Theoretical Insight on the Tautomerism and ESIPT Process in Some Hydroxyaryl(hetaryl)idene Azomethine Imines
Abstract
1. Introduction
2. Results and Discussion
3. Theoretical Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weller, A. Über die Fluoreszenz der Salizylsäure und Verwandter Verbindungen. Naturwissenschaften 1955, 42, 175–176. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years. Chem. Soc. Rev. 2011, 40, 3483–3495. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zheng, R.; Wang, Y.; Lv, J. Theoretical Investigation on ESIPT Mechanism of a New Fluorescent Sensor in Different Solvents. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2016, 159, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Han, K. Unraveling the Detailed Mechanism of Excited state Proton Transfer. Acc. Chem. Res. 2018, 51, 1681–1690. [Google Scholar] [CrossRef]
- Fu, P.-Y.; Yi, S.-Z.; Pan, M.; Su, C.-Y. Excited state Intramolecular Proton Transfer (ESIPT) Based Metal–Organic Supramolecular Optical Materials: Energy Transfer Mechanism and Luminescence Regulation Strategy. Acc. Mater. Res. 2023, 4, 939–952. [Google Scholar] [CrossRef]
- Chen, L.; Fu, P.-Y.; Wang, H.-P.; Pan, M. Excited state Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State. Adv. Opt. Mater. 2021, 9, 2001952. [Google Scholar] [CrossRef]
- Kwon, J.E.; Park, S.Y. Advanced Organic Optoelectronic Materials: Harnessing Excited state Intramolecular Proton Transfer (ESIPT) Process. Adv. Mater. 2011, 23, 3615–3642. [Google Scholar] [CrossRef]
- Li, Y.; Dahal, D.; Abeywickrama, C.S.; Pang, Y. Progress in Tuning Emission of the Excited state Intramolecular Proton Transfer (ESIPT)-Based Fluorescent Probes. ACS Omega 2021, 6, 6547–6553. [Google Scholar] [CrossRef]
- Liu, M.; Yu, X.; Li, M.; Liao, N.; Bi, A.; Jiang, Y.; Liu, S.; Gong, Z.; Zeng, W. Fluorescent Probes for the Detection of Magnesium Ions (Mg2+): From Design to Application. RSC Adv. 2018, 8, 12573–12587. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, Y.; Wu, K.; Wei, T.; Wang, J.L.; Zhang, S.S.; Han, Y.F. A Paper and Ink Analysis Method for Forensic Science. Anal. Methods 2015, 7, 3327–3330. [Google Scholar] [CrossRef]
- Kuzu, B.; Tan, M.; Ekmekci, Z.; Menges, N. A Novel Fluorescent Sensor Based on Imidazole Derivative for Fe3+ Ions. J. Lumin. 2017, 192, 1096–1103. [Google Scholar] [CrossRef]
- Chen, W.-H.; Xin, Y.; Pang, Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water. Org. Lett. 2011, 13, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Murale, D.P.; Kim, H.; Choi, W.S.; Churchill, D.G. Highly Selective Excited State Intramolecular Proton Transfer (ESIPT)-Based Superoxide Probing. Org. Lett. 2013, 15, 3946–3949. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, Y.; Strongin, R.M. Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angew. Chem.—Int. Ed. 2011, 50, 10690–10693. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, X.; Lu, G.; Feng, C. A Fluorescence and UV/Vis Absorption Dual-Signaling Probe with Aggregation-Induced Emission Characteristics for Specific Detection of Cysteine. RSC Adv. 2018, 8, 24346–24354. [Google Scholar] [CrossRef]
- Ren, X.; Wang, F.; Lv, J.; Wei, T.; Zhang, W.; Wang, Y.; Chen, X. An ESIPT-Based Fluorescent Probe for Highly Selective Detection of Glutathione in Aqueous Solution and Living Cells. Dye. Pigment. 2016, 129, 156–162. [Google Scholar] [CrossRef]
