Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer
Abstract
1. Introduction
2. Mechanisms by Which ADs Overcome Chemotherapy Resistance in CRC
2.1. Targeting the Root Cause: Eliminating CSCs to Prevent Drug Resistance and Recurrence
2.2. Reversing Apoptosis Resistance and Activating Novel Death Pathways
2.2.1. Reactivate and Enhance the Classic Apoptosis Pathway
2.2.2. Activation of a Novel Non-Apoptotic Death Pathway-Ferroptosis
2.3. Inhibit Pro-Survival Signaling Networks
2.4. Rewiring the Tumor Microenvironment
3. Translational Considerations of ADs in CRC
3.1. Clinical Pharmacokinetics, Tolerability and Safety Considerations
3.2. Current Formulations and Administration Routes of ADs in CRC Studies
3.3. Translational Perspectives of ADs-Based Combination Therapy
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CRC | colorectal cancer |
| DHA | dihydroartemisinin |
| ADs | artemisinin-derived compounds |
| CSCs | cancer stem cells |
| ICD | immunogenic cell death |
| ROS | reactive oxygen species |
| EMT | epithelial–mesenchymal transition |
| ALDH | aldehyde dehydrogenase |
| 5-FU | 5-fluorouracil |
| DAMPs | damage-associated molecular patterns |
| Tregs | regulating T cells |
| NK | natural killer |
References
- Xu, A.; Tan, T.; Yuan, L.; Yan, W.; Han, Y.; Lu, S. SUMO1 promotes malignancy and chemoresistance in colorectal cancer: Clinical and functional evidence. Tissue Cell 2025, 98, 103191. [Google Scholar] [CrossRef]
- Shivshankar, S.; Patil, P.S.; Deodhar, K.; Budukh, A.M. Epidemiology of colorectal cancer: A review with special emphasis on India. Indian J. Gastroenterol. 2025, 44, 142–153. [Google Scholar] [CrossRef]
- Wang, L.; Shannar, A.A.F.; Wu, R.; Chou, P.; Sarwar, M.S.; Kuo, H.; Peter, R.M.; Wang, Y.; Su, X.; Kong, A. Butyrate Drives Metabolic Rewiring and Epigenetic Reprogramming in Human Colon Cancer Cells. Mol. Nutr. Food Res. 2022, 66, e2200028. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Chen, X.; Yi, C.; Li, Z. Current approaches to overcome the limit of TRAIL-based treatment in colorectal cancer: From fusion protein to nano-delivery platform. Int. J. Pharm. 2025, 683, 126031. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.Y.; Cai, D.; Li, C.H.; Chen, J.; Li, G.; Hu, C.; Gai, B.; Lei, J.; Lan, P.; Wu, X.; et al. Senescence-based colorectal cancer subtyping reveals distinct molecular characteristics and therapeutic strategies. MedComm 2023, 4, e333. [Google Scholar] [CrossRef] [PubMed]
- Bahn, M.S.; Ko, Y.G. PROM1-mediated cell signal transduction in cancer stem cells and hepatocytes. BMB Rep. 2023, 56, 65–70. [Google Scholar] [CrossRef]
- Brockmueller, A.; Sajeev, A.; Koklesova, L.; Samuel, S.M.; Kubatka, P.; Büsselberg, D.; Kunnumakkara, A.B.; Shakibaei, M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev. 2024, 43, 55–85. [Google Scholar] [CrossRef] [PubMed]
- Erin, N.; Grahovac, J.; Brozovic, A.; Efferth, T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist. Updat. 2020, 53, 100715. [Google Scholar] [CrossRef]
- Chen, X.; Wong, Y.K.; Lim, T.K.; Lim, W.H.; Lin, Q.; Wang, J.; Hua, Z. Artesunate Activates the Intrinsic Apoptosis of HCT116 Cells through the Suppression of Fatty Acid Synthesis and the NF-kappaB Pathway. Molecules 2017, 22, 1272. [Google Scholar] [CrossRef]
