Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture Content
Variety | Abbreviation | Color | % Moisture Content | ||
---|---|---|---|---|---|
Pulp | Peel | Pulp | Peel | ||
Luzon mango (Lvsong) | F1 | P1 | Greenish yellow | 85.13 ab ± 0.70 | 82.21 c ± 0.53 |
Narcissus mango (Shuixian) | F2 | P2 | Yellow | 80.69 c ± 0.92 | 79.18 e ± 0.09 |
Royal mango (Guifei) | F3 | P3 | Yellowish red | 88.53 a ± 0.32 | 83.49 b ± 0.55 |
Big Tainong mango (Da Tainang) | F4 | P4 | Yellow | 81.68 bc ± 0.55 | 77.57 f ± 0.31 |
Keitt mango (Kaite) | F5 | P5 | Green | 89.47 a ± 4.65 | 87.04 a ± 0.50 |
Australian mango (Aozhou) | F6 | P6 | Reddish yellow | 85.89 a ± 0.21 | 83.90 b ± 0.13 |
Thai mango (Xiangya) | F7 | P7 | Green | 86.01 a ± 0.38 | 81.66 cd ± 0.71 |
Small Tainong mango (Xiao Tainang) | F8 | P8 | Yellow | 88.80 a ± 0.10 | 81.01 d ± 0.42 |
Egg mango (Jidan) | F9 | P9 | Yellow greenish | 87.87 a ± 0.13 | 84.25 b ± 0.44 |
2.2. Total Phenolic Content
Varieties | Total Phenolics Content | Total Flavonoids Content | Total Anthocyanins Content | |||
---|---|---|---|---|---|---|
Pulp | Peel | Pulp | Peel | Pulp | Peel | |
F1 | 22.06 g ± 0.27 | 462.2 h ± 10.06 | 3.069 fg ± 0.21 | 34.61 d ± 1.29 | nd | 0.006 b ± 0.01 |
F2 | 62.45 d ± 1.25 | 622.4 g ± 4.46 | 8.321 b ± 0.15 | 48.87 c ± 1.50 | nd | nd |
F3 | 48.77 e ± 0.34 | 997.9 e ± 19.61 | 2.995 fg ± 0.15 | 29.85 e ± 1.18 | 0.0005 a ± 0.0 | 0.659 a ± 0.01 |
F4 | 74.41 c ± 3.00 | 2805 b ± 17.42 | 4.578 d ± 0.15 | 75.35 a ± 2.68 | nd | 0.049 b ± 0.01 |
F5 | 28.14 f ± 0.91 | 927.2 f ± 17.07 | 0.904 i ± 0.07 | 19.91 f ± 0.70 | nd | nd |
F6 | 83.49 b ± 2.07 | 1131 d ± 12.87 | 9.252 a ± 0.18 | 59.31 b ± 3.71 | 0.0001 a ± 0.0 | 0.647 a ± 0.07 |
F7 | 45.78 e ± 0.67 | 1376 c ± 15.22 | 2.583 h ± 0.54 | 19.91 f ± 0.59 | 0.0004 a ± 0.0 | nd |
F8 | 97.47 a ± 6.76 | 4071 a ± 17.47 | 5.735 c ± 0.45 | 59.20 b ± 1.89 | nd | 0.014 b ± 0.03 |
F9 | 51.68 e ± 0.66 | 1145 d ± 15.07 | 3.500 e ± 0.20 | 27.49 e ± 0.88 | nd | 0.015 b ± 0.02 |
2.3. Total Flavonoid Content
2.4. Total Anthocyanin Contents
2.5. Phenolic Acids Composition
Varieties | Gallic Acid | Caffeic Acid | Protocatechuic Acid | Chlorogenic Acid | Vanillic Acid | Ferulic Acid |
---|---|---|---|---|---|---|
F1 | 2.492 ab ± 0.11 | 0.562 a ± 0.03 | 1.234 cde ± 0.084 | 1.589 c ± 0.148 | 0.642 de ± 0.032 | 1.206 e ± 0.21 |
F2 | 1.543 bc ± 0.15 | 0.264 a ± 0.04 | 1.116 de ± 0.073 | 3.779 b ± 0.167 | 1.042 b ± 0.069 | 20.31 bc ± 1.15 |
F3 | 2.359 ab ± 0.08 | 0.485 a ± 0.10 | 0.767 e ± 0.011 | 1.298 cd ± 0.051 | 0.669 de ± 0.125 | 28.69 ab ± 2.14 |
F4 | 2.369 ab ± 0.41 | 0.707 a ± 0.15 | 1.768 bcd ± 0.033 | 1.040 d ± 0.065 | 0.900 bc ± 0.079 | nd |
F5 | 1.788 bc ± 1.02 | 0.767 a ± 0.33 | 0.984 de ± 0.042 | 0.971 d ± 0.021 | 0.802 cd ± 0.026 | nd |
F6 | 2.982 a ± 0.23 | 1.117 a ± 0.10 | 6.826 a ± 0.532 | 6.147 a ± 0.407 | 1.625 a ± 0.095 | 28.96 ab ± 2.83 |
F7 | 0.927 c ± 0.08 | 0.250 a ± 0.04 | 1.211 cde ± 0.078 | 0.957 d ± 0.061 | 0.565 d ± 0.090 | 7.207 de ± 3.47 |
F8 | 2.168 ab ± 0.25 | 0.894 a ± 0.09 | 2.046 bc ± 0.044 | 1.246 cd ± 0.103 | 1.461 a ± 0.101 | 33.75 a ± 1.44 |
F9 | 2.112 ab ± 0.06 | 0.481 a ± 0.04 | 2.288 b ± 0.116 | 1.335 cd ± 0.035 | 0.942 bc ± 0.017 | 15.48 cd ± 5.97 |