- Liu, X.; Tian, H.H.; Yang, L.; Su, Y.; Guo, M.; Song, X. A Sensitive and Selective Fluorescent Probe for the Detection of Hydrogen Peroxide with a Red Emission and a Large Stokes Shift. Sens. Actuators B Chem. 2018, 255, 1160–1165. [Google Scholar] [CrossRef]
- Biswas, S.; Das, J.; Barman, S.; Pinninti, B.R.; Maiti, T.K.; Singh, N.D.P. Environment Activatable Nanoprodrug: Two-Step Surveillance in the Anticancer Drug Release. ACS Appl. Mater. Interfaces 2017, 9, 28180–28184. [Google Scholar] [CrossRef]
- Chen, L.; Wu, D.; Yoon, J. An ESIPT Based Fluorescence Probe for Ratiometric Monitoring of Nitric Oxide. Sens. Actuators B Chem. 2018, 259, 347–353. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C.; Wang, X.; Huang, H.; Zhang, X.; Zhu, H. A Flavone-Based ESIPT Fluorescent Sensor for Detection of N2H4 in Aqueous Solution and Gas State and Its Imaging in Living Cells. Sens. Actuators B Chem. 2015, 216, 141–149. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, H.; Zhaoa, R.; Huang, C. A Renewable Test Strip Combined with Solid-State Ratiometric Fluorescence Emission Spectra for the Highly Selective and Fast Determination of Hydrazine Gas. Analyst 2018, 143, 3900–3906. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cheng, K.; Wu, Q.; Ding, D.; Li, C.; Li, Z. A Dual Fluorogenic and 19F NMR Probe for the Detection of Esterase Activity. Mater. Chem. Front. 2018, 2, 1201–1206. [Google Scholar] [CrossRef]
- Tian, M.; Tang, J.S.; Dong, B.; Lin, W. Discriminating Live and Dead Cells in Dual-Color Mode with a Two-Photon Fluorescent Probe Based on ESIPT Mechanism. Anal. Chem. 2017, 90, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zeng, F.; Yu, C.; Wu, S. A Fluorescent Probe for Alkaline Phosphatase via Excited State Intramolecular Proton Transfer. Sens. Actuators B Chem. 2015, 220, 720–726. [Google Scholar] [CrossRef]
- Jia, Y.; Li, P.; Han, K. AMP/GMP Analogs as Affinity ESIPT Probes for Highly Selective Sensing of Alkaline Phosphatase Activity in Living Systems. Chem.—Asian J. 2015, 10, 2444–2451. [Google Scholar] [CrossRef]
- Thorn-Seshold, O.; Vargas-Sanchez, M.; McKeona, S.; Hasserodt, J. A Robust, High-Sensitivity Stealth Probe for Peptidases. Chem. Commun. 2012, 48, 6253–6255. [Google Scholar] [CrossRef]
- Pianowski, Z.L. (Ed.) Molecular Photoswitches; Wiley-VCH: Weinheim, Germany, 2022; ISBN 9783527351039. [Google Scholar]
- Elguero, J.; Taylor, P.J.; Antonov, L.; Hansen, P.E.; Bally, T.; Nagy, P.I.; Kumagai, T.; Grill, L.; Castet, F.; Champagne, B.; et al. Tautomerism Concepts and Applications in Science and Technology; Antonov, L., Ed.; Wiley-VCH: Weinheim, Germany, 2014; ISBN 1550508460640. [Google Scholar]
- Van Der Loop, T.H.; Ruesink, F.; Amirjalayer, S.; Sanders, H.J.; Buma, W.J.; Woutersen, S. Unraveling the Mechanism of a Reversible Photoactivated Molecular Proton Crane. J. Phys. Chem. B 2014, 118, 12965–12971. [Google Scholar] [CrossRef]
- Lim, S.; Seo, J.; Park, S.Y. Photochromic Switching of Excited state Intramolecular Proton-Transfer (ESIPT) Fluorescence: A Unique Route to High-Contrast Memory Switching and Nondestructive Readout. J. Am. Chem. Soc. 2006, 128, 14542–14547. [Google Scholar] [CrossRef]
- Lapinski, L.; Nowak, M.J.; Nowacki, J.; Rode, M.F.; Sobolewski, A.L. A Bistable Molecular Switch Driven by Photoinduced Hydrogen-Atom Transfer. ChemPhysChem 2009, 10, 2290–2295. [Google Scholar] [CrossRef]
