Next Article in Journal
Genetic Variability and Population Structure of Salvia lachnostachys: Implications for Breeding and Conservation Programs
Next Article in Special Issue
Enzymatic Synthesis of Galactosylated Serine/Threonine Derivatives by β-Galactosidase from Escherichia coli
Previous Article in Journal
Inflammatory Biomarkers as Differential Predictors of Antidepressant Response
Previous Article in Special Issue
Importance of N-Glycosylation on CD147 for Its Biological Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

1
Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
2
School of Pharmacy and Griffith Health Institute, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
3
Royal Botanic Gardens Melbourne, South Yarra, VIC 3141, Australia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2015, 16(4), 7802-7838; https://doi.org/10.3390/ijms16047802
Submission received: 5 February 2015 / Revised: 16 March 2015 / Accepted: 19 March 2015 / Published: 8 April 2015
(This article belongs to the Special Issue Glycosylation and Glycoproteins)

Abstract

:
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.

1. Introduction

Lectins are proteins, non-immunglobulinn nature that bind diverse sugar structures with a high degree of selectivity and stereospecificity without altering the covalent structure of any recognized glycosyl ligands [1,2]. Lectins play crucial roles in various biological processes such as cellular signaling, malignancy, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments [1,3,4] and, also, in host defence mechanisms, inflammation, and metastasis [5,6]. Generally lectins are able to agglutinate erythrocytes and are often referred to as hemagglutinins. However, this is an over simplification, since not all hemagglutinins are lectins. That is, not all hemagglutinins agglutinate erythrocytes through reversible binding of sugars found on the cell surface; only lectins possess this activity [7]. Lectins are widespread in distribution and have been isolated from bacteria, insects, plants seeds and roots, algae, body fluid of vertebrates, lower vertebrates, mammalian cell membranes and fungi [8]. Some viruses, including influenza, reo virus, and picorna virus, primarily use lectins to attach to host cells.
Among all the sources of lectins, plants have been most extensively studied, with notable examples including legume lectins, type 2 ribosome inactivating proteins, chitin-binding lectins, and monocot mannose-binding lectins [9,10,11,12,13]. These plant lectins function as the defensive system against phytopathogenic fungi and predatory animals [14,15], and they also play a role in the symbiotic relationship of plants with nitrogen fixing bacteria [16]. In animals, lectins perform a variety of biological functions, from cell adhesion to glycoprotein synthesis, as well as controlling the protein level in the blood. Some mammalian liver cell lectin receptors are believed to be responsible for the removal of certain glycoproteins from the circulatory system [17]. Animal lectins also regulate differentiation and organ formation [18], play a vital role in the migration of lymphocytes from the bloodstream into the lymphoid organs, as well as in metastasis of cancer cells [19] and drug targeting [8,20].
For thousands of years mushrooms have been recognized for their medicinal properties, nutritious value and importance in spiritual ceremonies [21,22]. There have been extensive clinical trials conducted in China and Japan in order to illustrate that a number of mushrooms have medicinal and therapeutic value for the treatment/prevention of cancer, viral diseases, hypercholesterolaemia, blood platelet aggregation, and hypertension [23]. Mushrooms are essentially macrofungi that can be seen with the naked eye in contrast to microfungi, and they exhibit a distinctive fruiting body that can be hypogeous or epigeous [24]. It is estimated that there are 140,000 mushroom species that belong to the phyla Ascomycota and Basidiomycota [25]. However, only 10% of these mushroom species are known and have been taxonomically classified, thus making them an enormous unexplored source of potentially useful substances, including lectins [26,27,28,29]. Among known mushrooms, there are around 2000 species that are edible and about 200 have traditionally been collected for food, medicine or other purposes [30].
In recent years mushroom lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities [19,31,32,33,34,35,36,37,38]. In this review, we provide an update, which builds on a series of reviews on mushroom lectins [19,36,38,39,40,41], that gives an up-to-date summary of the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.