- Mancuso, R.I.; Foglio, M.A.; Saad, S.T.O. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother. Pharmacol. 2021, 87, 1–22. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Chen, W.; Chen, Y.; Zhang, Q.; Mo, S.; Lu, J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int. J. Biol. Sci. 2021, 17, 603–622. [Google Scholar] [CrossRef]
- Li, Q.; Weina, P. Artesunate: The Best Drug in the Treatment of Severe and Complicated Malaria. Pharmaceuticals 2010, 3, 2322–2332. [Google Scholar] [CrossRef] [PubMed]
- White, N.J.; Chotivanich, K. Artemisinin-resistant malaria. Clin. Microbiol. Rev. 2024, 37, e0010924. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Liu, G.; Xu, M. New clinical application prospects of artemisinin and its derivatives: A scoping review. Infect. Dis. Poverty 2023, 12, 115. [Google Scholar] [CrossRef]
- Nam, W.; Tak, J.; Ryu, J.K.; Jung, M.; Yook, J.I.; Kim, H.J.; Cha, I.H. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 2007, 29, 335–340. [Google Scholar] [CrossRef]
- Lai, H.; Singh, N.P. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett. 2006, 231, 43–48. [Google Scholar] [CrossRef]
- Riganti, C.; Doublier, S.; Viarisio, D.; Miraglia, E.; Pescarmona, G.; Ghigo, D.; Bosia, A. Artemisinin induce doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br. J. Pharmacol. 2009, 156, 1054–1066. [Google Scholar] [CrossRef] [PubMed]
- Ilamathi, M.; Prabu, P.C.; Ayyappa, K.A.; Sivaramakrishnan, V. Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling. Biomed. Pharmacother. 2016, 82, 72–79. [Google Scholar] [CrossRef]
- Ilamathi, M.; Sivaramakrishnan, V. Artesunate acts as fuel to fire in sensitizing HepG2 cells towards TRAIL mediated apoptosis via STAT3 inhibition and DR4 augmentation. Biomed. Pharmacother. 2017, 88, 515–520. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhu, W.; Chen, Y.; He, X.; Li, J.; Han, Z.; Yang, Y.; Liu, W.; Zhang, K. Dihydroartemisinin inhibited stem cell-like properties and enhanced oxaliplatin sensitivity of colorectal cancer via AKT/mTOR signaling. Drug Dev. Res. 2023, 84, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Yadav, T.T.; Khair, R.R.; Peters, G.J.; Yergeri, M.C. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr. Pharm. Des. 2019, 25, 3323–3338. [Google Scholar] [CrossRef]
- Lu, M.; Sun, L.; Zhou, J.; Zhao, Y.; Deng, X. Dihydroartemisinin-Induced Apoptosis is Associated with Inhibition of Sarco/Endoplasmic Reticulum Calcium ATPase Activity in Colorectal Cancer. Cell Biochem. Biophys. 2015, 73, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhong, B.; Li, Y.; Liu, X. Dihydroartemisinin increases apoptosis of colon cancer cells through targeting Janus kinase 2/signal transducer and activator of transcription 3 signaling. Oncol. Lett. 2018, 15, 1949–1954. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Wan, C.; Luo, Y.; Zhang, C.F.; Zhang, Q.H.; Chen, L.; Liu, Z.; Wang, D.H.; Lager, M.; Li, C.H.; et al. Effects of dihydroartemisinin, a metabolite of artemisinin, on colon cancer chemoprevention and adaptive immune regulation. Mol. Biol. Rep. 2022, 49, 2695–2709. [Google Scholar] [CrossRef]
- Aswaran, H.; Tsai, H.C.; Baylin, S.B. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 2014, 54, 716–727. [Google Scholar] [CrossRef]
