Simultaneous Quantitative Analysis of Polymorphic Impurities in Canagliflozin Tablets Utilizing Near-Infrared Spectroscopy and Partial Least Squares Regression
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
2.1.1. Materials
2.1.2. Preparation of the Tablet Samples
2.2. Methods
2.2.1. Powder X-Ray Diffraction
2.2.2. Near Infrared Spectroscopy
2.3. Pretreatment of Spectra Data
2.4. Validation of Developed Models
3. Results and Discussion
3.1. Characterization of Different Forms of CFZ
3.2. Construction of NIR Spectral Database
3.3. Selection and Pretreatment of NIR Spectra
3.4. Establishment of PLSR Model
3.5. Verification and Evaluation of the PLSR Model
3.6. Discussion on Quantitative Mechanism of PLSR Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfiker, R. Polymorphism: In the Pharmaceutical Industry, 1st ed.; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar] [CrossRef]
- Brittain, H.G. Polymorphism in Pharmaceutical Solids, 2nd ed.; CRC Press: Pinehurst, NC, USA, 2009. [Google Scholar] [CrossRef]
- Raw, A.S.; Yu, L.X. Pharmaceutical solid polymorphism in drug development and regulation. Adv. Drug Deliv. Rev. 2004, 56, 235–236. [Google Scholar] [CrossRef]
- Liu, M.D.; Fu, R.; Liu, J.C.; Song, P.; Li, H.C.; Dong, W.B.; Sun, Z. Quantitative analysis of amorphous form in indomethacin by near infrared spectroscopy combined with partial least squares regression analysis. Molecules 2024, 29, 5290. [Google Scholar] [CrossRef]
- Liu, M.D.; Liu, J.C.; Wang, Q.H.; Song, P.; Li, H.C.; Qin, Y.R.; Wu, S.G.; Gong, J.B. Quantitative analysis of amorphous form in indomethacin binary polymorphic mixtures using infrared spectroscopy analytical techniques combined with chemometrics methods. Arab. J. Chem. 2023, 16, 104885. [Google Scholar] [CrossRef]
- Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Ritonavir: An extraordinary example of conformational polymorphism. Pharm. Res. 2001, 18, 859–866. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Yang, C.Q.; Wang, J.; Ren, G.D. Solid state characterizations and analysis of stability in Azelnidipine polymorphs. Chem. Pharm. Bull. 2012, 60, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Shefter, E.; Higuchi, T. Dissolution behavior of crystalline solvated and non-solvated forms of some pharmaceuticals. J. Pharm. Sci. 1963, 52, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Eral, H.B. Effect of L-alanyl-glycine dipeptide on calcium oxalate crystallization in artificial urine. J. Cryst. Growth 2021, 566, 126176. [Google Scholar] [CrossRef]
- Atici, E.B.; Karlığa, B. Quantitative determination of two polymorphic forms of imatinib mesylate in a drug substance and tablet formulation by X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance fourier transform infrared spectroscopy. J. Pharm. Biomed. Anal. 2015, 114, 330–340. [Google Scholar] [CrossRef]
- Liu, M.D.; Shi, P.; Wang, G.L.; Wang, G.; Song, P.; Liu, Y.M.; Wu, S.G.; Gong, J.B. Quantitative analysis of binary mixtures of entecavir using solid-state analytical techniques with chemometric methods. Arab. J. Chem. 2021, 14, 103360. [Google Scholar] [CrossRef]
- Bhavana, V.; Chavan, R.B.; Mannava, M.K.C.; Nangia, A.; Shastri, N.R. Quantification of niclosamide polymorphic forms A comparative study by Raman, NIR and MIR using chemometric techniques. Talanta 2019, 199, 679–688. [Google Scholar] [CrossRef]
- Agatonovic, K.S.; Glass, B.D.; Mangan, M.; Smithson, J. Analysing the crystal purity of mebendazole raw material and its stability in a suspension formulation. Int. J. Pharm. 2008, 361, 245–250. [Google Scholar] [CrossRef]
- Liu, M.D.; Liu, J.C.; Wang, Q.H.; Song, P.; Li, H.C.; Wu, S.G.; Gong, J.B. Quantitative analysis of low content polymorphic impurities in canagliflozin tablets by PXRD, NIR, ATR-FITR and Raman solid-state analysis techniques combined with stoichiometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 293, 122458. [Google Scholar] [CrossRef]