2. Mushroom Lectins

Mushrooms express high levels of lectins as storage proteins, that are thought to have a potential role in defence, similar to plant lectins [36,42]. In addition, a significant role for lectins is emerging in relation to symbiotic associations between fungi and other organisms, such as in mycorrhizas and lichens, and in cell interactions with respect to flocculation, mycelial aggregation and mating [43,44]. Mushroom lectins isolated from different species vary in molecular masses, subunit number and carbohydrate specificity (Table 1) [36], but lectins with very different biochemical properties have also been isolated from a single species [45,46]. Moreover, lectins have been purified from different parts of the mushroom, including caps, stalks, and mycelia, and the expression levels may vary depending on fruit-body age [47] and season [40]. For example, the quantity of Laccaria laccata lectin is higher in adult mushrooms whereas the expression of lectin from Amanita muscaria, Tricholomopsis rutilans and Lactarius rufus is higher in young mushrooms. Similarly, we have reported on mushrooms collected in Australia, in which the expression of lectin varies with respect to environmental influences, such as season, location, and year, as well as depending on macroscopic properties, such as age and mycelia growth [7].
Table 1. Mushroom lectins and their specificity.
Table 1. Mushroom lectins and their specificity.
Source of Lectin (Current Species Names Given in Parentheses)Specificity of Sugars/Glycoproteins *Ref.
Agaricus arvensisInulin[48]
Agaricus bisporusGalNAc, Galβ1,3GalNAc (T antigen), sialyl-Galβ (ABL) [49,50,51,52]
Agaricus bitorquisLac[7]
Agaricus blazei (Agaricus subrufescens)Methyl N-acetyl-α-o-galactosaminide, GalNAc, BSM, asialo-BSM, fetuin, asialofetuin[53]
Agaricus campestrisGalNAc, Gal, Suc[54,55]
Agaricus pilatianusLac, GlcNAc, Glc, Rham[47]
Agrocybe aegerita (Cyclocybe aegerita)Lac, BSM, Glycophorin A, k-Casein, β-galactosides, Gal (AAL galectin), terminal non-reducing GlcNAc (AAL2)[56,57,58,59]
Agrocybe cylindracea (Cyclocybe cylindracea)Trisaccharides containing Neu5Acα2,3Gal, Lac, sialic acid, inulin (ACG)[60,61,62,63]
Aleuria aurantial-Fuc, fucosyl oligosaccharides (AAL)[64,65]
Amanita muscariaO-type glycans[66]
Amanita ovoideaGal, GalNAc, Rham[47]
Amantia pantherinaGIcNAcβ1, 4ManβpNP, Galβ1,4GlcNAcβ1,4GIcNAc, Galβ1,4GIcNAcβ1,4GlcNAc, BSM, asialo-BSM[67]
Amanita phalloidesOvomucin, human glycophorin A (A. phalloides lectin)[66]
Amanita virosaBlood group specific substance B, A and H, bovine thyreoglobulin, ovomucoid, asialo-ovomucoid transferrin, Ovine submaxillary mucin, 4-nitrophenyl-α-d-mannopyranoside, 4-nitrophenyl-β-d-glucopyranoside, 4-nitrophenyl-β-d-galactopyranoside[68]
Amanita muscariaO-type glycans[66]
Armillaria luteovirensInulin (ALL)[69]
Auricularia polytricha (Auricularia cornea)Raf, Gal, ovomucoid and β-anomers of galactoside (Lac, p-nitrophenyl β-d-galactoside)[70]
Boletopsis leucomelaena [asleucomelas”] #GlcNAcβ1,2Manα1,3(GlcNAcβ1,2Manα1,6)Manβ1,4GlcNAcβ1, 4GlcNAc, GlcNAc (BLL)[71]
Boletus edulisd(+)-Mel, d-Xyl (BEL)[72]
Boletus satanasd-Gal[73]
Boletus subtomentosus (Xerocomus subtomentosus)d-Lac[74]
Boletus venenatusAsialofetuin, Galβ1,4GlcNAcβ1,4Manβ1,4GlcNAcβ1,4GlcNAc residues in N-linked sugar chains[75]
Chlorophyllum brunneumNeu5Ac[7]
Chlorophyllum molybditesNeu5Gc, GalNAc, asialo-BSM, PSM[76]
Ciborinia camelliaeGalNAc[77]
Clavaria purpurea (Alloclavaria purpurea)Asialo-BSM, α-Gal, Galα1,3Gal, Raf[78]
Clitocybe geophyla ^GalNAc, Lac, Glc[47]
Clitocybe nebularisAsialo-fetuin, Lac, GalNAc, Gal, N,N-diacetyllactosediamine (GalNAcβ1,4GlcNAc, LacdiNAc) (CNL)[79,80,81]
Coprinus atramentarius (Coprinopsis atramentaria)d-Lac[74]
Coprinus comatusGlcNAc, Lac, Gal, Ara, Rib, Xyl[7,47]
Coprinus cinereus (Coprinopsis cinerea)β-Gal (CCL2), GlcNAcβ1,4(Fucα1,3)GlcNAc (CGL2), GalNAcβ1,4GlcNAc (CGL3)[82,83,84]
Coprinus micaceus (Coprinellus micaceus)Lac, Gal, GalNAc[47]
Cordyceps militarisSialoglycoprotein, Neu5Ac (CML)[85]
Cortinarius sp. TWM 1710Gal[7]
Flammulina velutipesβ-d-Gal, fetuin, human transferrin, human glycophorin, lactoferrin (F. velutipes lectin)[86,87]
Fomes fomentariusGalNAc, α-d-Gal, Raf[80]
Ganoderma capensed-Gal, d(+)-Galactosamine (G. capense lectin)[88]
Ganoderma lucidumAsialo-triantennary N-glycan, N-and O-linked glycans.[89,90]
Grifola frondosaTerminal GalNAc residues, porcine stomach mucin, linear d-Rham, PSM (GFL)[76,91,92]
Hericium erinaceus [aserinaceum”] #Neu5Gc, Neu5Ac, inulin (HEA)[62,93,94]
Hygrophorus hypothejusLac, d-Gal, d-GalNAc, Galβ1,4GlcNAc, o-nitrophenylα-d-GalNAc, p-nitrophenyl-β-d-GalNAc, asialo-BSM[95,96]
Hygrophorus russulaα1,6-mannobiose, Isomaltose (Glcα1,6Glc), isomaltotriose, isomaltotetraose, isomaltopentaose, isomaltohexaose, methyl α-mannoside, α1,3-mannobiose, methyl β-mannoside, α1,2-mannobiose, α1,4-mannobiose, methyl α-glucoside, Man, lacturose (HRL)[97]
Inocybe fastigiata (Inocybe rimosa)GalNAc[98]
Inocybe umbrinellaRaf, d-Mel, α-Lac, d-Gal (I. umbrinella lectin)[99]
Ischnoderma resinosumMethyl-β-galactoside, Fuc, l-Ara[53]
Kuehneromyces mutabilisAsialo-PSM, asialofetuin, fetuin, α1-acid glycoprotein, Ovomucoid[100]
Laccaria amethystinal-Fuc (LAF), d-Lac and GalNAc, BSM, asialo-BSM,PSM, asialo-PSM, human glycophorin A (LAL)[101,102]
Laccaria laccatal-Fuc[103]
Lactarius deliciosusGalβ1,3GalNAc[104]
Lactarius deterrimusGalβ1,3GalNAc[105]
Lactarius flavidulusd-Mel, d-Fru, l(+)-Rham, Sor, d-Gal, d(+)-Man, Lac, d(+)-Xyl, l(+)-Ara, d-Glu, Raf, Inulin, p-nitrophenyl-α,d-glucopyranoside, p-nitrophenyl-β,d-glucopyranoside, inositol (LFL)[106]
Lactarius lignyotusAsialofetuin, asialo-PSM and other desialylated glycoproteins[107]
Lactarius pergamenusGalNAc, 4-nitrophenyl-β-d-galactopyranoside, α-phenyl N-acetyl-d-glucosaminopyranoside, Bovine thyroglobulin, human transferrin, Orosomucoid (α-glycoprotein), sheep submaxillary mucin, BSM, asialo-BSM, fetuin[108]
Lactarius rufusα-phenyl N-acetyl-d-glucosaminopyranoside, 4-nitrophenyl-β-d-glucosamine, asialo-BSM, human and bovine thyroglobulin, group specific substances from human erythrocytes[109]
Lactarius salmonicolorGalβ1,3GalNAc[110]
Laetiporus sulphureus [assulfureus”] #LacNAc, l-Rham, salicine, asialo-BSM,BSM, asialofetuin, lacto-N-neotetraose (Galβ1,4GlcNAcβ1,3Galβ1,4Glc) (LSL)[111,112,113]
Lentinus edodes (Lentinula edodes)GlcNAc, GalNAc, Man, d-Mel, Gal[114,115,116,117]
Lentinus squarrosulusRaf, d-Suc, Rib[118]
Lepiota leucothites (Leucoagaricus leucothites)Glc, GlcNAc, Man[47]
Lepiota rhacodes (Macrolepiota rachodes)Lac, Arab, MethGLc, GalNAc[47]
Lepista nudaGal,Fuc, Suc, Arab[47]
Lyophyllum decastesGalabiose-Galα1,4Gal, non-reducing α-Gal[119]
Macrolepiota proceraTerminal N-acetyl-lactosamine, β-galactosides (MPL)[120]
Marasmius oreadesGalα1,3Galβ1,4GlcNAc, blood group Btrisaccharide (Galα1,3Gal2,1αFuc), Man, thyroglobulin, asialofetuin, complex type N-glycans (MOA)[121,122,123,124,125]
Melanoleuca brevipesGal, Rham, Lac[47]
Melastiza chateril-Fuc[126]
Mycoleptodonoides aitchisoniiAsialo-BSM, BSM[127]
Omphalotus nidiformisLac, Gal, Ara, Rib[7]
Oudemansiella platyphylla (Megacollybia platyphylla)β-GalNAc, terminal GlcNAc[47,76,128]
Panus conchatusd-Gal[40,129]
Paxillus involutusAsialo-PSM, asialofetuin, fetuin, α1-acid glycoprotein (P. involutus lectin)[103]
Paecilomyes japonica ^Sialic acid and sialoglycoprotein (PJA)[130]
Peziza silvestris [as “sylvestris”] # (Peziza arvernensis)l-Ara (P. silvestris lectin)[131]
Phaeolepiota aureaGalNAc (PAL1 and PAL2)[132]
Phallus impudicusFetuin[76]
Phlebopus marginatusLac, Gal[7]
Pholiota adiposaInulin (PAL)[133]
Pholiota aurivellaAsialofetuin[134]
Pholiota squarrosaα1,6-fucosylated N-glycans[135]
Pleurocybella porrigensGalNAc, asialo-BSM, O-linked glycans[136]
Pleurotus citrinopileatusMal, o-nitrophenyl-β-d-galactopyranoside, o/p-nitrophenyl-β-d-glucuronide, inulin (P. citrinopileatus lectin)[137]
Pleurotus cornucopiaeAsialo-mucin[138]
Pleurotus eousMethyl-α-d-galactoside, galactosamine, mannosamine, asialofetuin (PEL)[139]
Pleurotus ostreatusMe-α-GalNAc and 2'-fucosyllactose (Fucα1,2Galβ1,4Glc), d-Mel, d-Gal, Raf, NeuNAc, Inulin, Lac, Galactosyl and N-Acetyl galactosaminyl groups, BSM, asialo-BSM (POL)[32,140,141,142]
Pleurotus serotinus (Sarcomyxa serotina)GalNAc[129]
Pleurotus spodoleucusLac[140]
Pleurotus tuber-regiumGlcNAc[143]
Polyporus adustus [asadusta”] # (Bjerkandera adusta)d-Mel, d-Fru, d-Ara, d-Glu, d-Raf, p-nitro-α-d-glucopyranoside (P. adustus lectin)[144]
Polyporus squamosusNeu5Acα2,6Galβ1,4Glc/GlcNAc (6'-sialylated type II chain) of N-glycans (PSL)[145,146,147,148]
Psathyrella asperosporaGlcNAc (PAL)[7]
Psathyrella velutinaGlcNAc, Neu5Acα2,3Galβ1,4GlcNAc, Heparin and Pectin (PVL)[62,149,150,151,152]
Psilocybe barreraed-Gal, Glycophorin, BSM, asialo-BSM, human serum and milk transferrin[153]
Russula delicaInulin, o-nitrophenyl-β-d-galactopyranoside (R. delica lectin)[154]
Russula lepidaInulin, o-nitrophenyl-β-d-galactopyranoside[155]
Russula nigricansAsialofetuin, asialo-PSM, fetuin, ovomucoid, α1-acid glycoprotein[103]
Schizophyllum communeGalNAc (S. commune lectin, species from Thailand), Lac (S. commune lectin, species from China)[156,157]
Stereum hirsutuml-Xyl[158]
Trametes versicolorGal[47]
Tricholoma fracticum [asfractum”] #Lac, Gal, GalNAc[47]
Tricholoma mongolicum (Leucocalocybe mongolica)Lac (TML1), GalNAc and Gal (TML2)[45]
Volvariella volvaceaThyroglobulin (VVL)[31]
Xerocomus chrysenteronAsialofetuin, asialo-PSM and other desialyzed glycoproteins Sychrova, GalNAc, Gal,TF antigen (XCL)[107,159,160]
Xerocomus spadiceus (Xerocomus ferrugineus)Inulin (X. spadiceus lectin)[161]
Xylaria hypoxylonInulin, Xyl (X. hypoxylon lectin)[162]
* Ara, arabinose; BSM, Bovine submaxillary mucin; Fru, fructose; Gal, galactose; Glu, glucose; GalNAc, N-acetyl-d-galactosamine; GlcNAc, N-acetyl-d-glucosamine; Lac, lactose; Man, mannose; Mel, Melibiose; Neu5Gc, N-glycolyl-neuraminic acid; Neu5Ac, N-acetyl-neuraminic acid; PSM, Procine submaxillary mucin Raf, raffinose; Rham, rhamnose; Rib, ribose; Sor, sorbitol, Suc, sucrose; Xyl, xylose; # The species name was incorrectly spelt in the original publication (in square brackets), the correctly spelt name has now been provided; ^ Names could not be matched to the global fungi name databases. “Clitocybe geophyla” as reported by Mikiashvili et al. (2006) [47] could be “Clitocybe geotropa” or “Inocybe geophylla”. “Paecilomyces japonica” as reported by Park et al. (2004) [127] could be Isaria japonica Yasuda, in which case the current name is Isaria tenuipes following Luangsa-ard et al. (2005) [163]; These abbreviated lectin names are provided for those mushroom species that are mentioned in Section 4 and Section 5 and also for mushroom species that have two or more lectins.
The first mushroom lectin “phallin” was described in Amanita phalloides, a hemolytic agent [164]. Approximately 105 lectins have been identified in diverse mushroom species. Table 1 gives a complete list of lectins, thus far identified in mushroom, and their carbohydrate and/or glycoprotein specificity. The species names given in Table 1 have been updated (in parentheses) where appropriate predominantly using Species Fungorum (http://www.speciesfungorum.org/), and the spelling has also been corrected for some species names. Up-to-date nomenclature, especially in terms of correct generic placement, allows comparisons with phylogenetically related taxa and also facilitates targeted collecting of closely related species for the identification and isolation of novel lectins. Even though we have updated and corrected species names in Table 1, to avoid confusion we have used the originally species names (as published) from which the lectin(s) were identified in this review.
The largest number of lectins has been identified from Lactarius followed by Pleurotus, Agaricus, Amanita and Boletus. Interestingly, there are a number of mushroom species from which more than one lectin has been isolated, for example Coprinus cinereus [82,83,84], Agrocybe aegerita [56,57,58,59], Agrocybe cylindracea [60,61], Laccaria amethystina [101] and Schizophyllum commune [156,157]. Mushrooms species where multiple lectins have been identified, and those that are further discussed and listed in Table 2, Table 3 and Table 4, the published lectin abbreviations have been given in Table 1. As illustrated in Table 1, mushroom lectins have been identified with varying sugar specificities, from lectins that only bind the polysaccharide inulin (e.g., lectins from Agaricus arvensis [48], Pholiota adiposa [133], Xerocomus spadiceus [161]) to lectins that bind lactose (Agaricus bitorquis, Boletus subtomentosus, Coprinus atramentarius, Pleurotus spodoleucus [7,74,140]), galactose (Boletus sataaus and Panus conchatus [40,73,129]), N-acetylgalactosamine (Ciborinia camelliae, Inocybe fastigiata, Lactarius vellereus, Pleurotus serotinus [77,98,129]), and sialic acid (Hericium erinaceus, Polyporus squamosus, Psathyrella velutina, Paecilomyes japonica, and Agrocybe cylindracea [62]).
Table 2. Common structural characteristics and strategies used to purify mushroom lectins for which crystal structure data exists.
Table 2. Common structural characteristics and strategies used to purify mushroom lectins for which crystal structure data exists.
LectinPurification StrategyDescription of Lectin/Lectin Complex and Their PDB ID *Resolution (Å)Type of Fold #, PDB Structure and IDSimilarity to Other Structures and Their PDB IDRef.
Unique lectin-fold
Lyophyllum decastes lectin (LDL)Melibiose-sepharoseLDL (Ligand free)/4NDS1.00Two β-sheets linked by disulfide bridges:
Ijms 16 07802 i001
4NDS
Ginkbilobin-2/3A2E[165]
LDL globotriose complex/4NDV1.00
LDL orthorhombic form/4NDT1.30
LDL α-methylgalactoside complex/4NDU1.03
β-propeller-fold
Aleuria aurantia lectin (AAL)(NH4)2SO4 precipitation, fucose-starch AC ^AAL (Ligand free)/1OFZ1.50Six-bladed β-propeller fold
Ijms 16 07802 i002
1OFZ
A. fumigatus Fuc-binding lectin (AFL)/4AGI[76,166,167,168]
AAL complexed with Fuc/1IUC2.24
AAL (Hg-derivative from)/1IUB2.31
Psathyrella velutina lectin (PVL)Chitin-sepharose AC, DEAE-cellulofine, CM-sepharose CL-6BPVL (Ligand free)/2BWR1.50Integrin-like 7-blade β-propeller
Ijms 16 07802 i003
2BWR
Phanerochaete chrysosporium aldos-2-ulose dehydratase (AUDH)/4A7K[76,149,150,152,169,170]
PVL GlcNAc complex/2C4D2.60
PVL Neu5Ac complex/2C251.80
PVL methyl 2-acetamido-1, 2-dideoxy-1-seleno-β-d-glucopyranoside complex/2BWM1.80
Galectin-like fold
Agrocybe aegerita lectin/galectin (AAL-galectin)(NH4)2SO4 precipitation, DEAE-sepharose FF, Sephacryl S-200 HR, GF-250 HPLCAAL-galectin (Ligand free)/2ZGK3.00 Ijms 16 07802 i004
2ZGK
ACG complexed with blood type A antigen tetraose/3WG3[171,172]
Recombinant AAL-galectin (rAAL-galectin) (Ligand free)/2ZGL1.90
rAAL-galectin Lac complex/2ZGM1.90
rAAL-galectin Gal complex/2ZGN2.50
AAL-galectin mutant H59Q Lac complex/2ZGO2.00
AAL-galectin mutant I25G/2ZGP2.70
AAL-galectin mutant L33A/2ZGQ1.90
AAL-galectin mutant L33A/2ZGR1.90
AAL-galectin mutant L47A/2ZGS1.90
AAL-galectin mutant F93G/2ZGT2.80
AAL-galectin mutant I144G/2ZGU2.40
AAL-galectin TF antigen complex/3AFK1.95
AAL-galectin p-nitrophenyl TF disaccharide complex/3M3C2.00
AAL-galectin mutant E66A p-nitrophenyl TF disaccharide complex/3M3E2.10
AAL-galectin mutant R85A p-nitrophenyl TF disaccharide complex/3M3O2.10
AAL-galectin ganglosides complex GM1 pentasaccharide/3M3Q2.10
Agrocybe cylindracea galectin/lectin (ACG)(NH4)2SO4 precipitation, DEAE-cellulofine A-200, DEAE-Toyopearl 650M, and Toyopearl HWACG (Ligand free)/1WW71.90 Ijms 16 07802 i005
1WW7
Recombinant (rAAL-galectin)/2ZGL[60,173,174]
ACG Lac complex/1WW62.20
ACG 3'-sulfonyl Lac complex/1WW52.20
ACG α2,3-sialyllactose complex/1WW42.30
ACG mutant (N46A) blood type A antigen tetraose complex/3WG41.60
ACG blood type A antigen tetraose complex/3WG31.35
Coprinus cinereus lectin (CGL2)Lactosyl-sepharose ACCGL2 (Ligand free)/1UL92.22 Ijms 16 07802 i006
1UL9
CGL3 chitotetraose complex/2R0H[82,175,176]
CGL2 Lac complex/1ULC2.60
CGL2 xeno linear trisaccharide complex/1ULE2.15
CGL2 blood group A tetrasaccharide complex/1ULF2.36
CGL2 TF antigen complex/1ULG2.20
CGL2 blood H Type II complex/1ULD2.20
CGL2 C. elegans N-glycan complex/2WKK2.10
Coprinopsis cinerea lectin (CGL3)Lactosyl-sepharose ACCGL3 (Ligand free)/2R0F2.00 Ijms 16 07802 i007
2R0F
CGL2 C. elegans N-glycan complex/2WKK[82,84]
CGL3 chitotetraose complex/2R0H1.90
β-Trefoil fold
Boletus edulis lectin (BEL)DEAE cellulose, Superdex G75, MonoQ, Lipidex 1000BEL (Ligand free) form 1/4I4O1.12 Ijms 16 07802 i008
4I4P
LSL N-acetyllactoseamine complex/1W3F[177]
BEL (Ligand free) form 2/4I4P1.28
BEL (Ligand free) form 3/4I4Q1.51
BEL (Ligand free) form 4/4I4R1.77
BEL lactose complex/4I4S1.40
BEL galactose complex/4I4U1.57
BEL N-acetylgalactosamine complex/4I4V1.50
BEL T-Antigen disaccharide complex/4I4X1.72
BEL T-Antigen complex/4I4Y1.90
Clitocybe nebularis lectin (CNL)Lactosyl and glucosyl-sepharose AC, Chromsep HPLCCNL Lac complex at pH 4.4/3NBC1.01 Ijms 16 07802 i009
3NBC
Three Foil/3PG0[79,81]
CNL Lac complex at pH 7.1/3NBD1.15
CNL N,N'-diacetyllactosediamine complex/3NBE1.86
Coprinopsis cinerea lectin (CCL2)Horseradish Peroxidase ACCCL2 (Ligand free)/2LIENA Ijms 16 07802 i010
2LIE
Mosquitocidal toxin/2VSE[83]
CCL2 nematode glycan complex/2LIQ
Laetiporus sulphureus lectin (LSL)Lactose-sepharose ACLSL (Ligand free)/1W3A2.65 Ijms 16 07802 i011
1W3A
Boletus edulis lectin (BEL)/4I4O[76,111,112]
LSL N-acetyllactoseamine complex/1W3G2.68
LSL N-acetyllactoseamine complex in the Gamma motif/1W3F2.58
LSL (recombinant)/2Y9F1.47
LSL (recombinant) Lac complex/2Y9G1.67
Marasmius oreades lectin (MOA)(NH4)2SO4 precipitation, melibiose-sepharose, Synsorb-type B trisaccharide, and Synsorb-type A trisaccharide ACMOA Galβ1,3Galβ1,4-GlcNAc complex/2IHO2.41 Ijms 16 07802 i012
2IHO
Three Foil/3PG0[122,178,179]
MOA Galα1,3(Fucα1,2)Gal and calcium complex/3EF21.80
Macrolepiota procera (MPL)Lactosyl-Sepharose ACMPL (ligand free)/4ION1.60 Ijms 16 07802 i013
4ION
Rhizoctonia solani agglutinin/4G9M[120]
MPL Gal complex/4IYB1.59
MPL Lac complex/4IZX1.1
MPL N-acetyllactoseamine complex/4J2S1.4
Polyporus squamosus lectin (PSL)(NH4)2SO4 precipitation, β-d-galactosyl-Synsorb AC, DEAE-SephacelPSL bound to human-type influenza-binding epitope Neu5Ac α2-6Galβ1-4GlcNAc/3PHZ1.70 Ijms 16 07802 i014
3PHZ
ThreeFoil/3PG0[145,180]
Actinoporin-like fold
Agaricus bisporus lectin (ABL)Human erythrocytic stroma polyacrylamide gel AC, preparative isoelectric focusing to separate the 5 ABL isoformsABL (Ligand free)/1Y2T1.50 Ijms 16 07802 i015
1Y2T
Sclerotium rolfsii lectin (SRL)/2OFC[51]
ABL Lacto-N-biose complex/1Y2U1.85
ABL T-antigen complex/1Y2V1.90
Orthorhombic form of ABL T-antigen and GlcNAc complex/1Y2W1.74
Tetragonal form of ABL T-antigen and GlcNAc complex/1Y2X2.36
Boletus edulis lectin (BEL)Chitin-sepharose AC, Superdex G-200 HR, Lipidex 1000; Human erythrocytic stroma polyacryl-amide gel AC, Superdex G-200 HR, Lipidex 1000 resin, MiniQ PEBEL (Ligand free)/3QDS1.15 Ijms 16 07802 i016
3QDS
Sclerotium rolfsii lectin (SRL)/2OFC[177]
BEL T-antigen complex/3QDT1.30
BEL N,N-diacetyl chitobiose complex/3QDU2.00
Orthorhombic form of BEL GlcNAc and GalNAc complex/3QDV1.30
Hexagonal form of BEL GlcNAc and GalNAc complex/3QDW1.90
Orthorhombic form of BEL T-antigen disaccharide and N,N-diacetyl chitobiose complex/3QDX1.70
Hexagonal form of BEL T-antigen disaccharide and N,N-diacetyl chitobiose complex/3QDY2.00
Xerocomus chrysenteron lectin (XCL)Fetuin-sepharoseWild-type XCL (ligand free)/1XI02.00 Ijms 16 07802 i017
1XI0
Sclerotium rolfsii lectin (SRL)/2OFC[107,181]
XCL mutated at Q46M, V54M, L58M/1X991.40
* For further lectin-related tools and databases please see the Lectin 3D structure database (http://glyco3d.cermav.cnrs.fr) or the CAZy database (http://cazy.org); ^ AC, Affinity Chromatography; # Only symmetrical, ligand free structures are shown; NA, Not Available.
Table 3. Antiproliferative/antitumor and mitogenic activity of mushroom lectins.
Table 3. Antiproliferative/antitumor and mitogenic activity of mushroom lectins.
Antiproliferative/Antitumor Activity
Source of LectinIC50Cell Type/TargetRef.
Agaricus bisporus (ABL)50 µg/mL *HT-29[50]
Agrocybe aegerita (AAL galectin)NAS-180, Hela, SW480,SGC 7901, MGC80-3, BGC-823, HL-60[56]
Amanita phalloides (A. phalloides lectin)1.7 µg/mL *L1210[66]
Armillaria luteovirens (ALL)2.5 μMMBL2[69]
5 μMHeLa
10 μML1210
Boletopsis leucomelaena (BLL)15 µg/mLU937[182]
Clitocybe nebularis (CNL)NAMo-T, Jurkat[79]
Cordyceps militaris (CML)0.5–0.6 mg/mL *HepG2[183]
Flammulina velutipes (F. velutipes lectin)13 μML1210[86]
Ganoderma capense (G. capense lectin)8 μML1210[88]
16.5 μMHepG2
12.5 μMM1
Grifola frondosa (GFL)25 μg/mL *HeLa[184]
Hericium erinaceus (HEA)56.1 μMHepG2[94]
76.5 μMMCF7
Inocybe umbrinella (I. umbrinella lectin)3.5 μMHepG2[99]
7.4 μMMCF7
Lactarius flavidulus (LFL)8.90 μMHepG2[106]
6.81 μML1210
7.4 μMMCF7
Paecilomyces japonica (PJA)NASNU-1, AsPc-1, MDAMB-231[130]
Paxillus involutus (P. involutus lectin)NAA-549, HCT-8[185]
Pholiota adiposa (PAL)2.1 μMHepG2[133]
3.2 μMMCF7
Pleurotus citrinopileatus (P. citrinopileatus lectin)5 mg/kg of body weight/day ¥S-180 in ICR mice[137]
Pleurotus eous (PEL)2 μg/mLMCF-7, K562, HEP-2[139]
50 μg/mLSK-N-MC
Pleurotus ostreatus (POL)1.5 mg/kg bodyweight/day ¥S-180, H-22[32]
Polyporus adustus (P. adustus lectin)NAM1, Herto, S180[144]
Psathyrella asperospora (PAL)0.48 μMHT29[186]
Russula delica0.88 μMHepG2[154]
0.52 μMMCF 7
Schizophyllum commune (SCL)30 μg/mLKB[156]
Tricholoma mongolicum (TML1 & TML2)NAP815, PU5-1.8[187]
Volvariella volvacea (VVL)17.5 mg/kg body weight ¥S-180[188]
Xerocomus chrysenteron (XCL)NAHela, NIH-3T3[189]
Xylaria hypoxylon (X. hypoxylon lectin)1.24 μMM1[162]
NAHepG2
Mitogenic Activity
Source of lectin[Lectin] £Cell type/TargetRef.
Agrocybe cylindracea (ACG)2 µMMouse splenocytes[61]
Armillaria luteovirens (ALL)1 µMMouse splenocytes[69]
Boletus edulis (BEL)1 µMMouse splenocytes[72]
Cordyceps militaris (CML)26 µMMouse splenocytes[85]
Flammulina velutipes (F. velutipes lectin)100 µMMouse spleen lymphocytes[86,190]
Hericium erinaceus (HEA)20 µMMouse splenocytes[94]
Ganoderma capense (G. capense lectin)1.5 µMMouse splenocytes[88]
Hygrophorus russula (HRL)0.15 µMMouse splenocytes[97]
Peziza silvestris (P. silvestris lectin)8 µMMouse splenocytes[131]
Pleurotus citrinopileatus (P. citrinopileatus lectin)2 µMMouse splenocytes[137]
Polyporus adustus (P. adustus lectin)62.5 µMMouse splenocytes[144]
Schizophyllum commune (SCL)4 µMMouse splenocytes[157]
Xerocomus spadiceus (X. spadiceus lectin)31.25 µMMouse splenocytes[161]
NA: Not Available; * The concentration or range of titer found effective for antiproliferative/antitumor activities; ¥ The dosage found effective for in vivo antiproliferative/antitumor activities; £ This is the minimum lectin concentration for mitogenic activity.
Table 4. Anti-HIV-1 reverse transcriptase activity of mushroom lectins.
Table 4. Anti-HIV-1 reverse transcriptase activity of mushroom lectins.
Source of LectinIC50Ref.
Agaricus bisporus (ABL)8.0 µM[191]
Boletus edulis (BEL)14.3 µM[72]
Cordyceps militaris (CML)10.0 µM[183]
Hericium erinaceus (HEA)31.7 µM[94]
Inocybe umbrinella (I. umbrinella lectin)4.7 µM[99]
Pleurotus citrinopileatus (P. citrinopileatus lectin)0.93 µM[137]
Schizophyllum commune (SCL)1.2 µM[157]