- Rassouli, F.B.; Matin, M.M.; Saeinasab, M. Cancer stem cells in human digestive tract malignancies. Tumour Biol. 2016, 37, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Muenzner, J.K.; Kunze, P.; Lindner, P.; Polaschek, S.; Menke, K.; Eckstein, M.; Geppert, C.I.; Chanvorachote, P.; Baeuerle, T.; Hartmann, A.; et al. Generation and characterization of hepatocellular carcinoma cell lines with enhanced cancer stem cell potential. J. Cell Mol. Med. 2018, 22, 6238–6248. [Google Scholar] [CrossRef]
- Lau, E.Y.; Ho, N.P.; Lee, T.K. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications. Stem Cells Int. 2017, 2017, 3714190. [Google Scholar] [CrossRef]
- Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Boehlert, U.K. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef]
- Donnenberg, V.S.; Donnenberg, A.D. Multiple drug resistance in cancer revisited: The cancer stem cell hypothesis. J. Clin. Pharmacol. 2005, 45, 872–877. [Google Scholar] [CrossRef]
- Nunes, T.; Hamdan, D.; Leboeuf, C.; Bouchtaoui, M.E.; Gapihan, G.; Nguyen, T.T.; Meles, S.; Angeli, E.; Ratajczak, P.; Lu, H.; et al. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int. J. Mol. Sci. 2018, 19, 4036. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Shim, J.S. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016, 21, 965. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 2017, 16, 10. [Google Scholar] [CrossRef]
- Morrison, R.; Schleicher, S.M.; Sun, Y.; Niermann, K.J.; Kim, S.; Spratt, D.E.; Chung, C.H.; Lu, B. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J. Oncol. 2011, 2011, 941876. [Google Scholar] [CrossRef]
- Safa, A.R. Drug and apoptosis resistance in cancer stem cells: A puzzle with many pieces. Cancer Drug Resist. 2022, 5, 850–872. [Google Scholar] [CrossRef]
- Wu, M.H.; Sung, C.J.; Kung, F.L.; Guh, J.H.; Su, Y.; Hsu, L.C. Repurposing dihydroartemisinin as a novel anticancer agent against colorectal cancer stem cells. J. Food Drug Anal. 2025, 33, 277–291. [Google Scholar] [CrossRef]
- Li, L.N.; Zhang, H.D.; Yuan, S.J.; Yang, D.X.; Wang, L.; Sun, Z.X. Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of beta-catenin and E-cadherin. Eur. J. Pharmacol. 2008, 588, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, L.N.; Zhang, H.D.; Yuan, S.J.; Tian, Z.Y.; Wang, L.; Sun, Z.X. Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/beta-catenin pathway. Int. J. Cancer 2007, 121, 1360–1365. [Google Scholar] [CrossRef]
- Hamoya, T.; Fujii, G.; Iizumi, Y.; Narita, T.; Komiya, M.; Matsuzawa, Y.; Miki, K.; Kondo, T.; Kishimoto, S.; Watanabe, K.; et al. Artesunate inhibits intestinal tumorigenesis through inhibiting wnt signaling. Carcinogenesis 2021, 42, 148–158. [Google Scholar] [CrossRef]
- Li, Y.; Ma, P.; Li, J.; Wu, F.; Guo, M.; Zhou, E.; Song, S.; Wang, S.; Zhang, S.; Jin, Y. Dihydroartemisinin restores the immunogenicity and enhances the anticancer immunosurveillance of cisplatin by activating the PERK/eIF2alpha pathway. Cell Biosci. 2024, 14, 100. [Google Scholar] [CrossRef]
- Xia, J.; Dai, Q.L.; He, S.; Jia, H.J.; Liu, X.G.; Hua, H.; Zhou, M.; Wang, X. Artesunate alleviates 5-fluorouracil-induced intestinal damage by suppressing cellular senescence and enhances its antitumor activity. Discov. Oncol. 2023, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yang, I.; Irby, R.; Shain, K.H.; Wang, H.G.; Quackenbush, J.; Coppola, D.; Cheng, J.Q.; Yeatman, T.J. Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res. 2003, 63, 4368–4374. [Google Scholar]