Varieties | Gallic Acid | Caffeic Acid | Protocatechuic Acid | Chlorogenic Acid | p-Coumaric Acid |
---|---|---|---|---|---|
P1 | 7.376 b± 1.01 | nd | 8.396 b± 1.57 | 4.523 a± 0.77 | nd |
P2 | 2.710 b± 2.35 | nd | 3.167 b± 0.25 | 4.405 a ± 0.08 | nd |
P3 | 21.38 b± 1.15 | nd | 3.989 b± 0.32 | 4.462 a ± 0.30 | nd |
P4 | 79.15 a ± 8.61 | nd | 7.807 b± 1.63 | 9.409 a ± 1.16 | 0.291 a ± 0.50 |
P5 | 16.57 b ± 3.82 | nd | 3.077 b± 0.51 | 5.944 a ± 0.04 | nd |
P6 | 1.450 b ± 1.27 | nd | 35.23 ab± 9.10 | 19.65 a ± 1.50 | nd |
P7 | 10.83 b ±2.42 | 3.303 b ± 0.683 | 2.974 b± 0.20 | 25.37 a ± 2.70 | nd |
P8 | 6.672 b ±1.78 | 4.484 b± 0.105 | 64.33 a± 14.4 | 21.96 a ± 2.14 | 0.676 a ± 0.61 |
P9 | 1.834 b ± 1.59 | 14.43 a ± 2.97 | 12.63 b± 2.18 | 27.19 a ± 3.02 | nd |
2.6. Antioxidant Capacity
TPC | TFC | TAC | GA | CA | PA | CIA | VA | FA | PSC | ORAC | |
---|---|---|---|---|---|---|---|---|---|---|---|
TPC | 1.000 | ||||||||||
TFC | 0.714 * | 1.000 | |||||||||
TAC | −0.964 | −0.968 | 1.000 | ||||||||
GA | 0.287 | 0.349 | −0.586 | 1.000 | |||||||
CA | 0.485 | 0.310 | −0.895 | 0.735 * | 1.000 | ||||||
PA | 0.520 | 0.661 | −0.994 | 0.577 | 0.694 * | 1.000 | |||||
ClA | 0.390 | 0.858 ** | −0.967 | 0.420 | 0.391 | 0.807 ** | 1.000 | ||||
VA | 0.822 ** | 0.784 * | −0.959 | 0.499 | 0.736 * | 0.766 * | 0.676 * | 1.000 | |||
FA | 0.663 | 0.591 | −0.330 | 0.287 | 0.273 | 0.402 | 0.453 | 0.653 | 1.000 | ||
PSC | 0.675 * | 0.172 | −0.659 | 0.313 | 0.580 | 0.210 | −0.088 | 0.635 | 0.378 | 1.000 | |
ORAC | 0.368 | −0.109 | 0.383 | −0.177 | 0.038 | −0.013 | −0.352 | 0.253 | 0.319 | 0.648 | 1.000 |
TPC | TFC | TAC | GA | CA | PCA | ClA | pCA | PSC | ORAC | |
---|---|---|---|---|---|---|---|---|---|---|
TPC | 1.000 | |||||||||
TFC | 0.589 | 1.000 | ||||||||
TAC | −0.380 | −0.095 | 1.000 | |||||||
GA | 0.379 | 0.492 | −0.168 | 1.000 | ||||||
CA | 0.042 | −0.387 | −0.405 | −0.287 | 1.000 | |||||
PCA | 0.723 * | 0.491 | −0.097 | −0.237 | 0.016 | 1.000 | ||||
ClA | 0.372 | −0.041 | −0.211 | −0.282 | 0.786 * | 0.463 | 1.000 | |||
pCA | 0.962 ** | 0.585 | −0.441 | 0.254 | −0.059 | 0.782 * | 0.241 | 1.000 | ||
PSC | 0.702 * | 0.615 | 0.106 | 0.192 | −0.025 | 0.713 * | 0.564 | 0.587 | 1.000 | |
ORAC | 0.977 ** | 0.655 | −0.332 | 0.356 | 0.048 | 0.753 * | 0.441 | 0.920 ** | 0.805 ** | 1.000 |
2.7. Correlations
3. Materials and Methods
3.1. Chemicals and Material
3.2. Moisture Content
3.3. Extraction
3.4. Determination of Total Phenolic Content
3.5. Estimation of Total Flavonoid Content
3.6. Determination of Total Anthocyanin Content
3.7. Identification and Quantification of Phenolic Acids
3.8. Antioxidant Capacity Assays
3.8.1. Hydrophilic Peroxyl Radical Scavenging Capacity Assay
3.8.2. Oxygen Radical Scavenging Capacity Assay