3. Mushroom Lectin Structures

Mushroom lectins usually comprise two to four identical or non-identical subunits held together by non-covalent interactions. However, at least two examples exist of mushroom lectin subunits being linked by disulphide bridges (Lactarius lignyotus [107] and Phallus impudicus [192]). The molecular mass and oligomeric state of isolated mushroom lectins vary greatly, ranging from 10 to 190 kDa [19]. Some notable examples include the tetrameric lectin with identical 16 kDa subunits from Agaricus blazei [53], the 12.4 and 18 kDa lectins isolated from the Ganoderma lucidum mycelia and fruiting bodies respectively [88], the 23 kDa monomeric lectin from Auricularia polytricha [70], and the 114 kDa hexameric lectin form Ganoderma capense [89,90]. The most commonly used methods for the purification of mushroom lectins are ion-exchange chromatography, affinity chromatography based on the sugar specificity of the lectin of interest, and size-exclusion chromatography, with the order and number of purification steps varying from lectin and lectin. Table 2 summarises the common strategies used to purify mushroom lectins for which crystal structure data exists.
In order to better understand the atomic structure and molecular mechanisms underlying lectin-sugar interactions, it is necessary to study their crystallographic structure. The crystal structures of only 17 mushroom lectins have been determined (Table 2). A number of different structural families of mushroom lectins have been identified, including the ricin-like β-trefoil fold, galectin-like fold and actinoporin-like fold. The integrin-like seven-blade β-propeller and six-blade β-propeller as well as the actinoporin-like fold are distinctive for lectins from fungi [44,193]. Table 2 summarises the common structural characteristics mushroom lectins for which crystal structure data exists.
The crystal structures of two mushroom lectins have been reported to possess β-propeller-folds, the Aleuria aurantia lectin (AAL) and the Psathyrella velutina lectin (PVL). Among all mushroom lectins, PVL is the best studied. PVL is a multivalent and multi-substrate specific lectin that adopts a regular seven-bladed β-propeller-fold. The structure of PVL complexed with GlcNAc revealed six residues bound in pockets located between two consecutive propeller blades. A complex of PVL with Neu5Ac showed that the same hydrogen bond network as seen for GlcNAc are present, but the carbohydrate ring in the binding site is oriented differently [169]. The crystal structure of AAL complexed with Fuc revealed that each of the two monomers that make up AAL consist of a six-bladed β-propeller fold and a small antiparallel two-stranded β-sheet that is involved in dimerization. Interestingly, AAL was found to possess a multivalent carbohydrate recognition fold [166], similar to that seen in the Fuc binding lectin from Aspergillus fumigatus (AFL1), which has been proposed to be involved in the host pathogen interaction [194]. Structural PVL and AAL resemble α-integrins, and are very similar to the bacterial lectin RSL from Ralstonia solanacearum that also adopts a β-propeller fold [195].
As previously mentioned a number of mushroom lectins have been found to adopt a galectin, or galectin-like fold. Galectins have a conserved carbohydrate recognition domain (CRD) that shares a β-Gal recognition pattern with highly conserved side chains. The galectins reported for Agrocybe aegerita (designated here AAL-galectin to distinguish it from the Aleuria aurantia lectin which is commonly referred to in the literature as AAL), Agrocybe cylindracea (ACG) and Coprinus cinereus (CGL2 and CGL3) belong to the proto-type galectin family. Based on sequence and structural comparison AAL-galectin and ACG are identical. The crystal structure of ACG complexed with Lac, 3'-sulfonyl Lac, and α2,3-sialyllactose revealed a β-sandwich structure of two antiparallel sheets, each with six strands, in contrast to the five and six strands in animal galectins [173]. Except for the substitution of one residue the CRD is the same as that seen in animal galectins. Interestingly, the presence of a 5-residue insertion in ACG alters the carbohydrate-binding site such that it is able to bind Neu5Ac [173]. The structure of CGL2 [175] and CGL3 [84] have also been studied complexed with a number of ligands including Lac, linear B2 trisaccharide, blood group A tetrasaccharide, and blood H Type II for CGL2, and chitotetraose (GlcNAcβ1,4GlcNAcβ1,4GlcNAcβ1,4GlcNAc) for CGL3. CGL3 conserves all but one residue (Arg replaces Trp) known to be involved in Gal binding in galectins, resulting in CGL3 being unable to bind Lac. Instead CGL3 specifically and preferentially binds oligomers of GlcNAc. Interestingly, the mutation of Arg to Trp resulted in the lectin being unable to bind oligomers of GlcNAc and instead was able to bind Lac [84]. As will be discussed later in this review, a number of mushroom lectins have been found to have antitumour activity. One such example is AAL-galectin, which suppresses tumours through apoptosis-inducing activity in cancer cells [56]. The Thomsen-Friedenreich antigen (TF antigen; Galβ1-3GalNAc-O-Ser/Thr) is believed to be the ligand for AAL-galectin. The crystal structure of AAL-galectin complexed with the TF antigen revealed a unique recognition mode consisting of a hydrogen bond network formed by a conserved structural motif (Glu66-water-Arg85-water) that provides new targets and opportunities for anticancer drug discovery [171].
Ricin B-like (β-trefoil) lectins are carbohydrate-binding proteins similar to the B chain domains of ricin, a toxin from the castor bean (Ricinus communis) [196]. The main characteristic of these lectin domains is that they consist of three repeated subdomains, referred to as α-, β- and γ-repeats, each containing a well-conserved QXW motif [197]. Several ricin B-like lectins have been identified in mushrooms and crystal structures have been solved for Clitocybe nebularis lectin (CNL) [81], Laetiporus sulphureus lectin (LSL) [112], Marasmius oreades lectin (MOA) [178], Polyporus squamosus lectin (PSL) [180], Coprinopsis cinerea lectin (CCL2) [83], Macrolepiota procera (MPL) [120] and Boletus edulis lectin (BEL β-trefoil) [177]. LSL contains a pore-forming module [112], whereas a cysteine protease domain that also serves as a dimerization interface is present in MOA and PSL [178,180,198]. The toxic activities of these modular proteins have been attributed to their catalytic domains and the intracellular transport of the protein through binding to glycolipids or glycoproteins (Refer to Table 1 and Table 2 for exact sugar specificity) that are facilitated by lectin domains [198,199].
Another unique fold among the mushroom lectin is the actinoporin-like fold. The actinoporin-like fold consists of a β-sandwich made by two β-sheets composed of six and four β-strands respectively and connected by a helix-loop-helix motif. This fold has been found in Agaricus bisporus lectin (ABL) [51], Boletus edulis lectin (BEL) [177] and Xerocomus chrysenteron lectin (XCL) [181]. These lectins form dimers or tetramers that have two distinct binding sites per monomer that recognize the different configurations of a single epimeric hydroxyl.
Lyophyllum decastes lectin (LDL) is an interesting new addition to the known mushroom lectins. The recently resolved structure of LDL shows that this novel lectin adopts a unique lectin fold, where a core of two antiparallel β-sheets at the heart of a homodimer is connected to the periphery of the structure by intramolecular disulfide bridges [165]. Furthermore, the structure and LDL’s fold suggests that it is an extracellular protein unlike most known mushroom lectins.