- Green, R.A.; Kaplan, K.B. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J. Cell Biol. 2003, 163, 949–961. [Google Scholar] [CrossRef]
- Hu, T.; Wang, L.; Zhang, L.; Lu, L.; Shen, J.; Chan, R.L.Y.; Li, M.; Wu, W.K.K.; To, K.K.W.; Cho, C.H. Sensitivity of apoptosis-resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53-independent cytotoxicity. Phytomedicine 2015, 22, 536–544. [Google Scholar] [CrossRef]
- Hu, T.; Li, Z.; Gao, C.Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol. 2016, 22, 6876–6889. [Google Scholar] [CrossRef] [PubMed]
- Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res. 2008, 14, 5000–5005. [Google Scholar] [CrossRef]
- Cheung, C.H.A.; Huang, C.C.; Tsai, F.Y.; Lee, J.Y.C.; Cheng, S.M.; Chang, Y.C.; Huang, Y.C.; Chen, S.H.; Chang, J.Y. Survivin-biology and potential as a therapeutic target in oncology. OncoTargets Ther. 2013, 6, 1453–1462. [Google Scholar] [CrossRef]
- Lu, M.; Sun, L.; Zhou, J.; Yang, J. Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondria-dependent pathway. Tumour Biol. 2014, 35, 5307–5314. [Google Scholar] [CrossRef]
- Lu, J.J.; Chen, S.M.; Zhang, X.W.; Ding, J.; Meng, L.H. The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Investig. New Drugs 2011, 29, 1276–1283. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021, 12, 836–857. [Google Scholar] [CrossRef]
- Wei, X.; Wu, J.; Zhu, C.; Yu, M.; Niu, N.; Lv, H.; Chen, G. Dihydroartemisinin Suppresses LOXL2-Mediated Glycerophospholipid Metabolic Reprogramming to Induce Cuproptosis in Colorectal Cancer Cells. J. Biochem. Mol. Toxicol. 2025, 39, e70420. [Google Scholar] [CrossRef] [PubMed]
- Bader, S.; Wilmers, J.; Pelzer, M.; Jendrossek, V.; Rudner, J. Activation of anti-oxidant Keap1/Nrf2 pathway modulates efficacy of dihydroartemisinin-based monotherapy and combinatory therapy with ionizing radiation. Free Radic. Biol. Med. 2021, 168, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Bhandari, A.; Wang, Y.; Pan, Y.; Yang, F.; Chen, R.; Xia, E.; Wang, Q. Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line. Biochem. Biophys. Res. Commun. 2018, 501, 636–642. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liu, L.; He, D.; Li, H. Effects of Artemisinin Combined with 5-Fluorouracil on Colon Cancer Cell Proliferation, Migration, and Drug Sensitivity via PI3K/AKT Signaling. J. Biomater. Tissue Eng. 2020, 10, 1600–1604. [Google Scholar] [CrossRef]
- Almaimani, R.A.; Aslam, A.; Ahmad, J.; El-Readi, M.Z.; El-Boshy, M.Z.; Abdelghany, A.H.; Idris, S.; Alhadrami, M.; Althubiti, M.; Almasmoum, H.A.; et al. In Vivo and In Vitro Enhanced Tumoricidal Effects of Metformin, Active Vitamin D (3), and 5-Fluorouracil Triple Therapy against Colon Cancer by Modulating the PI3K/Akt/PTEN/mTOR Network. Cancers 2022, 14, 1538. [Google Scholar] [CrossRef]
- Xiong, M.; Zhuang, K.; Luo, Y.; Lai, Q.; Luo, X.; Fang, Y.; Zhang, Y.; Li, A.; Liu, S. KIF20A promotes cellular malignant behavior and enhances resistance to chemotherapy in colorectal cancer through regulation of the JAK/STAT3 signaling pathway. Aging 2019, 11, 11905–11921. [Google Scholar] [CrossRef]