- Hennigan, M.C.; Ryder, A.G. Quantitative polymorph contaminant analysis in tablets using Raman and near infra-red spectroscopies. J. Pharm. Biomed. Anal. 2013, 72, 163–171. [Google Scholar] [CrossRef]
- Hu, Y.; Erxleben, A.; Ryder, A.G.; McArdle, P. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy. J. Pharm. Biomed. Anal. 2010, 53, 412–420. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Croker, D.M.; Hennigan, M.C.; Maher, A.; Hu, Y.; Ryder, A.G.; Hodnett, B.K. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam. J. Pharm. Biomed. Anal. 2012, 63, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.L.; Shao, Z.Y.; Wang, Q.; Hu, X.R.; Yu, D.D. Quantitation of polymorphic impurity in entecavir polymorphic mixtures using powder X-ray diffractometry and Raman spectroscopy. J. Pharm. Biomed. Anal. 2018, 158, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, V.H.; Goncalves, J.L.; Vasconcelos, F.V.C.; Pimentel, M.F.; Pereira, C.F. Quantitative analysis of mebendazole polymorphs in pharmaceutical raw materials using near-infrared spectroscopy. J. Pharm. Biomed. Anal. 2015, 115, 587–593. [Google Scholar] [CrossRef]
- Farias, M.; Carneiro, R. Simultaneous quantification of three polymorphic forms of carbamazepine in the presence of excipients using Raman spectroscopy. Molecules 2014, 19, 14128–14138. [Google Scholar] [CrossRef]
- Nagy, B.; Farkas, A.; Balogh, A.; Pataki, H.; Vajna, B.; Nagy, Z.K.; Marosi, G. Quantification and handling of nonlinearity in Raman micro-spectrometry of pharmaceuticals. J. Pharm. Biomed. Anal. 2016, 128, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Pazesh, S.; Lazorova, L.; Berggren, J.; Alderborn, G.; Gråsjö, J. Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy. Int. J. Pharm. 2016, 511, 488–504. [Google Scholar] [CrossRef]
- Liu, M.D.; Liu, J.C.; Wang, Q.H.; Song, P.; Li, H.C.; Sun, Z.; Shi, C.L.; Dong, W.B. Quantitative analysis of low-content impurity crystal forms in canagliflozin tablets by NIR solid-state analysis technique. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 311, 124000. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.W.; Zou, X.B.; Zhao, J.W.; Shi, J.Y.; Zhang, X.L.; Holmes, M. Measurement of total anthocyanins content in flowering tea using near infrared spectroscopy combined with ant colony optimization models. Food Chem. 2014, 164, 536–543. [Google Scholar] [CrossRef]
- Hu, L.Q.; Yin, C.L.; Ma, S.; Liu, Z.M. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 574–581. [Google Scholar] [CrossRef]
- Arslan, M.; Zou, X.B.; Tahir, H.E.; Shi, J.Y.; Zareef, M.; Rakha, A.; Bilal, M. Rapid screening of phenolic compounds from wild Lycium ruthenicum Murr. using portable near-infrared (NIR) spectroscopy coupled multivariate analysis. Anal. Lett. 2020, 54, 512–526. [Google Scholar] [CrossRef]
- Allegrini, F.; Olivieri, A.C. A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis. Anal. Chim. Acta 2011, 699, 18–25. [Google Scholar] [CrossRef]
- Guo, Z.M.; Chen, X.; Zhang, Y.Y.; Sun, C.J.; Jayan, H.; Majeed, U.; Watson, N.J.; Zou, X.B. Dynamic nondestructive detection models of apple quality in critical harvest period based on Near-Infrared spectroscopy and intelligent algorithms. Foods 2024, 13, 1698. [Google Scholar] [CrossRef]
- Zappi, A.; Maini, L.; Galimberti, G.; Caliandro, R.; Melucci, D. Quantifying API polymorphs in formulations using X-ray powder diffraction and multivariate standard addition method combined with net analyte signal analysis. Eur. J. Pharm. Sci. 2019, 130, 36–43. [Google Scholar] [CrossRef]
- Li, Y.; Chow, P.S.; Tan, R.B.H. Quantification of polymorphic impurity in an enantiotropic polymorph system using differential scanning calorimetry, X-ray powder diffraction and Raman spectroscopy. Int. J. Pharm. 2011, 415, 110–118. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Kang, Y.L.; Zhu, L.; Yu, K.X.; Chen, S.; Tang, G.P.; Hu, X.R. Investigation of solubility behavior of canagliflozin hydrate crystals combining crystallographic and Hirshfeld surface calculations. Molecules 2021, 26, 298. [Google Scholar] [CrossRef]