4. Biological Activity of Mushroom Lectins

4.1. Antiproliferative/Antitumor Activity

Tumour cell surfaces vary in composition of glycoconjugates in comparison to normal cells [200]. Lectins display antiproliferative potential by cross-linking these cell surface glycoconjugates or through immunomodulatory effects. The Galβ1,3GalNAc-bindinglectin from the edible mushroom Agaricus bisporus inhibits growth of colon cancer cells and breast cancer [50]. Similarly, the Volvariella volvacea lectin that has antiproliferative activity against Sarcomo S-180 cells [19], has also been shown to retard the growth of tumour cells in a mouse model, prolonging the life span of mice by 63% to 100%. The lectin from Grifola frondosa is reported to be cytotoxic against HeLa cells at the lectin concentration of 25 μg/mL [184]. The antiproliferative activity of lectins has also been demonstrated in other mushroom species including Paxillus involutus [185], Lactarius flavidulus [106], Hericium erinaceus [94], Russula delica [154], Pholiota adiposa [133], and Clitocybe nebularis [79], and we have recently shown that the GlcNAc-specific lectin from Psathyrella asperospora (PAL) possess a potent antiproliferative activity (IC50: 0.48 μM) [186]. Further characterization of PAL’s anti-proliferative activity showed that HT29 cells are arrested at G2/M phase of the cell cycle, and that this effect can be halted through the addition of free GlcNAc. Table 3 summarises the antiproliferative and antitumor activity of mushroom lectins along with their potent activity toward cancer cell lines.

4.2. Mitogenic/Antimitogenic Activity

Some lectins possess the remarkable property of stimulating the transformation of lymphocytes from small resting cells to large blast-like cells that may undergo mitosis [201]. Furthermore, the mechanism of this mitogenic activity, which involves activation and proliferation of lymphocytes, usually commences by binding of ligands to T-cell receptors, which triggers the signaling cascade, IL-2 gene expression and subsequent proliferation [202]. Lectins from Flammulina velutipes [190], Armillaria luteovirens [69], Ganoderma capense [88], Agrocybe cylindracea [61], Xerocomus spadiceus [161], Boletus edulis [72], Cordyceps militaris [85], Pleurotus citrinopileatus [137] and Hygrophorus russula [97] are known to be mitogenic with respect to murine splenocytes. In addition, the Volvariella volvacea lectin possesses mitogenic activity towards T lymphocytes through T-cell receptor ensuing calcium signaling pathways [203]. The mitogenic potential of lectins frommushrooms is summarized in Table 3. However, lectins do not always display mitogenic activity to lymphocytes. Certain lectins have demonstrated antimitogenic activity. The lectin from Agaricus bisporus suppresses the activation of T and B lymphocytes [204]. Likewise, the lectins from Pleurotus flabellatus [203], Hericium erinaceus [203], Tricholoma mongolicum [45], Laetiporus sulphureus [113], Lactarius deliciosus [104], and Xylaria hypoxylon [162] are non-mitogenic.

4.3. Immunomodulatory Activity

There are only a few mushroom lectins that have been reported to regulate the components of the immune system. The lectins from Tricholoma mongolicum (TML-1 and TML-2) have been shown to activate macrophages through the generation of macrophage activating factor and tumor necrosis factor (TNF) in mice by stimulating the production of NO2 ions [187]. In a similar manner, ABL and ACG are also able to stimulate macrophage through the production of TNF-α and NO2 [205,206]. Interestingly, ABL’s immunomodulating activity was found to be thermal/freezing-resistant, acid/alkali tolerant and stable to dehydration making it a potential candidate as a stable immune stimulant in health foods and pharmaceuticals [205]. The lectin from Volvariella volvacea (VVL) also exerts a potent immunomodulatory effect in mice by inducing the gene expression of IL-2 and IFN-γ, thereby upregulating the Th-1 cell population [31]. In fact, VVL was nine-fold more potent than other non-lectin mushroom immunomodulating proteins in activating lymphocytes [207].

4.4. Antiviral Activity

The Paxillus involutus lectin possesses antiphytovirus activity towards tobacco mosaic virus with 70.6% inhibition at a concentration of 200 μg/mL, however does nothave any inhibitory activity towards HIV-1 reverse transcriptase [185]. Hericium erinaceus agglutinin (HEA) on the other hand is a demonstrated inhibitor of HIV-1 reverse transcriptase activity with an IC50 of 31.7 µM [94]. In fact a number of mushroom lectins havebeen found to havepotent anti-HIV-1 reverse transcriptase activity. For example, ABL, Schizophyllum commune lectin, BEL, Pleurotus citrinopileatus lectin, Cordyceps militaris lectin, and Inocybe umbrinella lectin, are all the inhibitors of HIV-1 reverse transcriptase [72,99,137,157,183,191]. The most potent anti-HIV-1 reverse transcriptase mushroom lectin yet identified comes from Pleurotus citrinopileatus (PCL) with an IC50 of 0.93 µM [137].
The exact mechanism by which lectins in general exert their anti-HIV-1 reverse transcriptase activity is yet to be fully resolved but probably involves protein–protein interaction as demonstrated for the HIV-1 protease that also inhibits HIV-1 reverse transcriptase activity [208]. Besides mushroom lectins, antifungal proteins [209], ribosome inactivating proteins [210], and plant lectins [211] have also been shown to inhibit HIV-1 reverse transcriptase. Interestingly, the well characterized lectins Concanavalin A and ricin, and the red kidney bean agglutinin are potent inhibitors of DNA polymerase alpha activity, and DNA polymerase beta activity respectively [212]. The significance of this activity in relation to reverse transcriptase inhibition by other lectins awaits elucidation.
In addition to mushroom lectins, other fungal lectins also possess anti-HIV activity such as the cyanovirin-N homologs (CVNHs) from Ceratopteris richardii and Neurospora crassa [213]. However these lectins were found not to be as effective as the native bacterial cyanovirin-N and other known anti-viral lectins including griffithsin, scytovirin and microcystis virdis lectin [214]. The activity of cyanovirin-N primarily arises from its association with the viral envelope glycoprotein 120 and to other cell surface receptors [215,216]. Again the significance and relevance of this mechanism in relation to anti-HIV activity shown by other lectins awaits elucidation.

5. Conclusions and Future Perspectives

The ability of lectins to bind specifically to glycoconjugates present on the cell surface has made them essential tools in diverse applications. For example, taxonomic study of protozoan parasites has been performed using the agglutinating extracts from several macrofungi [217,218]. In biomedical research, purified lectins are used to determine blood type due to the specificity of carbohydrate structures present on the cell surface of erythrocytes. Among the mushroom lectins, MOA has been reported to be specific for blood group B, while CGL2 is specific for blood group A tetrasaccharide [173,179]. Interestingly, the use of the Pleurotus ostreatus lectin (POL) as an adjuvant in hepatitis B virus (HBV) DNA vaccination has been reported to stimulate the immune response in transgenic mice. It has also been demonstrated that low dose of POL (1 µg/mouse) in conjunction with HBV DNA vaccine has given stronger HBV-specific delayed-type hypersensitivity responses and higher HBV-specific IgG levels in that particular transgenic mice [219].
Another practical use of lectins is based on their immobilization to an inert chromatography support, which has allowed the isolation of particular membrane and serum glycoconjugates [40]. For example, AAL has been used to isolate different glycoconjugates, such as fucosylated glycoproteins from human erythrocyte membrane [220], brain glycoproteins [221], Bence-Jones proteins [222], tumour antigens [223], and human immunoglobulin G [224]. Furthermore, the specificity of lectins for sugars makes them valuable tools in glycobiology. For example, lectin arrays (immobilised lectins with known sugar binding specificity covalently immobilised onto glass microarray slides) are a relatively new tool in glycobiology that can be used to analyse the glycosylation pattern on the surface of cells, and, thus, determine its relevance in various cell processes including cell development and differentiation, cell-cell communication and pathogen-host recognition [225].
Despite the diversity of bioactivity attributed to lectins, there is only limited information available regarding the relationship between structure, function and biological activity of mushroom lectins. Recently, an attempt was made to structurally determine the correlation between tumour cell apoptosis-induction and Agrocybe aegerita lectin activity. It was reported that the prerequisite for tumour cell apoptosis inducedby Agrocybe aegerita lectin was the formation of dimers, and that binding of both Gal and Glc are required for lectin bioactivity [172]. Similarly, Pohleven et al. demonstrated that the carbohydrate binding and homodimerization properties of CNL, a ricin B-like lectin from Clitocybe nebularis, was essential for bioactivity, with non sugar-binding and nondimerizing monovalent CNL mutants being inactive [81]. Further studies are required to determine the mechanism of action that gives mushroom lectins, and lectins from other sources, their diverse and potent bioactivity.
The potential use of mushroom lectins in therapy will also require the large-scale production of pure, fully functioning protein. Currently the majority of potentially medical useful mushroom lectins are purified from fruit-bodies collected in nature. This not only gives low yields, but is also time-consuming and expensive, and can also lead to batch variation. Moreover, the native isolation of lectins from mushrooms can lead to batch variation, due to environmental influences such as season, location and year of harvest, as well as differences in mushroom maturity and mycelia growth [7,40]. Therefore there is a need to advance efforts to clone and recombinantly express functional lectins. Over the past decade, only a small number of mushroom lectins have been expressed in Escherichia coli. For example, AAL and AAL2 lectin from the edible mushroom Agrocybe aegerita have been cloned and functionally expressed in E. coli [59,172]. In addition, CNL [81], MOA [178], XCL [181], and PSL [180] have also all been expressed in E. coli, and CGL2 has been expressed in the yeast Saccharomyces cerevisiae [175]. However, the majority of these lectins have been recombinantly expressed to obtain lectin in high enough yields for crystal structure determination. Recombinant lectin production for potential therapeutic use is still in its infancy, and will require further research and development particularly with regard to the importance and requirements for post-translational modifications of lectins for therapeutic use in humans.