- Wang, X.; Lai, Q.; He, J.; Li, Q.; Ding, J.; Lan, Z.; Gu, C.; Yan, Q.; Fang, Y.; Zhao, X.; et al. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-beta/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int. J. Med. Sci. 2019, 16, 51–59. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Ray, R.M.; Johnson, L. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem. J. 2005, 392, 335–344. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, Q.; Wang, X.; Sun, Z. STAT3 regulates 5-Fu resistance in human colorectal cancer cells by promoting Mcl-1-dependent cytoprotective autophagy. Cancer Sci. 2023, 114, 2293–2305. [Google Scholar] [CrossRef]
- Gui, Y.; Qian, X.; Ding, Y.; Chen, Q.; Ye, F.; Ye, Y.; Hou, Y.; Yu, J.; Zhao, L. c-Fos regulated by TMPO/ERK axis promotes 5-FU resistance via inducing NANOG transcription in colon cancer. Cell Death Dis. 2024, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Shi, C.; Lei, M.; Zhou, R.; Liu, S.; Su, C. Dihydroartemisinin, an artemisinin derivative, reverses oxaliplatin resistance in human colorectal cancer cells by regulating the SIRT3/PI3K/AKT signalling pathway. Investig. Clin. 2024, 65, 267–278. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, D.; Wu, T.; Lin, H.; Ni, L.; Sui, H.; Xiao, S.; Wang, C.; Jiang, S.; Pan, H.; et al. Dihydroartemisinin enhances the anti-tumor activity of oxaliplatin in colorectal cancer cells by altering PRDX2-reactive oxygen species-mediated multiple signaling pathways. Phytomedicine 2022, 98, 153932. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Li, M.; Yu, S. Research Progress of Epithelial-mesenchymal Transition Treatment and Drug Resistance in Colorectal Cancer. Technol. Cancer Res. Treat. 2022, 21, 15330338221081219. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, J.; Wang, Y.; He, L.; Xue, F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol. Rep. 2022, 47, 102. [Google Scholar] [CrossRef]
- Gallo, G.; Vescio, G.; Paola, G.D.; Sammarco, G. Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer. J. Clin. Med. 2021, 10, 2295. [Google Scholar] [CrossRef]
- Waldner, M.J.; Neurath, M.F. TGFbeta and the Tumor Microenvironment in Colorectal Cancer. Cells 2023, 12, 1139. [Google Scholar] [CrossRef]
- Li, S.; Xie, M.; Du, Y.; Tan, Z. Targeting cytokine and chemokine signaling pathways for enhancing chemo-sensitivity in colorectal cancer. Cell Commun. Signal. 2025, 23, 369. [Google Scholar] [CrossRef]
- Shen, Z.; Li, Z.; Liu, Y.; Li, Y.; Feng, X.; Zhan, Y.; Lin, M.; Fang, C.; Fang, Y.; Deng, H. GLUT5-KHK axis-mediated fructose metabolism drives proliferation and chemotherapy resistance of colorectal cancer. Cancer Lett. 2022, 534, 215617. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, D.; Shen, M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front. Med. 2022, 9, 869010. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.; Hung, W.Z.; Chiang, S.F.; Chen, W.; Ke, T.W.; Liang, J.A.; Huang, C.Y.; Yang, P.C.; Huang, K.; Chao, K. Dual inhibition of TGFbeta signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett. 2022, 543, 215795. [Google Scholar] [CrossRef]
- Kousar, K.; Ahmad, T.; Abduh, M.S.; Kanwal, B.; Shah, S.S.; Naseer, F.; Anjum, S. miRNAs in Regulation of Tumor Microenvironment, Chemotherapy Resistance, Immunotherapy Modulation and miRNA Therapeutics in Cancer. Int. J. Mol. Sci. 2022, 23, 13822. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, H.; Zheng, J. Exosomal microRNAs mediating crosstalk between cancer cells and cancer-associated fibroblasts in the tumor microenvironment. Pathol. Res. Pract. 2022, 239, 154159. [Google Scholar] [CrossRef]