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Joaquín-Cruz, E.; Dueñas, M.; García-Cruz, L.; Salinas-Moreno, Y.; Santos-Buelga, C.; García-Salinas, C. Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisiacompressa K.) fruit: A tropical source of natural pigments. Food Res. Int. 2015, 70, 151–157. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.; Pereira, P.; Queiroz, F.; Borges, S.; Carneiro, J. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Dina, A.; Nassima, C.; Meriem, B.; Karima, A.; Hakima, L.; Hania, B. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009, 112, 303–309. [Google Scholar]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Hervert-Hernández, D.; García, O.P.; Rosado, J.L.; Goñi, I. The contribution of fruits and vegetables to dietary intake of polyphenols and antioxidant capacity in a Mexican rural diet: Importance of fruit and vegetable variety. Food. Res. Int. 2011, 44, 1182–1189. [Google Scholar] [CrossRef]
- Podsedek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Rehman, M.M.; Khiyanagi, T.; Komiyana, T.; Sato, S.; Konishi, T. Effect of anthocyanins on psychologcal stress-induced oxidative stress and neuro-transmitter status. J. Agric. Food Chem. 2008, 56, 7545–7550. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [PubMed]
- Masibo, M.; He, Q. Major mango polyphenols and their potential significance to human health. Compr. Rev. Food Sci. Food Saf. 2008, 7, 309–319. [Google Scholar] [CrossRef]
- Noratto, G.D.; Bertoldi, M.C.; Krenek, K.; Talcott, S.T.; Stringheta, P.C.; Mertens-Talcott, S.U. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. J. Agric. Food Chem. 2010, 58, 4104–4112. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Robles-Sánchez, R.M.; Rojas-Graü, M.A.; Odriozola-Serrano, I.; González-Aguilar, G.A.; Martín-Belloso, O. Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut “Kent” mango (Mangifera indica L.). Postharvest Biol. Technol. 2008, 51, 384–390. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Yahia, E.M.; González-Aguilar, G.A. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC-DADMS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem. 2012, 135, 105–111. [Google Scholar] [CrossRef]
- De la Rosa, L.A.; Alvarez-Parrilla, E.; González-Aguilar, G.A. The contribution of fruits and vegetables consumption to human health. In Fruit and Vegetable Phytochemicals: Chemistry, Nutritional and Stability; Yahia, E.M., Ed.; Wiley-Blackwell: Ames, IA, USA, 2010; pp. 3–52. [Google Scholar]
- Ji, B.C.; Hsu, W.H.; Yang, J.S.; Hsia, T.C.; Lu, C.C.; Chiang, J.H. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J. Agric. Food Chem. 2009, 57, 7596–7604. [Google Scholar] [CrossRef] [PubMed]
- Balasubashini, M.S.; Rukkumani, R.; Menon, V.P. Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol. 2003, 40, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef]
- Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr. 2008, 138, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.H.; Kao, T.W.; Chu, C. Y.; Chou, F.P.; Lin, W.L.; Wang, C.J. Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem. Pharmacol. 2000, 60, 307–315. [Google Scholar] [CrossRef]
- Osman, H.F. Health aspects of caffeic acid and Berries juice in improvement of hypertension symptoms induced by deoxcorticosterone acetate on male rats. Int. J. Med. Med. Sci. 2014, 47, 1437–1443. [Google Scholar]
- Gao, A.; Chen, Y.; Crane, J.H.; Zhu, M.; Huang, J.; Luo, H. Status and analysis on Mango production in China. Adv. Biomed. Eng. 2011, 12, 472–476. [Google Scholar]