Author Contributions

Mohamed Ali Abol Hassan and Razina Rouf reviewed the relevant literature, prepared the tables and wrote the first draft of the manuscript. Evelin Tiralongo and Tom W. May read, revised the text and co-wrote the manuscript. Joe Tiralongo supervised and co-wrote the review, revised the text and tables, and prepared the manuscript for submission.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Sharon, N.; Lis, H. Lectins as cell recognition molecules. Science 1989, 246, 227–234. [Google Scholar] [CrossRef] [PubMed]
  2. Kocourek, J.; Horejsi, V. A note on the recent discussion on definition of the term “Lectin”. Lectins Biol. Biochem. Clin. Biochem. 1983, 3, 3–6. [Google Scholar]
  3. Ashwell, G.; Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 1982, 51, 531–554. [Google Scholar] [CrossRef] [PubMed]
  4. Springer, T.A.; Lasky, L.A. Sticky sugars for selectins. Nature 1991, 349, 196–197. [Google Scholar] [CrossRef] [PubMed]
  5. Cash, H.L.; Whitham, C.V.; Behrendt, C.L.; Hooper, L.V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006, 313, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
  6. Imberty, A.; Gautier, C.; Lescar, J.; Pérez, S.; Wyns, L.; Loris, R. An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. J. Biol. Chem. 2000, 275, 17541–17548. [Google Scholar] [CrossRef] [PubMed]
  7. Rouf, R.; Tiralongo, E.; Krahl, A.; Maes, K.; Spaan, L.; Wolf, S.; May, T.W.; Tiralongo, J. Comparative study of hemagglutination and lectin activity in Australian medicinal mushrooms (higher Basidiomycetes). Int. J. Med. Mushrooms 2011, 13, 493–504. [Google Scholar] [CrossRef] [PubMed]
  8. Singh, R.S.; Tiwary, A.K.; Kennedy, J.F. Lectins: Sources, activities, and applications. Crit. Rev. Biotechnol. 1999, 19, 145–178. [Google Scholar] [CrossRef]
  9. Wright, L.M.; van Damme, E.J.; Barre, A.; Allen, A.K.; van Leuven, F.; Reynolds, C.D.; Rouge, P.; Peumans, W.J. Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (Scilla campanulata) bulbs. Biochem. J. 1999, 340 Pt 1, 299–308. [Google Scholar] [CrossRef] [PubMed]
  10. Wright, L.M.; Wood, S.D.; Reynolds, C.D.; Rizkallah, P.J.; Peumans, W.J.; van Damme, E.J.; Allen, A.K. Purification, crystallization and preliminary X-ray analysis of a mannose-binding lectin from bluebell (Scilla campanulata) bulbs. Acta Crystallogr. D 1996, 52, 1021–1023. [Google Scholar] [CrossRef] [PubMed]
  11. Van Damme, E.J.; Balzarini, J.; Smeets, K.; van Leuven, F.; Peumans, W.J. The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: Sequence homologies and differences in biological activities. Glycoconj. J. 1994, 11, 321–332. [Google Scholar]
  12. Van Damme, J.M.; Smeets, K.; Torrekens, S.; van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of mannose-binding lectins from the Orchidaceae species Listera ovata, Epipactis helleborine and Cymbidium hybrid. Eur. J. Biochem. 1994, 221, 769–777. [Google Scholar]
  13. Van Damme, E.J.; Barre, A.; Mazard, A.M.; Verhaert, P.; Horman, A.; Debray, H.; Rouge, P.; Peumans, W.J. Characterization and molecular cloning of the lectin from Helianthus tuberosus. Eur. J. Biochem. 1999, 259, 135–142. [Google Scholar]
  14. Lis, H.; Sharon, N. Lectins: Carbohydrate-Specific proteins that mediate cellular recognition. Chem. Rev. 1998, 98, 637–674. [Google Scholar] [CrossRef] [PubMed]
  15. Gatehouse, A.M.; Powell, K.S.; Peumans, W.J.; van Damme, E.J.; Gatehouse, J.A. Insecticidal properties of plant lectins: Their potential in plant protection. In Lectins Biomedical Perspectives; Taylor & Francis e-library: Bristol, PA, USA, 1995; pp. 35–57. [Google Scholar]
  16. Brock, T.; Madigan, M.; Martinko, J.; Parker, J. Biology of Microorganisms, 7th ed.; Prentice-Hall International, Inc.: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
  17. Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J. Structures common to different types of glycans. In Essentials of Glycobiology; Cold Spring Harbor Laboraory Press: New York, NY, USA, 1999; pp. 211–252. [Google Scholar]
  18. Sharon, N. Lectin receptors as lymphocyte surface markers. Adv. Immunol. 1983, 34, 213–298. [Google Scholar] [PubMed]
  19. Wang, H.; Ng, T.B.; Ooi, V.E.C. Lectins from mushrooms. Mycol. Res. 1998, 102, 897–906. [Google Scholar] [CrossRef]
  20. Tiwary, A.; Singh, R. Lectins: Novel drug targeting molecules. Indian J. Pharm. Sci. 1999, 61, 259. [Google Scholar]
  21. Chang, S.T.; Buswell, J. Mushroom nutriceuticals. World J. Microbiol. Biotechnol. 1996, 12, 473–476. [Google Scholar] [CrossRef] [PubMed]
  22. Wasser, S.P.; Sokolov, D.; Reshetnikov, S.V.; Timor-Tismenetsky, M. Dietary supplements from medicinal mushrooms: Diversity of types and variety of regulations. Int. J. Med. Mushrooms 2000, 2, 1–19. [Google Scholar] [CrossRef]
  23. Breene, W.M. Nutritional and medicinal value of specialty mushrooms. J. Food Prot. 1990, 53, 883–894. [Google Scholar]
  24. Chang, S.T.; Miles, P.G. Mushrooms biology-a new discipline. Mycologist 1992, 6, 64–65. [Google Scholar] [CrossRef]
  25. Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef] [PubMed]
  26. Lindequist, U.; Niedermeyer, T.H.; Jülich, W.-D. The pharmacological potential of mushrooms. Evid.-Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef]
  27. Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 2011, 89, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
  28. Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [CrossRef] [PubMed]
  29. Hawksworth, D.L. Mushrooms: The extent of the unexplored potential. Int. J. Med. Mushrooms 2001, 3, 333–340. [Google Scholar] [CrossRef]
  30. Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Sabotič, J. Proteins of higher fungi—From forest to application. Trends Biotechnol. 2012, 30, 259–273. [Google Scholar] [CrossRef] [PubMed]
  31. She, Q.B.; Ng, T.B.; Liu, W.K. A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible mushroom Volvariella volvacea. Biochem. Biophys. Res. Commun. 1998, 247, 106–111. [Google Scholar] [CrossRef] [PubMed]
  32. Wang, H.; Gao, J.; Ng, T.B. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 2000, 275, 810–816. [Google Scholar] [CrossRef] [PubMed]
  33. Weis, A.L.; Wasser, S.P. Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 1999, 19, 32. [Google Scholar] [CrossRef]
  34. Sliva, D. Ganoderma lucidum in cancer research. Leuk. Res. 2006, 30, 767–768. [Google Scholar] [CrossRef] [PubMed]
  35. Kim, B.K.; Cho, H.Y.; Kim, J.S.; Kim, H.W.; Choi, E.C. Studies on constituents of higher Fungi of Korea (LXVIII). Studies 1993, 24, 203–212. [Google Scholar]
  36. Singh, R.S.; Bhari, R.; Kaur, H.P. Mushroom lectins: Current status and future perspectives. Crit. Rev. Biotechnol. 2010, 30, 99–126. [Google Scholar] [CrossRef] [PubMed]
  37. Khan, F.; Khan, M.I. Fungal lectins: Current molecular and biochemical perspectives. Int. J. Biol. Chem. 2011, 5, 1–20. [Google Scholar] [CrossRef]
  38. Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 2004, 14, 53R–62R. [Google Scholar] [CrossRef] [PubMed]
  39. Końska, G. The lectins of higher fungi (macromycetes)—Their occurrence, physiological role and biological activity. Int. J. Med. Mushrooms 2006, 8, 19–30. [Google Scholar] [CrossRef]
  40. Guillot, J.; Konska, G. Lectins in higher fungi. Biochem. Syst. Ecol. 1997, 25, 203–230. [Google Scholar] [CrossRef]
  41. Singh, S.S.; Wang, H.; Chan, Y.S.; Pan, W.; Dan, X.; Yin, C.M.; Akkouh, O.; Ng, T.B. Lectins from Edible Mushrooms. Molecules 2014, 20, 446–469. [Google Scholar] [CrossRef] [PubMed]
  42. Peumans, W.J.; van Damme, E.J. Lectins as plant defense proteins. Plant Physiol. 1995, 109, 347–352. [Google Scholar] [CrossRef] [PubMed]
  43. Swamy, B.M.; Bhat, A.G.; Hegde, G.V.; Naik, R.S.; Kulkarni, S.; Inamdar, S.R. Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiology 2004, 14, 951–957. [Google Scholar] [CrossRef] [PubMed]
  44. Varrot, A.; Basheer, S.M.; Imberty, A. Fungal lectins: Structure, function and potential applications. Curr. Opin. Struct. Biol. 2013, 23, 678–685. [Google Scholar] [CrossRef] [PubMed]
  45. Wang, H.X.; Ng, T.B.; Liu, W.K.; Ooi, V.E.C.; Chang, S.T. Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int. J. Pept. Protein Res. 1995, 46, 508–513. [Google Scholar] [CrossRef] [PubMed]
  46. Kawagishi, H.; Mitsunaga, S.; Yamawaki, M.; Ido, M.; Shimada, A.; Kinoshita, T.; Murata, T.; Usui, T.; Kimura, A.; Chiba, S. A lectin from mycelia of the fungus Ganoderma lucidum. Phytochemistry 1997, 44, 7–10. [Google Scholar] [CrossRef] [PubMed]
  47. Mikiashvili, N.; Elisashvili, V.; Wasser, S.P.; Nevo, E. Comparative study of lectin activity of higher Basidiomycetes. Int. J. Med. Mushrooms 2006, 8, 31–38. [Google Scholar] [CrossRef]
  48. Zhao, J.K.; Zhao, Y.C.; Li, S.H.; Wang, H.X.; Ng, T.B. Isolation and characterization of a novel thermostable lectin from the wild edible mushroom Agaricus arvensis. J. Basic Microbiol. 2011, 51, 304–311. [Google Scholar] [CrossRef] [PubMed]
  49. Nakamura-Tsuruta, S.; Kominami, J.; Kuno, A.; Hirabayashi, J. Evidence that Agaricus bisporus agglutinin (ABA) has dual sugar-binding specificity. Biochem. Biophys. Res. Commun. 2006, 347, 215–220. [Google Scholar] [CrossRef] [PubMed]
  50. Yu, L.; Fernig, D.G.; Smith, J.A.; Milton, J.D.; Rhodes, J.M. Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 1993, 53, 4627–4632. [Google Scholar] [PubMed]
  51. Carrizo, M.E.; Capaldi, S.; Perduca, M.; Irazoqui, F.J.; Nores, G.A.; Monaco, H.L. The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J. Biol. Chem. 2005, 280, 10614–10623. [Google Scholar] [CrossRef] [PubMed]
  52. Batterbury, M.; Tebbs, C.A.; Rhodes, J.M.; Grierson, I. Agaricus bisporus (edible mushroom lectin) inhibits ocular fibroblast proliferation and collagen lattice contraction. Exp. Eye Res. 2002, 74, 361–370. [Google Scholar] [CrossRef] [PubMed]
  53. Kawagishi, H.; Aya, N.; Takayuki, Y.; Takashi, M.; Toshihiko, H.; Takuji, N. Isolation and properties of a lectin from the fruiting bodies of Agaricus blazei. Carbohydr. Res. 1988, 183, 150–154. [Google Scholar] [CrossRef] [PubMed]
  54. Sage, H.J.; Vazquez, J.J. Studies on a hemagglutinin from the mushroom agaricus campestris. J. Biol. Chem. 1967, 242, 120–125. [Google Scholar] [PubMed]
  55. Sage, H.J.; Connett, S.L. Studies on a hemagglutinin from the meadow mushroom: II. purification, composition, and structure of agaricus campestris hemagglutinin. J. Biol. Chem. 1969, 244, 4713–4719. [Google Scholar] [PubMed]
  56. Zhao, C.; Sun, H.; Tong, X.; Qi, Y. An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem. J. 2003, 374, 321–327. [Google Scholar] [CrossRef] [PubMed]
  57. Yang, N.; Liang, Y.; Xiang, Y.; Zhang, Y.; Sun, H.; Wang, D.C. Crystallization and preliminary crystallographic studies of an antitumour lectin from the edible mushroom Agrocybe aegerita. Protein Pept. Lett. 2005, 12, 705–707. [Google Scholar] [CrossRef] [PubMed]
  58. Sun, H.; Zhao, C.G.; Tong, X.; Qi, Y.P. A lectin with mycelia differentiation and antiphytovirus activities from the edible mushroom Agrocybe aegerita. J. Biochem. Mol. Biol. 2003, 36, 214–222. [Google Scholar] [CrossRef] [PubMed]
  59. Jiang, S.; Chen, Y.; Wang, M.; Yin, Y.; Pan, Y.; Gu, B.; Yu, G.; Li, Y.; Wong, B.H.; Liang, Y.; et al. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem. J. 2012, 443, 369–378. [Google Scholar] [CrossRef] [PubMed]
  60. Yagi, F.; Miyamoto, M.; Abe, T.; Minami, Y.; Tadera, K.; Goldstein, I.J. Purification and carbohydrate-binding specificity of Agrocybe cylindracea lectin. Glycoconj. J. 1997, 14, 281–288. [Google Scholar] [CrossRef] [PubMed]
  61. Wang, H.; Ng, T.B.; Liu, Q. Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea. Life Sci. 2002, 70, 877–885. [Google Scholar] [CrossRef] [PubMed]
  62. Lehmann, F.; Tiralongo, E.; Tiralongo, J. Sialic acid-specific lectins: Occurrence, specificity and function. Cell. Mol. Life Sci. 2006, 63, 1331–1354. [Google Scholar] [CrossRef] [PubMed]
  63. Yagi, F.; Hiroyama, H.; Kodama, S. Agrocybe cylindracea lectin is a member of the galectin family. Glycoconj. J. 2001, 18, 745–749. [Google Scholar] [CrossRef] [PubMed]
  64. Kochibe, N.; Furukawa, K. Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry 1980, 19, 2841–2846. [Google Scholar] [CrossRef] [PubMed]
  65. Olausson, J.; Tibell, L.; Jonsson, B.H.; Pahlsson, P. Detection of a high affinity binding site in recombinant Aleuria aurantia lectin. Glycoconj. J. 2008, 25, 753–762. [Google Scholar] [CrossRef] [PubMed]
  66. Lutsik-Kordovsky, M.D.; Stasyk, T.V.; Stoika, R.S. Analysis of cytotoxicity of lectin and non-lectin proteins from Amanita mushrooms. Eksp. Onkol. 2001, 23, 43–45. [Google Scholar]