- Cui, C.; Feng, H.; Shi, X.; Wang, Y.; Feng, Z.; Liu, J.; Han, Z.; Fu, J.; Fu, Z.; Tong, H. Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor beta1 and interleukin-10. Int. Immunopharmacol. 2015, 27, 110–121. [Google Scholar] [CrossRef]
- Hu, X.; Fatima, S.; Chen, M.; Huang, T.; Chen, Y.W.; Gong, R.; Wong, H.; Yu, R.; Song, L.; Kwan, H.Y.; et al. Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting the elevated c-Myc level. Cell Death Dis. 2021, 12, 1053. [Google Scholar] [CrossRef]
- Bader, S.; Wilmers, J.; Ontikatze, T.; Ritter, V.; Endrossek, V.; Rudner, J. Loss of pro-apoptotic Bax and Bak increases resistance to dihydroartemisinin-mediated cytotoxicity in normoxia but not in hypoxia in HCT116 colorectal cancer cells. Free Radic. Biol. Med. 2021, 174, 157–170. [Google Scholar] [CrossRef]
- Watson, D.J.; Laing, L.; Gibhard, L.; Wong, H.N.; Haynes, R.K.; Wiesner, L. Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrob. Agents Chemother. 2021, 65, e0099021. [Google Scholar] [CrossRef]
- Morris, C.A.; Duparc, S.; Isabelle, B.F.; Jung, D.; Shin, C.S.; Fleckenstein, L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar. J. 2011, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, J.; Cui, Y.; Liu, Y.; Fan, H.; Wang, X.; Liu, H.; Li, X.; Yu, G.; Luo, Z. The Role of Artesunate in Cancer Management: Mechanisms of Biomedical Effects and Toxicology. Am. J. Chin. Med. 2025, 53, 2489–2512. [Google Scholar] [CrossRef]
- Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; et al. A Randomised, Double Blind, Placebo-Controlled Pilot Study of Oral Artesunate Therapy for Colorectal Cancer. EBioMedicine 2014, 2, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Leto, I.; Coronnello, M.; Righeschi, C.; Bergonzi, M.C.; Mini, E.; Bilia, A.R. Enhanced Efficacy of Artemisinin Loaded in Transferrin-Conjugated Liposomes versus Stealth Liposomes against HCT-8 Colon Cancer Cells. ChemMedChem 2016, 11, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin. 2017, 38, 885–896. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Q.; Zhou, J.; Zhao, S.; Di, P.; Chen, Y.; Tao, L.; Du, Q.; Shen, X.; Chen, Y. Targeted Lipid Nanoparticles Encapsulating Dihydroartemisinin and Chloroquine Phosphate for Suppressing the Proliferation and Liver Metastasis of Colorectal Cancer. Front. Pharmacol. 2021, 12, 720777. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhou, J.; Sun, R.; Chen, Y.; Pan, D.; Wang, Q.; Chen, Y.; Gong, Z.; Du, Q. Dual-targeting of artesunate and chloroquine to tumor cells and tumor-associated macrophages by a biomimetic PLGA nanoparticle for colorectal cancer treatment. Int. J. Biol. Macromol. 2023, 244, 125163. [Google Scholar] [CrossRef]
- Hao, D.L.; Xie, R.; De, G.J.; Yi, H.; Zang, C.; Yang, M.Y.; Liu, L.; Ma, H.; Cai, W.Y.; Zhao, Q.H.; et al. pH-Responsive Artesunate Polymer Prodrugs with Enhanced Ablation Effect on Rodent Xenograft Colon Cancer. Int. J. Nanomed. 2020, 15, 1771–1786. [Google Scholar] [CrossRef]
- Phung, C.D.; Le, T.G.; Nguyen, V.H.; Vu, T.T.; Nguyen, H.Q.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. PEGylated-Paclitaxel and Dihydroartemisinin Nanoparticles for Simultaneously Delivering Paclitaxel and Dihydroartemisinin to Colorectal Cancer. Pharm. Res. 2020, 37, 129. [Google Scholar] [CrossRef]