- Ramirez, J.E.; Zambrano, R.; Sepúlveda, B.; Simirgiotis, M.J. Antioxidant properties and hyphenated HPLC-PDA-MS profiling of chilean Pica mango fruits (Mangifera indica L. cv. piqueño). Molecule 2014, 19, 438–458. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, H.; Liu, L.; Yao, Q.; Wang, S.; Zhan, R.; Xing, S.; Zhou, Y. Polyphenolic compounds and antioxidant properties in mango fruits. Sci. Hortic. 2011, 129, 102–107. [Google Scholar] [CrossRef]
- Siddiq, M.; Sogi, D.S.; Dolan, K.D. Antioxidant properties, total phenolics, and quality of fresh-cut “Tommy Atkins” mangoes as affected by different pre-treatments. LWT Food Sci. Technol. 2013, 53, 156–162. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of “Tommy Atkins” mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Luthria, D.L. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor. J. Funct. Foods 2012, 4, 842–850. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Rao, P. Mango peel dietary fibre: Composition and associated bound phenolics. J. Funct. Foods 2013, 5, 444–450. [Google Scholar] [CrossRef]
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Prasada Rao, U.J.S. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Kim, H.; Moon, J.Y.; Kim, H.; Lee, D.; Cho, M.; Choi, H.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Antioxidant and antiproliferative activities of mango (Mangiferaindica L.) flesh and peel. Food Chem. 2010, 121, 429–436. [Google Scholar] [CrossRef]
- Almeida, M.B.; Sousa, P.H.; Arriaga, A.M.; Prado, G.M.; Magalhães, C.E.; Maia, G.A. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef]
- Ueda, M.; Sasaki, K.S.; Utsunimiya, N.; Inaba, K.; Bayashi, Y.S. Variation of total polyphenol and polyphenol oxidase activity during maturation of mango fruit (MangiferaIndica L. Irwin) cultured in plastic green house. Food Sci. Technol. Res. 2000, 6, 299–305. [Google Scholar] [CrossRef]
- Shieber, A.; Ulrich, W.; Carle, R. Characterization of polyphenols in mango puree concentrate by HPLC with diode array and mass spectrometric detection. Innov. Food Sci. Emerg. Technol. 2000, 1, 161–166. [Google Scholar] [CrossRef]
- Manthey, J.A.; Perkins-Veazie, P. Influences of harvest date and location on the levels of β-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). J. Agric. Food Chem. 2009, 57, 10825–10830. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.K.; Jiang, X.Y.; Huang, Q.T.; Xiao, Y.F.; Chen, Z.H; Zhang, X.Q.; Miao, J.M.; Yan, H.D. Genetic diversity and relationships in cultivars of Loliummultiflorum Lam. using sequence-related amplified polymorphism markers. Genet. Mol. Res. 2014, 13, 10142–10149. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Theoduloz, C.; Caligari, P.D.S.; Schmeda-Hirschmann, G. Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes. Food Chem. 2009, 113, 377–385. [Google Scholar] [CrossRef]