  67. Zhuang, C.; Murata, T.; Usui, T.; Kawagishi, H.; Kobayashi, K. Purification and characterization of a lectin from the toxic mushroom Amanita pantherina. Biochim. Biophys. Acta Gen. Subj. 1996, 1291, 40–44. [Google Scholar] [CrossRef]
  68. Antonyuk, V.O.; Yu Klyuchivska, O.; Stoika, R.S. Cytotoxic proteins of Amanita virosa Secr. mushroom: Purification, characteristics and action towards mammalian cells. Toxicon 2010, 55, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
  69. Feng, K.; Liu, Q.H.; Ng, T.B.; Liu, H.Z.; Li, J.Q.; Chen, G.; Sheng, H.Y.; Xie, Z.L.; Wang, H.X. Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens. Biochem. Biophys. Res. Commun. 2006, 345, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
  70. Yagi, F.; Tadera, K. Purification and characterization of lectin from Auricularia polytricha. Agric. Biol. Chem. 1988, 52, 2077–2079. [Google Scholar] [CrossRef]
  71. Koyama, Y.; Suzuki, T.; Odani, S.; Nakamura, S.; Kominami, J.; Hirabayashi, J.; Isemura, M. Carbohydrate specificity of lectins from Boletopsis leucomelas and Aralia cordate. Biosci. Biotechnol. Biochem. 2006, 70, 542–545. [Google Scholar] [CrossRef] [PubMed]
  72. Zheng, S.; Li, C.; Ng, T.B.; Wang, H.X. A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem. 2007, 42, 1620–1624. [Google Scholar] [CrossRef]
  73. Licastro, F.; Morini, M.C.; Kretz, O.; Dirheimer, G.; Creppy, E.E.; Stirpe, F. Mitogenic activity and immunological properties of bolesatine, a lectin isolated from the mushroom Boletus satanas Lenz. Int. J. Biochem. 1993, 25, 789–792. [Google Scholar] [CrossRef] [PubMed]
  74. Colceag, J.; Mogos, S.; Hulea, S. Studies on occurrence and characterization of phytolectins in some species of mushrooms. Rev. Roum. Biochim. 1984, 21, 263–266. [Google Scholar]
  75. Horibe, M.; Kobayashi, Y.; Dohra, H.; Morita, T.; Murata, T.; Usui, T.; Nakamura-Tsuruta, S.; Kamei, M.; Hirabayashi, J.; Matsuura, M.; et al. Toxic isolectins from the mushroom Boletus venenatus. Phytochemistry 2010, 71, 648–657. [Google Scholar] [CrossRef] [PubMed]
  76. Kobayashi, Y.; Ishizaki, T.; Kawagishi, H. Screening for lectins in wild and cultivated mushrooms from Japan and their sugar-binding specificities. Int. J. Med. Mushrooms 2004, 6, 117–129. [Google Scholar] [CrossRef]
  77. Otta, Y.; Amano, K.; Nishiyama, K.; Ando, A.; Ogawa, S.; Nagata, Y. Purification and properties of a lectin from ascomycete mushroom, Ciborinia camelliae. Phytochemistry 2002, 60, 103–107. [Google Scholar] [CrossRef] [PubMed]
  78. Lyimo, B.; Funakuma, N.; Minami, Y.; Yagi, F. Characterization of a new alpha-Galactosyl-Binding Lectin from the Mushroom Clavaria purpurea. Biosci. Biotechnol. Biochem. 2012, 76, 336–342. [Google Scholar] [CrossRef] [PubMed]
  79. Pohleven, J.; Obermajer, N.; Sabotic, J.; Anzlovar, S.; Sepcic, K.; Kos, J.; Kralj, B.; Strukelj, B.; Brzin, J. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim. Biophys. Acta 2009, 1790, 173–181. [Google Scholar] [CrossRef] [PubMed]
  80. Horejsi, V.; Kocourek, J. Studies on lectins. XXXVI. Properties of some lectins prepared by affinity chromatography on O-glycosyl polyacrylamide gels. Biochim. Biophys. Acta 1978, 538, 299–315. [Google Scholar] [CrossRef] [PubMed]
  81. Pohleven, J.; Renko, M.; Magister, Š.; Smith, D.F.; Künzler, M.; Štrukelj, B.; Turk, D.; Kos, J.; Sabotič, J. Bivalent carbohydrate binding is required for biological activity of Clitocybe nebularis Lectin (CNL), the N,N'-Diacetyllactosediamine (GalNAcβ1–4GlcNAc, LacdiNAc)-specific Lectin from Basidiomycete C. nebularis. J. Biol. Chem. 2012, 287, 10602–10612. [Google Scholar] [CrossRef] [PubMed]
  82. Cooper, D.N.; Boulianne, R.P.; Charlton, S.; Farrell, E.M.; Sucher, A.; Lu, B.C. Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J. Biol. Chem. 1997, 272, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
  83. Schubert, M.; Bleuler-Martinez, S.; Butschi, A.; Walti, M.A.; Egloff, P.; Stutz, K.; Yan, S.; Collot, M.; Mallet, J.M.; Wilson, I.B.; et al. Plasticity of the beta-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system. PLoS Pathog. 2012, 8, e1002706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Walti, M.A.; Walser, P.J.; Thore, S.; Grunler, A.; Bednar, M.; Kunzler, M.; Aebi, M. Structural basis for chitotetraose coordination by CGL3, a novel galectin-related protein from Coprinopsis cinerea. J. Mol. Biol. 2008, 379, 146–159. [Google Scholar] [CrossRef] [PubMed]
  85. Jung, E.C.; Kim, K.D.; Bae, C.H.; Kim, J.C.; Kim, D.K.; Kim, H.H. A mushroom lectin from ascomycete Cordyceps militaris. Biochim. Biophys. Acta 2007, 1770, 833–838. [Google Scholar] [CrossRef] [PubMed]
  86. Ng, T.B.; Ngai, P.H.; Xia, L. An agglutinin with mitogenic and antiproliferative activities from the mushroom Flammulina velutipes. Mycologia 2006, 98, 167–171. [Google Scholar] [CrossRef] [PubMed]
  87. Yatohgo, T.; Nakata, M.; Tsumuraya, Y.; Hashimoto, Y.; Yamamoto, S. Purification and properties of a lectin from the fruitbodies of Flammulina velutipes. Agric. Biol. Chem. 1988, 52, 1485–1493. [Google Scholar] [CrossRef]
  88. Ngai, P.H.K.; Ng, T.B. A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem. Biophys. Res. Commun. 2004, 314, 988–993. [Google Scholar] [CrossRef] [PubMed]
  89. Thakur, A.; Rana, M.; Lakhanpal, T.N.; Ahmad, A.; Khan, M.I. Purification and characterization of lectin from fruiting body of Ganoderma lucidum. Biochim. Biophys. Acta Gen. Subj. 2007, 1770, 1404–1412. [Google Scholar] [CrossRef]
  90. Thakur, A.; Pal, L.; Ahmad, A.; Khan, M.I. Complex carbohydrate specificity of lectin from fruiting body of Ganoderma lucidum. A surface plasmon resonance study. IUBMB Life 2007, 59, 758–764. [Google Scholar] [CrossRef] [PubMed]
  91. Nagata, Y.; Yamashita, M.; Honda, H.; Akabane, J.; Uehara, K.; Saito, A.; Sumisa, F.; Nishibori, K.; Oodaira, Y. Characterization, occurrence, and molecular cloning of a lectin from Grifola frondosa: Jacalin-related lectin of fungal origin. Biosci. Biotechnol. Biochem. 2005, 69, 2374–2380. [Google Scholar] [CrossRef] [PubMed]
  92. Stepanova, L.; Burygin, G.; Matora, L.; Bogatyrev, V.; Sokolova, M.; Nikitina, V. Localization and immunochemical characteristics of basidiomycete Grifola frondosa (Fr.) SF Gray lectin. Mikrobiologiia 2009, 78, 236. [Google Scholar] [PubMed]
  93. Kawagishi, H.; Mori, H.; Uno, A.; Kimura, A.; Chiba, S. A sialic acid-binding lectin from the mushroom Hericium erinaceum. FEBS Lett. 1994, 340, 56–58. [Google Scholar] [CrossRef] [PubMed]
  94. Li, Y.; Zhang, G.; Ng, T.B.; Wang, H. A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J. Biomed. Biotechnol. 2010, 2010, 716515. [Google Scholar] [PubMed]
  95. Veau, B.; Guillot, J.; Damez, M.; Dusser, M.; Konska, G.; Botton, B. Purification and characterization of an anti-(A+B) specific lectin from the mushroom Hygrophorus hypothejus. Biochim. Biophys. Acta 1999, 1428, 39–44. [Google Scholar] [CrossRef] [PubMed]
  96. Guillot, J.; Coulet, M. Properties of the anti (A plus B) lectin of Hygrophorus hypothejus Fr. Fixation, elution, inhibition. Rev. Fr. Transfus. 1974, 17, 49. [Google Scholar] [CrossRef] [PubMed]
  97. Suzuki, T.; Sugiyama, K.; Hirai, H.; Ito, H.; Morita, T.; Dohra, H.; Murata, T.; Usui, T.; Tateno, H.; Hirabayashi, J.; et al. Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 2012, 22, 616–629. [Google Scholar] [CrossRef] [PubMed]
  98. Coulet, M.; Guillot, J.; Betail, G. Action of certain mono- and polysaccharides on hemagglutinins of certain mushrooms. Acta Pol. Pharm. 1972, 29, 299–307. [Google Scholar] [PubMed]
  99. Zhao, J.K.; Wang, H.X.; Ng, T.B. Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 2009, 53, 360–366. [Google Scholar] [CrossRef] [PubMed]
  100. Musflek, M.; Ticha, M.; Volc, J.; Kocourek, J. Studies on lectins LXXI. Lectins in mycelial cultures of Kuehneromyces mutabilis, Pholiota squarrosa, and Flammulina velutipes. In Proceedings of the Tenth Lectin Meeting, Prague, Czech Republic, July 1988; Sigma Aldrich Corp: St. Louis, MI, USA, 1990; p. 53. [Google Scholar]
  101. Guillot, J.; Genaud, L.; Gueugnot, J.; Damez, M. Purification and properties of two hemagglutinins of the mushroom Laccaria amethystina. Biochemistry 1983, 22, 5365–5369. [Google Scholar] [CrossRef]
  102. Lyimo, B.; Yagi, F.; Minami, Y. Primary structure and specificity of a new member of galectin family from the Amethyst deceiver mushroom Laccaria amethystina. Biosci. Biotechnol. Biochem. 2011, 75, 62–69. [Google Scholar] [CrossRef] [PubMed]
  103. Ticha, M.; Sychrova, H.; Kocourek, J. Saccharide binding properties of lectins of higher fungi. In Lectins; Bøg-Hansen, T.C., Freed, D.L.J., Eds.; Sigma chemical company: St. Louis, MI, USA, 1988; Volume 6, pp. 383–391. [Google Scholar]
  104. Guillot, J.; Giollant, M.; Damez, M.; Dusser, M. Isolation and characterization of a lectin from the mushroom, Lactarius deliciosus. J. Biochem. 1991, 109, 840–845. [Google Scholar] [PubMed]
  105. Giollant, M.; Guillot, J.; Damez, M.; Dusser, M.; Didier, P.; Didier, E. Characterization of a lectin from Lactarius deterrimus. Research on the possible involvement of the fungal lectin in recognition between mushroom and spruce during the early stages of mycorrhizae formation. Plant Physiol. 1993, 101, 513–522. [Google Scholar] [PubMed]
  106. Wu, Y.; Wang, H.; Ng, T.B. Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr. Res. 2011, 346, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
  107. Sychrova, H.; Ticha, M.; Kocourek, J. Studies on lectins. LIX. Isolation and properties of lectins from fruiting bodies of Xerocomus chrysenteron and Lactarius lignyotus. Can. J. Biochem. Cell Biol. 1985, 63, 700–704. [Google Scholar] [CrossRef] [PubMed]
  108. Panchak, L.V.; Antonyuk, V.O. Purification of a lectin from fruit bodies of Lactarius pergamenus (Fr.) Fr. and studies of its properties. Biochemistry 2011, 76, 438–449. [Google Scholar] [PubMed]
  109. Panchak, L.V.; Antoniuk, V.O. Purification of lectin from fruiting bodies of Lactarius rufus (Scop.: Fr.)Fr. and its carbohydrate specificity. Ukr. Biokhim. Zhurnal 2007, 79, 123–128. [Google Scholar]
  110. Giollant, M. Les Lectines des Lactaires du Groupe Dapestes: (L. deiciosus, L. deterrimus, L. salmonicolor). Purification, Étude Biochimique et Spécificité. Invervention des Lectines dans les Phénoménes de Reconnaissance Moléculaire au Cours des Événements Précoces de la Mycorrhization avec les Conifers Associés. Thése de Doctorat en Pharmacie, Univ. Clermont I, Clermont-Ferrand, France, 1991. [Google Scholar]
  111. Tateno, H.; Goldstein, I.J. Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins. J. Biol. Chem. 2003, 278, 40455–40463. [Google Scholar] [CrossRef] [PubMed]
  112. Mancheno, J.M.; Tateno, H.; Goldstein, I.J.; Martinez-Ripoll, M.; Hermoso, J.A. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 2005, 280, 17251–17259. [Google Scholar] [CrossRef] [PubMed]
  113. Konska, G.; Guillot, J.; Dusser, M.; Damez, M.; Botton, B. Isolation and characterization of an N-acetyllactosamine-binding lectin from the mushroom Laetiporus sulfureus. J. Biochem. 1994, 116, 519–523. [Google Scholar] [PubMed]
  114. Wang, H.X.; Ng, T.B.; Ooi, V.E.C. Studies on purification of a lectin from fruiting bodies of the edible shiitake mushroom Lentinus edodes. Int. J. Biochem. Cell Biol. 1999, 31, 595–599. [Google Scholar] [CrossRef]
  115. Vetchinkina, E.P.; Pozdnyakova, N.N.; Nikitina, V.E. Laccase and lectin activities of intracellular proteins produced in a submerged culture of the xylotrophic basidiomycete Lentinus edodes. Curr. Microbiol. 2008, 57, 381–385. [Google Scholar] [CrossRef] [PubMed]
  116. Tsivileva, O.M.; Nikitina, V.E.; Garibova, L.V.; Zav’yalova, L.A.; Ignatov, V.V. Hemagglutinating activity of the fungus Lentinus edodes (Berk.) sing “Lentinus edodes (Berk.) Pegler”. Microbiology 2000, 69, 30–35. [Google Scholar] [CrossRef]
  117. Eghianruwa, Q.; Odekanyin, O.; Kuku, A. Physicochemical properties and acute toxicity studies of a lectin from the saline extract of the fruiting bodies of the shiitake mushroom, Lentinula edodes (Berk). Int. J. Biochem. Mol. Biol. 2011, 2, 309–317. [Google Scholar] [PubMed]
  118. Sharma, S.K.; Atri, N. Comparative study on lectin activity in mycelium of wild mushroom (Lentinus) species. Middle-East J. Sci. Res. 2012, 12, 499–503. [Google Scholar]
  119. Goldstein, I.J.; Winter, H.C.; Aurandt, J.; Confer, L.; Adamson, J.T.; Hakansson, K.; Remmer, H. A new alpha-galactosyl-binding protein from the mushroom Lyophyllum decastes. Arch. Biochem. Biophys. 2007, 467, 268–274. [Google Scholar] [CrossRef] [PubMed]
  120. Zurga, S.; Pohleven, J.; Renko, M.; Bleuler-Martinez, S.; Sosnowski, P.; Turk, D.; Kunzler, M.; Kos, J.; Sabotic, J. A novel beta-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic. FEBS J. 2014, 281, 3489–3506. [Google Scholar] [CrossRef] [PubMed]