- Yang, C.; Ming, H.; Li, B.; Liu, S.; Chen, L.; Zhang, T.; Gao, Y.; He, T.; Huang, C.; Du, Z. A pH and glutathione-responsive carbon monoxide-driven nano-herb delivery system for enhanced immunotherapy in colorectal cancer. J. Control. Release Off. J. Control. Release Soc. 2024, 376, 659–677. [Google Scholar] [CrossRef]
- Su, Q.; Wang, Z.; Li, P.; Wei, X.; Xiao, J.; Duan, X. pH and ROS Dual-Responsive Autocatalytic Release System Potentiates Immunotherapy of Colorectal Cancer. Adv. Healthc. Mater. 2024, 13, e2401126. [Google Scholar] [CrossRef]
- Verma, S.; Das, P.; Kumar, V.L. Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis. Chem.-Biol. Interact. 2017, 278, 84–91. [Google Scholar] [CrossRef]
- Cao, J.F.; Hang, K.; Tan, C.; Wu, Z.; Guo, Z.; Xia, Q.; Liao, D.; Xia, Z.; Men, J.; Li, K. Targeted inhibition of colorectal cancer by nano-dihydroartemisinin liposomes: Insights into the disruption of ABCG2 and BCL2 leading to induction of oxidative stress and metabolic disorder. Biomater. Adv. 2026, 180, 214600. [Google Scholar] [CrossRef] [PubMed]
- Pirali-Hamedani, Z.; Abbasi, A.; Hassan, Z.M. Synthesis of Artemether-Loaded Albumin Nanoparticles and Measurement of Their Anti-Cancer Effects. Biomedicines 2022, 10, 2713. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Liang, S.; Lin, S.; Huang, R.; Chen, Y.; Zhang, Y.; Xu, Y. Design, synthesis and biological evaluation of artesunate-Se derivatives as anticancer agents by inducing GPX4-mediated ferroptosis. Bioorganic Chem. 2024, 152, 107733. [Google Scholar] [CrossRef]
- Fröhlich, T.; Ndreshkjana, B.; Muenzner, J.K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schneider-Stock, R.; et al. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem 2017, 12, 226–234. [Google Scholar] [CrossRef]
- Wang, C.Z.; Wan, C.; Li, C.H.; Liang, G.G.; Luo, Y.; Zhang, C.; Zhang, Q.H.; Ma, Q.; Wang, A.H.; Lager, M.; et al. Ruthenium-dihydroartemisinin complex: A promising new compound for colon cancer prevention via G1 cell cycle arrest, apoptotic induction, and adaptive immune regulation. Cancer Chemother. Pharmacol. 2024, 93, 411–425. [Google Scholar] [CrossRef]
- Dai, X.; Chen, W.; Qiao, Y.; Chen, X.; Chen, Y.; Zhang, K.; Zhang, Q.; Duan, X.; Li, X.; Zhao, J.; et al. Dihydroartemisinin inhibits the development of colorectal cancer by GSK-3β/TCF7/MMP9 pathway and synergies with capecitabine. Cancer Lett. 2024, 582, 216596. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Chai, Z.; Li, J.; Zhu, C.; Peng, Y.; Qiu, J.; Xu, J.; Liu, C. Dihydroartemisinin synergistically enhances the cytotoxic effects of oxaliplatin in colon cancer by targeting the PHB2-RCHY1 mediated signaling pathway. Mol. Carcinog. 2023, 62, 293–302. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, S.; Yuan, H.; Wang, Y.; Cai, L.; Chen, H.; Wang, X.; Song, D.; Wang, X.; Guo, Z.; et al. Platinum-Based TREM2 Inhibitor Suppresses Tumors by Remodeling the Immunosuppressive Microenvironment. Angew. Chem. Int. Ed. Engl. 2023, 62, e202213337. [Google Scholar] [CrossRef] [PubMed]

| No. | Compound(s) | Formulation/Delivery | CRC Model(s) | Core Mechanism(s) | |
|---|---|---|---|---|---|
