizutani, H.; Sako, T.; Arai, N.; Kuriyama, K.; Yoshimura, I.; Mori, A.; Iwase, K.; Hirose, H. Application of gel permeation HPLC for lipoprotein profiling in dogs. J. Vet. Med. Sci. 2010, 72, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azuma, K.; Nagae, T.; Nagai, T.; Izawa, H.; Morimoto, M.; Murahata, Y.; Osaki, T.; Tsuka, T.; Imagawa, T.; Ito, N.; et al. Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia. Int. J. Mol. Sci. 2015, 16, 17445-17455. https://doi.org/10.3390/ijms160817445
Azuma K, Nagae T, Nagai T, Izawa H, Morimoto M, Murahata Y, Osaki T, Tsuka T, Imagawa T, Ito N, et al. Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia. International Journal of Molecular Sciences. 2015; 16(8):17445-17455. https://doi.org/10.3390/ijms160817445
Chicago/Turabian StyleAzuma, Kazuo, Tomone Nagae, Takeshi Nagai, Hironori Izawa, Minoru Morimoto, Yusuke Murahata, Tomohiro Osaki, Takeshi Tsuka, Tomohiro Imagawa, Norihiko Ito, and et al. 2015. "Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia" International Journal of Molecular Sciences 16, no. 8: 17445-17455. https://doi.org/10.3390/ijms160817445
APA StyleAzuma, K., Nagae, T., Nagai, T., Izawa, H., Morimoto, M., Murahata, Y., Osaki, T., Tsuka, T., Imagawa, T., Ito, N., Okamoto, Y., Saimoto, H., & Ifuku, S. (2015). Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia. International Journal of Molecular Sciences, 16(8), 17445-17455. https://doi.org/10.3390/ijms160817445