  121. Loganathan, D.; Winter, H.C.; Judd, W.J.; Petryniak, J.; Goldstein, I.J. Immobilized Marasmius oreades agglutinin: Use for binding and isolation of glycoproteins containing the xenotransplantation or human type B epitopes. Glycobiology 2003, 13, 955–960. [Google Scholar] [CrossRef] [PubMed]
  122. Winter, H.C.; Mostafapour, K.; Goldstein, I.J. The mushroom Marasmius oreades lectin is a blood group type B agglutinin that recognizes the Galalpha 1,3Gal and Galalpha 1,3Galbeta 1,4GlcNAc porcine xenotransplantation epitopes with high affinity. J. Biol. Chem. 2002, 277, 14996–15001. [Google Scholar] [CrossRef] [PubMed]
  123. Rempel, B.P.; Winter, H.C.; Goldstein, I.J.; Hindsgaul, O. Characterization of the recognition of blood group B trisaccharide derivatives by the lectin from Marasmius oreades using frontal affinity chromatography-mass spectrometry. Glycoconj. J. 2002, 19, 175–180. [Google Scholar] [CrossRef] [PubMed]
  124. Tateno, H.; Goldstein, I.J. Partial identification of carbohydrate-binding sites of a Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades by site-directed mutagenesis. Arch. Biochem. Biophys. 2004, 427, 101–109. [Google Scholar] [CrossRef] [PubMed]
  125. Shimokawa, M.; Fukudome, A.; Yamashita, R.; Minami, Y.; Yagi, F.; Tateno, H.; Hirabayashi, J. Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj. J. 2012, 29, 457–465. [Google Scholar] [CrossRef] [PubMed]
  126. Ogawa, S.; Otta, Y.; Ando, A.; Nagata, Y. A lectin from an ascomycete mushroom, Melastiza chateri: No synthesis of the lectin in mycelial isolate. Biosci. Biotechnol. Biochem. 2001, 65, 686–689. [Google Scholar] [CrossRef] [PubMed]
  127. Kawagishi, H.; Takagi, J.; Taira, T.; Murata, T.; Usui, T. Purification and characterization of a lectin from the mushroom Mycoleptodonoides aitchisonii. Phytochemistry 2001, 56, 53–58. [Google Scholar] [CrossRef] [PubMed]
  128. Matsumoto, H.; Natsume, A.; Ueda, H.; Saitoh, T.; Ogawa, H. Screening of a unique lectin from 16 cultivable mushrooms with hybrid glycoprotein and neoproteoglycan probes and purification of a novel N-acetylglucosamine-specific lectin from Oudemansiella platyphylla fruiting body. Biochim. Biophys. Acta 2001, 1526, 37–43. [Google Scholar] [CrossRef] [PubMed]
  129. Gold, E.R.; Balding, P. Receptor-Specific Proteins: Plant and Animal Lectins; Excerpta Medica: Amsterdam, The Netherlands, 1975. [Google Scholar]
  130. Park, J.H.; Ryu, C.S.; Kim, H.N.; Na, Y.J.; Park, H.J.; Kim, H. A sialic acid-specific lectin from the mushroom Paecilomyces Japonica that exhibits hemagglutination activity and cytotoxicity. Protein Pept. Lett. 2004, 11, 563–569. [Google Scholar] [CrossRef] [PubMed]
  131. Wang, H.; Ng, T.B. First report of an arabinose-specific fungal lectin. Biochem. Biophys. Res. Commun. 2005, 337, 621–625. [Google Scholar] [CrossRef] [PubMed]
  132. Kawagishi, H.; Wasa, T.; Murata, T.; Usui, T.; Kimura, A.; Chiba, S. Two N-acetyl-d-galactosamine-specific lectins from Phaeolepiota aurea. Phytochemistry 1996, 41, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
  133. Zhang, G.Q.; Sun, J.; Wang, H.X.; Ng, T.B. A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa. Acta Biochim. Pol. 2009, 56, 415–421. [Google Scholar] [PubMed]
  134. Kawagishi, H.; Abe, Y.; Nagata, T.; Kimura, A.; Chiba, S. A lectin from the mushroom Pholiota aurivella. Agric. Biol. Chem. 1991, 55, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
  135. Kobayashi, Y.; Tateno, H.; Dohra, H.; Moriwaki, K.; Miyoshi, E.; Hirabayashi, J.; Kawagishi, H. A novel core fucose-specific lectin from the mushroom Pholiota squarrosa. J. Biol. Chem. 2012, 287, 33973–33982. [Google Scholar] [CrossRef] [PubMed]
  136. Suzuki, T.; Amano, Y.; Fujita, M.; Kobayashi, Y.; Dohra, H.; Hirai, H.; Murata, T.; Usui, T.; Morita, T.; Kawagishi, H. Purification, characterization, and cDNA cloning of a lectin from the mushroom Pleurocybella porrigens. Biosci. Biotechnol. Biochem. 2009, 73, 702–709. [Google Scholar] [CrossRef] [PubMed]
  137. Li, Y.R.; Liu, Q.H.; Wang, H.X.; Ng, T.B. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim. Biophys. Acta 2008, 1780, 51–57. [Google Scholar] [CrossRef] [PubMed]
  138. Yoshida, M.; Kato, S.; Oguri, S.; Nagata, Y. Purification and properties of lectins from a mushroom, Pleurotus cornucopiae. Biosci. Biotechnol. Biochem. 1994, 58, 498–501. [Google Scholar] [CrossRef]
  139. Mahajan, R.G.; Patil, S.I.; Mohan, D.R.; Shastry, P. Pleurotus Eous mushroom lectin (PEL) with mixed carbohydrate inhibition and antiproliferative activity on tumor cell lines. J. Biochem. Mol. Biol. Biophys. 2002, 6, 341–345. [Google Scholar] [CrossRef] [PubMed]
  140. Kogure, T. On the specificity of mushroom Pleurotus ostreatus and Pleurotus spodoleucus extracts. Vox Sang. 1975, 29, 221–227. [Google Scholar] [CrossRef] [PubMed]
  141. Kobayashi, Y.; Nakamura, H.; Sekiguchi, T.; Takanami, R.; Murata, T.; Usui, T.; Kawagishi, H. Analysis of the carbohydrate binding specificity of the mushroom Pleurotus ostreatus lectin by surface plasmon resonance. Anal. Biochem. 2005, 336, 87–93. [Google Scholar] [CrossRef] [PubMed]
  142. Kawagishi, H.; Suzuki, H.; Watanabe, H.; Nakamura, H.; Sekiguchi, T.; Murata, T.; Usui, T.; Sugiyama, K.; Suganuma, H.; Inakuma, T.; et al. A lectin from an edible mushroom Pleurotus ostreatus as a food intake-suppressing substance. Biochim. Biophys. Acta Gen. Subj. 2000, 1474, 299–308. [Google Scholar] [CrossRef]
  143. Wang, H.; Ng, T.B. Isolation of a novel N-acetylglucosamine-specific lectin from fresh sclerotia of the edible mushroom Pleurotus tuber-regium. Protein Expr. Purif. 2003, 29, 156–160. [Google Scholar] [CrossRef] [PubMed]
  144. Wang, H.; Ng, T.B.; Liu, Q. A novel lectin from the wild mushroom Polyporus adusta. Biochem. Biophys. Res. Commun. 2003, 307, 535–539. [Google Scholar] [CrossRef] [PubMed]
  145. Mo, H.; Winter, H.C.; Goldstein, I.J. Purification and characterization of a Neu5Acalpha2-6Galbeta1-4Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. J. Biol. Chem. 2000, 275, 10623–10629. [Google Scholar] [CrossRef] [PubMed]
  146. Zhang, B.; Palcic, M.M.; Mo, H.; Goldstein, I.J.; Hindsgaul, O. Rapid determination of the binding affinity and specificity of the mushroom Polyporus squamosus lectin using frontal affinity chromatography coupled to electrospray mass spectrometry. Glycobiology 2001, 11, 141–147. [Google Scholar] [CrossRef] [PubMed]
  147. Toma, V.; Zuber, C.; Winter, H.C.; Goldstein, I.J.; Roth, J. Application of a lectin from the mushroom Polysporus squamosus for the histochemical detection of the NeuAcalpha2,6Galbeta1,4Glc/GlcNAc sequence of N-linked oligosaccharides: A comparison with the Sambucus nigra lectin. Histochem. Cell Biol. 2001, 116, 183–193. [Google Scholar] [PubMed]
  148. Arigi, E.; Singh, S.; Kahlili, A.H.; Winter, H.C.; Goldstein, I.J.; Levery, S.B. Characterization of neutral and acidic glycosphingolipids from the lectin-producing mushroom, Polyporus squamosus. Glycobiology 2007, 17, 754–766. [Google Scholar] [CrossRef] [PubMed]
  149. Ueda, H.; Kojima, K.; Saitoh, T.; Ogawa, H. Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid. FEBS Lett. 1999, 448, 75–80. [Google Scholar] [CrossRef] [PubMed]
  150. Ueda, H.; Matsumoto, H.; Takahashi, N.; Ogawa, H. Psathyrella velutina mushroom lectin exhibits high affinity toward sialoglycoproteins possessing terminal N-acetylneuraminic acid alpha 2,3-linked to penultimate galactose residues of trisialyl N-glycans. comparison with other sialic acid-specific lectins. J. Biol. Chem. 2002, 277, 24916–24925. [Google Scholar] [CrossRef] [PubMed]
  151. Ueda, H.; Saitoh, T.; Kojima, K.; Ogawa, H. Multi-specificity of a Psathyrella velutina mushroom lectin: Heparin/pectin binding occurs at a site different from the N-acetylglucosamine/N-acetylneuraminic acid-specific site. J. Biochem. 1999, 126, 530–537. [Google Scholar] [CrossRef] [PubMed]
  152. Kochibe, N.; Matta, K.L. Purification and properties of an N-acetylglucosamine-specific lectin from Psathyrella velutina mushroom. J. Biol. Chem. 1989, 264, 173–177. [Google Scholar] [PubMed]
  153. Hernandez, E.; Ortiz, R.; Lopez, F.; Masso, F.; Montano, L.F.; Martinage, A.; Zenteno, E. Purification and characterization of a galactose-specific lectin from Psilocybe barrerae. Phytochemistry 1993, 32, 1209–1211. [Google Scholar] [CrossRef]
  154. Zhao, S.; Zhao, Y.; Li, S.; Zhao, J.; Zhang, G.; Wang, H.; Ng, T.B. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj. J. 2010, 27, 259–265. [Google Scholar] [CrossRef] [PubMed]
  155. Zhang, G.; Sun, J.; Wang, H.; Ng, T.B. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 2010, 17, 775–781. [Google Scholar] [CrossRef] [PubMed]
  156. Chumkhunthod, P.; Rodtong, S.; Lambert, S.J.; Fordham-Skelton, A.P.; Rizkallah, P.J.; Wilkinson, M.C.; Reynolds, C.D. Purification and characterization of an N-acetyl-d-galactosamine-specific lectin from the edible mushroom Schizophyllum commune. Biochim. Biophys. Acta 2006, 1760, 326–332. [Google Scholar] [CrossRef] [PubMed]
  157. Han, C.H.; Liu, Q.H.; Ng, T.B.; Wang, H.X. A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune. Biochem. Biophys. Res. Commun. 2005, 336, 252–257. [Google Scholar] [CrossRef] [PubMed]
  158. Ingram, G.A.; Murray-Rochard, S.; Dougherty, A.S. Agglutinins (lectins) and lysins in extracts of cultured and noncultured fungi. Lectins Biol. Biochem. Clin. Biochem. 1988, 6, 393–400. [Google Scholar]
  159. Damian, L.; Fournier, D.; Winterhalter, M.; Paquereau, L. Determination of thermodynamic parameters of Xerocomus chrysenteron lectin interactions with N-acetylgalactosamine and Thomsen-Friedenreich antigen by isothermal titration calorimetry. BMC Biochem. 2005, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  160. Trigueros, V.; Lougarre, A.; Ali-Ahmed, D.; Rahbe, Y.; Guillot, J.; Chavant, L.; Fournier, D.; Paquereau, L. Xerocomus chrysenteron lectin: Identification of a new pesticidal protein. Biochim. Biophys. Acta 2003, 1621, 292–298. [Google Scholar] [CrossRef] [PubMed]
  161. Liu, Q.; Wang, H.; Ng, T.B. Isolation and characterization of a novel lectin from the wild mushroom Xerocomus spadiceus. Peptides 2004, 25, 7–10. [Google Scholar] [CrossRef] [PubMed]
  162. Liu, Q.; Wang, H.; Ng, T.B. First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 1914–1919. [Google Scholar] [CrossRef]
  163. Luangsa-ard, J.J.; Hywel-Jones, N.L.; Manoch, L.; Samson, R.A. On the relationships of Paecilomyces sect. Isarioidea species. Mycol. Res. 2005, 109, 581–589. [Google Scholar] [CrossRef] [PubMed]
  164. Kobert, R. Lehrbuch der Intoxikationen; Fredinand Enke: Stuttgart, Germany, 1893. [Google Scholar]
  165. Van Eerde, A.; Grahn, E.M.; Winter, H.C.; Goldstein, I.J.; Krengel, U. Atomic-resolution structure of the alpha-galactosyl binding Lyophyllum decastes lectin reveals a new protein family found in both fungi and plants. Glycobiology 2014. [Google Scholar] [CrossRef]
  166. Wimmerova, M.; Mitchell, E.; Sanchez, J.F.; Gautier, C.; Imberty, A. Crystal structure of fungal lectin: Six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J. Biol. Chem. 2003, 278, 27059–27067. [Google Scholar] [CrossRef] [PubMed]
  167. Ogawa, S.; Nakajima, E.; Nagao, H.; Ohtoshi, M.; Ando, A.; Nagata, Y. Synthesis of a lectin in both mycelia and fruit bodies of the ascomycete mushroom Aleuria aurantia. Biosci. Biotechnol. Biochem. 1998, 62, 915–918. [Google Scholar] [CrossRef]
  168. Fujihashi, M.; Peapus, D.H.; Kamiya, N.; Nagata, Y.; Miki, K. Crystal Structure of Fucose-Specific Lectin from aleuria aurantia binding ligands at three of its five sugar recognition sites. Biochemistry 2003, 42, 11093–11099. [Google Scholar] [CrossRef] [PubMed]
  169. Cioci, G.; Mitchell, E.P.; Chazalet, V.; Debray, H.; Oscarson, S.; Lahmann, M.; Gautier, C.; Breton, C.; Perez, S.; Imberty, A. β-Propeller crystal structure of Psathyrella velutina lectin: An integrin-like fungal protein interacting with monosaccharides and calcium. J. Mol. Biol. 2006, 357, 1575–1591. [Google Scholar] [CrossRef] [PubMed]
  170. Kochibe, N. Manufacture of Novel Lectin with Psathyrella velutina. Japan Patent 88-151136, 1989. [Google Scholar]
  171. Feng, L.; Sun, H.; Zhang, Y.; Li, D.-F.; Wang, D.-C. Structural insights into the recognition mechanism between an antitumor galectin AAL and the Thomsen-Friedenreich antigen. FASEB J. 2010, 24, 3861–3868. [Google Scholar] [CrossRef] [PubMed]
  172. Yang, N.; Li, D.-F.; Feng, L.; Xiang, Y.; Liu, W.; Sun, H.; Wang, D.-C. Structural basis for the tumor cell apoptosis-inducing activity of an antitumor lectin from the edible mushroom Agrocybe aegerita. J. Mol. Biol. 2009, 387, 694–705. [Google Scholar] [CrossRef] [PubMed]