| 1 | DHA | Small-molecule (oral) | CRC patients (pre-surgery) | Anti-proliferation; biomarker modulation | [81] |
| 2 | Artesunate | Small-molecule (oral) | DMH-induced rat CRC | β-catenin inhibition; apoptosis; anti-angiogenesis | [90] |
| 3 | DHA | Nano-liposomes | HCT116, SW480 | ABCG2↓; BCL2↓; oxidative stress | [91] |
| 4 | Artemisinin | Transferrin-conjugated liposomes | HCT-8 | Iron-related activation; cellular uptake↑ | [82] |
| 5 | DHA + Doxorubicin | Mannosylated liposomes | HCT8/ADR xenograft | Nuclear accumulation; MDR reversal | [83] |
| 6 | DHA + Paclitaxel | PEG dual-drug nanoparticles | HT-29 xenograft | Apoptosis↑; tumor accumulation↑ | [87] |
| 7 | DHA + Chloroquine | Targeted lipid nanoparticles | Orthotopic CRC | ROS amplification; anti-metastasis | [84] |
| 8 | Artesunate + Chloroquine | Biomimetic PLGA nanoparticles | Orthotopic CRC | TAM repolarization; TME remodeling | [85] |
| 9 | DHA + Mitoxantrone | pH/ROS dual-responsive polymer system | CT26, MC38 | ROS feedback; immune activation | [89] |
| 10 | DHA + CO donor | MOF-based nano-herb system | CRC in vivo/in vitro | Ferroptosis; apoptosis; ICD | [88] |
| 11 | Artesunate | pH-responsive polymer prodrug | CT26 xenograft | Sustained release; pH-triggered activation | [86] |
| 12 | Artemether | Albumin nanoparticles | CT26 | Cytokine modulation; tumor suppression | [92] |
| 13 | Artesunate hybrids | Small-molecule derivatives | HCT116, SW480 | GPX4 inhibition; ferroptosis | [93] |
| 14 | Artemisinin hybrids | Small-molecule hybrids | HCT116, HT29 | ROS generation; DNA damage | [94] |
| 15 | DHA–metal complex | Ru–DHA complex | HCT116, HT-29 | Cell cycle arrest; apoptosis; immune modulation | [95] |
| No. | ADs | CRC Model | Combined Drug | Key Mechanisms | |
|---|---|---|---|---|---|
| 1 | DHA | AOM/DSS-induced CRC | Capecitabine | GSK-3β/TCF7/MMP9 inhibition | [96] |
| 2 | DHA | HCT116, SW620 | Oxaliplatin | AKT/mTOR inhibition; CSC suppression | [20] |
| 3 | DHA | HCT116 TP53−/− | 5-FU | ROS-mediated apoptosis; BCL-2/BAX modulation | [55] |
| 4 | DHA | HCT116, RKO; xenograft | Oxaliplatin | ROS–STAT3/JNK/p38; PRDX2 inhibition | [64] |
| 5 | DHA | CRC cells; xenograft | Oxaliplatin | PHB2–RCHY1–p53 axis | [97] |
| 6 | DHA | CT26 | Cisplatin | PERK/eIF2α-mediated ICD | [40] |
| 7 | Artesunate | MC38 | Oxaliplatin | TREM2 inhibition; TAM remodeling | [98] |
| 8 | Artesunate | CRC xenograft | 5-FU | Senescence suppression; mTOR inhibition | [41] |
| 9 | Artemisinin | CRC cell lines | 5-FU | PI3K/AKT inhibition | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, M.; Yan, Y.; Li, S.; Wang, R.; Zeng, K.; Yao, J. Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer. Molecules 2026, 31, 244. https://doi.org/10.3390/molecules31020244
Liu M, Yan Y, Li S, Wang R, Zeng K, Yao J. Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer. Molecules. 2026; 31(2):244. https://doi.org/10.3390/molecules31020244
Chicago/Turabian StyleLiu, Mingfei, Yueling Yan, Shirong Li, Rongrong Wang, Kewu Zeng, and Jingchun Yao. 2026. "Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer" Molecules 31, no. 2: 244. https://doi.org/10.3390/molecules31020244
APA StyleLiu, M., Yan, Y., Li, S., Wang, R., Zeng, K., & Yao, J. (2026). Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer. Molecules, 31(2), 244. https://doi.org/10.3390/molecules31020244