- Tsenkova, R. Introduction: Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Cui, X.Y.; Cai, W.S.; Shao, X.G. Glucose induced variation of water structure from temperature dependent near infrared spectra. RSC Adv. 2016, 6, 105729–105736. [Google Scholar] [CrossRef]
- Bonner, O.D.; Woolsey, G.B. Effect of solutes and temperature on the structure of water. J. Phys. Chem. 1968, 72, 899–905. [Google Scholar] [CrossRef]










| Experiment Number | A a | B a | C a | D a |
|---|---|---|---|---|
| 1 | 100 | 0.3 | 5 | SG1st |
| 2 | 100 | 0.5 | 10 | SG2nd |
| 3 | 100 | 0.7 | 15 | SG2nd + WT |
| 4 | 200 | 0.3 | 10 | SG2nd + WT |
| 5 | 200 | 0.5 | 15 | SG1st |
| 6 | 200 | 0.7 | 5 | SG2nd |
| 7 | 300 | 0.3 | 15 | SG2nd |
| 8 | 300 | 0.5 | 5 | SG2nd + WT |
| 9 | 300 | 0.7 | 10 | SG1st |
| N | RMSEC | |||
|---|---|---|---|---|
| An-CFZ | Mono-CFZ | An-CFZ + Mono-CFZ | Average | |
| 1 | 2.4550 | 0.7807 | 2.0416 | 1.7591 |
| 2 | 0.2573 | 0.4495 | 0.5637 | 0.4235 |
| 3 | 0.2348 | 0.4166 | 0.4922 | 0.3812 |
| 4 | 0.2313 | 0.2427 | 0.3225 | 0.2655 |
| 5 | 0.2215 | 0.2214 | 0.2803 | 0.2411 |
| 6 | 0.2209 | 0.1886 | 0.2594 | 0.2230 |
| 7 | 0.1780 | 0.1636 | 0.2242 | 0.1886 |
| 8 | 0.1652 | 0.1424 | 0.1813 | 0.1630 |
| 9 | 0.1377 | 0.1458 | 0.1655 | 0.1497 |
| 10 | 0.1313 | 0.1268 | 0.1502 | 0.1361 |
| 15 | 0.0777 | 0.0758 | 0.0806 | 0.0780 |
| 20 | 0.0410 | 0.0567 | 0.0519 | 0.0499 |
| 25 | 0.0273 | 0.0269 | 0.0240 | 0.0260 |
| Samples | Mono-CFZ (%) | An-CFZ (%) | Total Polymorphic Impurity (%) | |||
|---|---|---|---|---|---|---|
| Reference | Predicted | Reference | Predicted | Reference | Predicted | |
| V1 a | 0.5000 | 0.4923 | 0.5000 | 0.4927 | 1.0000 | 0.9783 |
| V2 a | 1.5000 | 1.4788 | 1.5000 | 1.4801 | 3.0000 | 2.9789 |
| V3 a | 2.5000 | 2.4971 | 2.5000 | 2.4984 | 5.0000 | 5.0331 |
| V4 a | 3.5000 | 3.5052 | 3.5000 | 3.5047 | 7.0000 | 6.8749 |
| V5 a | 4.5000 | 4.4866 | 4.5000 | 4.5025 | 9.0000 | 9.1205 |
| V6 a | 5.0000 | 4.9657 | 5.0000 | 4.9769 | 10.0000 | 9.9915 |
| Precision (RSD%) | 4.5000 | 1.1047 | 4.5000 | 0.9978 | 9.0000 | 1.2369 |
| Repeatability (RSD%) | 4.5000 | 1.1123 | 4.5000 | 1.0114 | 9.0000 | 1.2517 |
| Stability (RSD%) | 4.5000 | 1.2131 | 4.5000 | 1.1327 | 9.0000 | 1.2434 |
| Spectral Band Number | Wavenumber | Spectral Band Number | Wavenumber |
|---|---|---|---|
| 20 | 6310–6121 cm−1 | 10 | 8238–8049 cm−1 |
| 17 | 6888–6699 cm−1 | 8 | 8624–8435 cm−1 |
| 26 | 5153–4964 cm−1 | 13 | 7660–7471 cm−1 |
| 11 | 8046–7857 cm−1 | 6 | 9010–8821 cm−1 |
| 18 | 6696–6507 cm−1 | 23 | 5731–5542 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, M.; Fu, R.; Xu, G.; Dong, W.; Qi, H.; Dong, P.; Song, P. Simultaneous Quantitative Analysis of Polymorphic Impurities in Canagliflozin Tablets Utilizing Near-Infrared Spectroscopy and Partial Least Squares Regression. Molecules 2026, 31, 230. https://doi.org/10.3390/molecules31020230
Liu M, Fu R, Xu G, Dong W, Qi H, Dong P, Song P. Simultaneous Quantitative Analysis of Polymorphic Impurities in Canagliflozin Tablets Utilizing Near-Infrared Spectroscopy and Partial Least Squares Regression. Molecules. 2026; 31(2):230. https://doi.org/10.3390/molecules31020230
Chicago/Turabian StyleLiu, Mingdi, Rui Fu, Guiyu Xu, Weibing Dong, Huizhi Qi, Peiran Dong, and Ping Song. 2026. "Simultaneous Quantitative Analysis of Polymorphic Impurities in Canagliflozin Tablets Utilizing Near-Infrared Spectroscopy and Partial Least Squares Regression" Molecules 31, no. 2: 230. https://doi.org/10.3390/molecules31020230
APA StyleLiu, M., Fu, R., Xu, G., Dong, W., Qi, H., Dong, P., & Song, P. (2026). Simultaneous Quantitative Analysis of Polymorphic Impurities in Canagliflozin Tablets Utilizing Near-Infrared Spectroscopy and Partial Least Squares Regression. Molecules, 31(2), 230. https://doi.org/10.3390/molecules31020230