  173. Ban, M.; Yoon, H.J.; Demirkan, E.; Utsumi, S.; Mikami, B.; Yagi, F. Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate. J. Mol. Biol. 2005, 351, 695–706. [Google Scholar] [CrossRef] [PubMed]
  174. Kuwabara, N.; Hu, D.; Tateno, H.; Makyio, H.; Hirabayashi, J.; Kato, R. Conformational change of a unique sequence in a fungal galectin from Agrocybe cylindracea controls glycan ligand-binding specificity. FEBS Lett. 2013, 587, 3620–3625. [Google Scholar] [CrossRef] [PubMed]
  175. Walser, P.J.; Haebel, P.W.; Kunzler, M.; Sargent, D.; Kues, U.; Aebi, M.; Ban, N. Structure and functional analysis of the fungal galectin CGL2. Structure 2004, 12, 689–702. [Google Scholar] [CrossRef] [PubMed]
  176. Butschi, A.; Titz, A.; Walti, M.A.; Olieric, V.; Paschinger, K.; Nobauer, K.; Guo, X.; Seeberger, P.H.; Wilson, I.B.; Aebi, M.; et al. Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2. PLoS Pathog. 2010, 6, e1000717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  177. Bovi, M.; Carrizo, M.E.; Capaldi, S.; Perduca, M.; Chiarelli, L.R.; Galliano, M.; Monaco, H.L. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms. Glycobiology 2011, 21, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
  178. Grahn, E.; Askarieh, G.; Holmner, A.; Tateno, H.; Winter, H.C.; Goldstein, I.J.; Krengel, U. Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. J. Mol. Biol. 2007, 369, 710–721. [Google Scholar] [CrossRef] [PubMed]
  179. Grahn, E.M.; Winter, H.C.; Tateno, H.; Goldstein, I.J.; Krengel, U. Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium. J. Mol. Biol. 2009, 390, 457–466. [Google Scholar] [CrossRef] [PubMed]
  180. Kadirvelraj, R.; Grant, O.C.; Goldstein, I.J.; Winter, H.C.; Tateno, H.; Fadda, E.; Woods, R.J. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc human-type influenza receptor. Glycobiology 2011, 21, 973–984. [Google Scholar] [CrossRef] [PubMed]
  181. Birck, C.; Damian, L.; Marty-Detraves, C.; Lougarre, A.; Schulze-Briese, C.; Koehl, P.; Fournier, D.; Paquereau, L.; Samama, J.P. A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chrysenteron lectin XCL. J. Mol. Biol. 2004, 344, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
  182. Koyama, Y.; Katsuno, Y.; Miyoshi, N.; Hayakawa, S.; Mita, T.; Muto, H.; Isemura, S.; Aoyagi, Y.; Isemura, M. Apoptosis induction by lectin isolated from the mushroom boletopsis leucomelas in U937 cells. Biosci. Biotechnol. Biochem. 2002, 66, 784–789. [Google Scholar] [CrossRef] [PubMed]
  183. Wong, J.H.; Wang, H.; Ng, T.B. A haemagglutinin from the medicinal fungus Cordyceps militaris. Biosci. Rep. 2009, 29, 321–327. [Google Scholar] [CrossRef] [PubMed]
  184. Kawagishi, H.; Nomura, A.; Mizuno, T.; Kimura, A.; Chiba, S. Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim. Biophys. Acta 1990, 1034, 247–252. [Google Scholar] [CrossRef] [PubMed]
  185. Wang, S.X.; Zhang, G.Q.; Zhao, S.; Xu, F.; Zhou, Y.; Geng, X.L.; Liu, Y.; Wang, H.X. Purification and characterization of a novel lectin with antiphytovirus activities from the wild mushroom Paxillus involutus. Protein Pept. Lett. 2012, 20, 767–774. [Google Scholar] [CrossRef]
  186. Rouf, R.; Stephens, A.S.; Spaan, L.; Arndt, N.X.; Day, C.J.; May, T.W.; Tiralongo, E.; Tiralongo, J. G(2)/M cell cycle arrest by an N-acetyl-d-glucosamine specific lectin from Psathyrella asperospora. Glycoconj. J. 2014, 31, 61–70. [Google Scholar] [CrossRef] [PubMed]
  187. Wang, H.X.; Liu, W.K.; Ng, T.B.; Ooi, V.E.C.; Chang, S.T. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology 1996, 31, 205–211. [Google Scholar] [CrossRef] [PubMed]
  188. Lin, J.Y.; Chou, T.B. Isolation and characterization of a lectin from edible mushroom, Volvariella volvacea. J. Biochem. 1984, 96, 35–40. [Google Scholar] [PubMed]
  189. Marty-Detraves, C.; Francis, F.; Baricault, L.; Fournier, D.; Paquereau, L. Inhibitory action of a new lectin from Xerocomus chrysenteron on cell-substrate adhesion. Mol. Cell. Biochem. 2004, 258, 49–55. [Google Scholar] [CrossRef] [PubMed]
  190. Tsuda, M. Purification and characterization of a lectin from the mushroom, Flammulina veltipes. J. Biochem. 1979, 86, 1463–1468. [Google Scholar] [PubMed]
  191. Wang, H.X.; Ng, T.B. Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases. Planta Med. 2001, 67, 669–672. [Google Scholar] [CrossRef] [PubMed]
  192. Entlicher, G.; Jesenska, K.; Jarsova-Dejlova, J.; Jarnik, M.; Kocourek, J. Studies on lectins LXIII. Isolation and characterization of a lectin from stinkhorn mushroom Phallus impudicus. In Lectins, Biology, Biochemistry, Clinical Biochemstry; Hansen, T.C.B., Breborowicz, J., Eds.; Walter de Gruyter: Berlin, Germany, 1985; Volume 4, pp. 491–503. [Google Scholar]
  193. Kobayashi, Y.; Kawagishi, H. Fungal lectins: A growing family. Methods Mol. Biol. 2014, 1200, 15–38. [Google Scholar] [PubMed]
  194. Houser, J.; Komarek, J.; Kostlanova, N.; Cioci, G.; Varrot, A.; Kerr, S.C.; Lahmann, M.; Balloy, V.; Fahy, J.V.; Chignard, M.; et al. A soluble fucose-specific lectin from Aspergillus fumigatus conidia—Structure, specificity and possible role in fungal pathogenicity. PLoS ONE 2013, 8, e83077. [Google Scholar] [CrossRef] [PubMed]
  195. Kostlanova, N.; Mitchell, E.P.; Lortat-Jacob, H.; Oscarson, S.; Lahmann, M.; Gilboa-Garber, N.; Chambat, G.; Wimmerova, M.; Imberty, A. The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J. Biol. Chem. 2005, 280, 27839–27849. [Google Scholar] [CrossRef] [PubMed]
  196. Rutenber, E.; Ready, M.; Robertus, J.D. Structure and evolution of ricin B chain. Nature 1987, 326, 624–626. [Google Scholar] [CrossRef] [PubMed]
  197. Hazes, B. The (QxW)3 domain: A flexible lectin scaffold. Protein Sci. 1996, 5, 1490–1501. [Google Scholar] [CrossRef] [PubMed]
  198. Wohlschlager, T.; Butschi, A.; Zurfluh, K.; Vonesch, S.C.; auf dem Keller, U.; Gehrig, P.; Bleuler-Martinez, S.; Hengartner, M.O.; Aebi, M.; Künzler, M. Nematotoxicity of Marasmius oreades Agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J. Biol. Chem. 2011, 286, 30337–30343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  199. Olsnes, S. The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361–370. [Google Scholar] [CrossRef] [PubMed]
  200. Eckhardt, A.E.; Goldstein, I.J. Occurrence of alpha-d-galactosyl-containing glycoproteins on Ehrlich tumor cell membranes. Biochemistry 1983, 22, 5280–5289. [Google Scholar] [CrossRef] [PubMed]
  201. Sharon, N.; Lis, H. Lectins: Cell-agglutinating and sugar-specific proteins. Science 1972, 177, 949–959. [Google Scholar] [CrossRef] [PubMed]
  202. Nel, A.E. T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J. Allergy Clin. Immunol. 2002, 109, 758–770. [Google Scholar] [CrossRef] [PubMed]
  203. Ho, J.C.K.; Sze, S.C.W.; Shen, W.Z.; Liu, W.K. Mitogenic activity of edible mushroom lectins. Biochim. Biophys. Acta Gen. Subj. 2004, 1671, 9–17. [Google Scholar] [CrossRef]
  204. Greene, W.; Fleisher, T.; Waldmann, T. Suppression of human T and B lymphocyte activation by Agaricus bisporus lectin. I. Suggestive evidence for a surface “suppressor” receptor in human lymphocytes. J. Immunol. 1981, 126, 580–586. [Google Scholar] [PubMed]
  205. Chang, H.-H.; Chien, P.-J.; Tong, M.-H.; Sheu, F. Mushroom immunomodulatory proteins possess potential thermal/freezing resistance, acid/alkali tolerance and dehydration stability. Food Chem. 2007, 105, 597–605. [Google Scholar] [CrossRef]
  206. Ngai, P.H.; Wang, H.X.; Ng, T.B. Purification and characterization of a ubiquitin-like peptide with macrophage stimulating, antiproliferative and ribonuclease activities from the mushroom Agrocybe cylindracea. Peptides 2003, 24, 639–645. [Google Scholar] [CrossRef] [PubMed]
  207. Sze, S.C.; Ho, J.C.; Liu, W.K. Volvariella volvacea lectin activates mouse T lymphocytes by a calcium dependent pathway. J. Cell. Biochem. 2004, 92, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
  208. Bottcher, M.; Grosse, F. HIV-1 protease inhibits its homologous reverse transcriptase by protein-protein interaction. Nucleic Acids Res. 1997, 25, 1709–1714. [Google Scholar] [CrossRef] [PubMed]
  209. Wong, J.H.; Ng, T.B. Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int. J. Biochem. Cell Biol. 2005, 37, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
  210. Wang, H.; Ng, T.B. Luffangulin, a novel ribosome inactivating peptide from ridge gourd (Luffa acutangula) seeds. Life Sci. 2002, 70, 899–906. [Google Scholar] [CrossRef] [PubMed]
  211. Barrientos, L.G.; Gronenborn, A.M. The highly specific carbohydrate-binding protein cyanovirin-N: Structure, anti-HIV/Ebola activity and possibilities for therapy. Mini Rev. Med. Chem. 2005, 5, 21–31. [Google Scholar] [CrossRef] [PubMed]
  212. Bhattacharya, P.; Simet, I.; Basu, S. Inhibition of human neuroblastoma DNA polymerase activities by plant lectins and toxins. Proc. Natl. Acad. Sci. USA 1979, 76, 2218–2221. [Google Scholar] [CrossRef] [PubMed]
  213. Koharudin, L.M.; Viscomi, A.R.; Jee, J.G.; Ottonello, S.; Gronenborn, A.M. The evolutionarily conserved family of cyanovirin-N homologs: Structures and carbohydrate specificity. Structure 2008, 16, 570–584. [Google Scholar] [CrossRef] [PubMed]
  214. Akkouh, O.; Ng, T.B.; Singh, S.S.; Yin, C.; Dan, X.; Chan, Y.S.; Pan, W.; Cheung, R.C. Lectins with Anti-HIV activity: A review. Molecules 2015, 20, 648–668. [Google Scholar] [CrossRef] [PubMed]
  215. Boyd, M.R.; Gustafson, K.R.; McMahon, J.B.; Shoemaker, R.H.; O’Keefe, B.R.; Mori, T.; Gulakowski, R.J.; Wu, L.; Rivera, M.I.; Laurencot, C.M.; et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrob. Agents Chemother. 1997, 41, 1521–1530. [Google Scholar] [PubMed]
  216. Zappe, H.; Snell, M.E.; Bossard, M.J. PEGylation of cyanovirin-N, an entry inhibitor of HIV. Adv. Drug Deliv. Rev. 2008, 60, 79–87. [Google Scholar] [CrossRef] [PubMed]
  217. Gueugnot, J.; Guillot, J.; Damez, M.; Coulet, M. Identification and taxonomy of human and animal leishmanias by lectin-mediated agglutination. Acta Trop. 1984, 41, 135–143. [Google Scholar] [PubMed]
  218. Aksoy, Ü.; Ahmet, Ü. Lectins and their application to parasitology. Turk. J. Infect. 2003, 17, 513–516. [Google Scholar]
  219. Gao, W.; Sun, Y.; Chen, S.; Zhang, J.; Kang, J.; Wang, Y.; Wang, H.; Xia, G.; Liu, Q.; Kang, Y. Mushroom lectin enhanced immunogenicity of HBV DNA vaccine in C57BL/6 and HBsAg-transgenic mice. Vaccine 2013, 31, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
  220. Yazawa, S.; Furukawa, K.; Kochibe, N. Isolation of fucosyl glycoproteins from human erythrocyte membranes by affinity chromatography using Aleuria aurantia lectin. J. Biochem. 1984, 96, 1737–1742. [Google Scholar] [PubMed]
  221. Ohlson, C.; Karlsson, J.O. Glycoproteins of axonal transport: Polypeptides interacting with the lectin from Aleuria aurantia. Brain Res. 1983, 264, 99–104. [Google Scholar] [CrossRef] [PubMed]
  222. Yamashita, K.; Kochibe, N.; Ohkura, T.; Ueda, I.; Kobata, A. Fractionation of l-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J. Biol. Chem. 1985, 260, 4688–4693. [Google Scholar] [PubMed]
  223. Yazawa, S.; Kochibe, N.; Asao, T. A simple procedure for isolation of tumor-associated antigens by affinity chromatography using fucose-specific Aleuria aurantia lectin. Immunol. Investig. 1990, 19, 319–327. [Google Scholar] [CrossRef]
  224. Harada, H.; Kamei, M.; Tokumoto, Y.; Yui, S.; Koyama, F.; Kochibe, N.; Endo, T.; Kobata, A. Systematic fractionation of oligosaccharides of human immunoglobulin G by serial affinity chromatography on immobilized lectin columns. Anal. Biochem. 1987, 164, 374–381. [Google Scholar] [CrossRef] [PubMed]
  225. Tao, S.-C.; Li, Y.; Zhou, J.; Qian, J.; Schnaar, R.L.; Zhang, Y.; Goldstein, I.J.; Zhu, H.; Schneck, J.P. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 2008, 18, 761–769. [Google Scholar] [CrossRef] [PubMed]

Share and Cite

MDPI and ACS Style

Hassan, M.A.A.; Rouf, R.; Tiralongo, E.; May, T.W.; Tiralongo, J. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease. Int. J. Mol. Sci. 2015, 16, 7802-7838. https://doi.org/10.3390/ijms16047802

AMA Style

Hassan MAA, Rouf R, Tiralongo E, May TW, Tiralongo J. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease. International Journal of Molecular Sciences. 2015; 16(4):7802-7838. https://doi.org/10.3390/ijms16047802

Chicago/Turabian Style

Hassan, Mohamed Ali Abol, Razina Rouf, Evelin Tiralongo, Tom W. May, and Joe Tiralongo. 2015. "Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease" International Journal of Molecular Sciences 16, no. 4: 7802-7838. https://doi.org/10.3390/ijms16047802

Article Metrics

Back to TopTop