- Robles-Sánchez, R.M.; Islas-Osuna, M.A.; Astiazarán-García, H.; Vázquez-Ortiz, F.A.; Martín-Belloso, O.; Gorinstein, S. Quality index, consumer acceptability, bioactive compounds, and antioxidant activity of fresh cut “Ataulfo” mangoes (Mangiferaindica L.) as affected by low temperature storage. J. Food Sci. 2009, 74, S126–S134. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, D.; Liu, R.H. Sodium borohydride/chloranil-based assay for quantifying total flavonoids. J. Agric. Food Chem. 2008, 56, 9337–9344. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Meyers, K.; Watkins, C.; Pritts, M.; Liu, R.H. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef] [PubMed]
- Roesler, R.; Malta, L.G.; Carrasco, L.C.; Pastore, G. Evaluation of antioxidant properties of the Brazilian Cerrado fruit Annona crassiflora (Araticum). Food. Chem. Toxicol. 2006, 71, 102–107. [Google Scholar] [CrossRef]
- Zhou, K.; Hao, J.; Griffey, C.; Chung, H.; O’Keefe, S.F.; Chen, J. Antioxidant properties of Fusarium head blight-resistant and -susceptible soft red winter wheat grains grown in Virginia. J. Agric. Food Chem. 2007, 55, 3729–3736. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Cao, G.H.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J. Agric. Food Chem. 2005, 53, 6572–6580. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.B.; Li, T.; Tang, K.X.; Liu, R.H. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vignara diata). J. Agric. Food Chem. 2012, 60, 11050–11055. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Song, W.; Derito, C.M.; Liu, M.K.; He, X.J.; Dong, M.; Liu, R.H. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem. 2010, 58, 6621–6629. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.; Fernandes, F.; Alves, R.; Brito, E. Free radical-scavenging behavior of some north-east Brazilian fruits in a DPPH system. Food Chem. 2009, 114, 693–695. [Google Scholar] [CrossRef]
- Torunn, S.; Siv, F.R.; Kare, A.L. Total antioxidant activity in 35 Ugandan fruits and vegetables. Food Chem. 2009, 113, 85–91. [Google Scholar]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, G.; Wang, H.; Cheng, C.; Zang, G.; Guo, X.; Liu, R.H. Phytochemical profiles and antioxidant activities in six species of Ramie leaves. PLoS ONE 2014, 9, e108140. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.J.; Ou, B.X.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate flourescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, A.M.; Guo, X.; Fu, X.; Zhou, L.; Chen, Y.; Zhu, Y.; Yan, H.; Liu, R.H. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars. Int. J. Mol. Sci. 2015, 16, 13507-13527. https://doi.org/10.3390/ijms160613507
Abbasi AM, Guo X, Fu X, Zhou L, Chen Y, Zhu Y, Yan H, Liu RH. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars. International Journal of Molecular Sciences. 2015; 16(6):13507-13527. https://doi.org/10.3390/ijms160613507
Chicago/Turabian StyleAbbasi, Arshad Mehmood, Xinbo Guo, Xiong Fu, Lin Zhou, Youngsheng Chen, Yong Zhu, Huaifeng Yan, and Rui Hai Liu. 2015. "Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars" International Journal of Molecular Sciences 16, no. 6: 13507-13527. https://doi.org/10.3390/ijms160613507
APA StyleAbbasi, A. M., Guo, X., Fu, X., Zhou, L., Chen, Y., Zhu, Y., Yan, H., & Liu, R. H. (2015). Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars. International Journal of Molecular Sciences, 16(6), 13507-13527. https://doi.org/10.3390/ijms160613507