- Duarte, L.G.T.A.; Germino, J.C.; Berbigier, J.F.; Barboza, C.A.; Faleiros, M.M.; de Alencar Simoni, D.; Galante, M.T.; de Holanda, M.S.; Rodembusch, F.S.; Zambon Atvars, T.D. White-Light Generation from All-Solution-Processed OLEDs Using a Benzothiazole–Salophen Derivative Reactive to the ESIPT Process. Phys. Chem. Chem. Phys. 2019, 21, 1172–1182. [Google Scholar] [CrossRef]
- Trannoy, V.; Léaustic, A.; Gadan, S.; Guillot, R.; Allain, C.; Clavier, G.; Mazerat, S.; Geffroy, B.; Yu, P. A Highly Efficient Solution and Solid State ESIPT Fluorophore and Its OLED Application. New J. Chem. 2021, 45, 3014–3021. [Google Scholar] [CrossRef]
- Wu, X.; Ni, S.; Wang, C.H.; Zhu, W.; Chou, P.T. Comprehensive Review on the Structural Diversity and Versatility of Multi-Resonance Fluorescence Emitters: Advance, Challenges, and Prospects toward OLEDs. Chem. Rev. 2025, 125, 6685–6752. [Google Scholar] [CrossRef] [PubMed]
- Stoerkler, T.; Pariat, T.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Excited state Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022, 27, 2443. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Chen, Y.T.; Demchenko, A.P.; Chou, P.T. Amino Proton Donors in Excited state Intramolecular Proton-Transfer Reactions. Nat. Rev. Chem. 2018, 2, 131–143. [Google Scholar] [CrossRef]
- Rode, M.F.; Sobolewski, A.L. Effect of Chemical Substituents on the Energetical Landscape of a Molecular Photoswitch: An Ab Initio Study. J. Phys. Chem. A 2010, 114, 11879–11889. [Google Scholar] [CrossRef]
- Nedeltcheva-Antonova, D.; Antonov, L. Improving the Long-Range Intramolecular Proton Transfer—Further Molecular Design of the Successful Molecular Switch 8-(Benzo[d]Thiazol-2-Yl)Quinolin-7-Ol (HQBT). Molecules 2025, 30, 1935. [Google Scholar] [CrossRef]
- Antonov, L.; Joshi, H.C. Excited state Intramolecular Proton Transfer: A Short Introductory Review. Molecules 2021, 26, 1475. [Google Scholar] [CrossRef]
- Marciniak, H.; Hristova, S.; Deneva, V.; Kamounah, F.S.; de Hansen, P.E.; Lochbrunner, S.; Antonov, L. Dynamics of excited state proton transfer in nitro substituted 10-hydroxybenzo[h]quinolines. Phys. Chem. Chem. Phys. 2017, 19, 26621–26629. [Google Scholar] [CrossRef]
- Sobolewski, A.L.; Domcke, W. Photophysics of Intramolecularly Hydrogen-Bonded Aromatic Systems: Ab Initio Exploration of the Excited State Deactivation Mechanisms of Salicylic Acid. Phys. Chem. Chem. Phys. 2006, 8, 3410–3417. [Google Scholar] [CrossRef]
- Ameer-Beg, S.; Ormson, S.M.; Brown, R.G.; Matousek, P.; Towrie, M.; Nibbering, E.T.J.; Foggi, P.; Neuwahl, F.V.R. Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in Room Temperature Solutions of 3-Hydroxyflavone and Derivatives. J. Phys. Chem. A 2001, 105, 3709–3718. [Google Scholar] [CrossRef]
- Wnuk, P.; Burdziński, G.; Sliwa, M.; Kijak, M.; Grabowska, A.; Sepioła, J.; Kubicki, J. From Ultrafast Events to Equilibrium—Uncovering the Unusual Dynamics of ESIPT Reaction: The Case of Dually Fluorescent Diethyl-2,5-(Dibenzoxazolyl)-Hydroquinone. Phys. Chem. Chem. Phys. 2013, 14, 2542–2552. [Google Scholar] [CrossRef]
- Bader, A.N.; Ariese, F.; Gooijer, C. Proton Transfer in 3-Hydroxyflavone Studied by High-Resolution 10 K Laser-Excited Shpol’skii Spectroscopy. J. Phys. Chem. A 2002, 106, 2844–2849. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, S.; Chen, Y.; Guo, H.; Yang, P. Excited State Intramolecular Proton Transfer (ESIPT): From Principal Photophysics to the Development of New Chromophores and Applications in Fluorescent Molecular Probes and Luminescent Materials. Phys. Chem. Chem. Phys. 2012, 14, 8803–8817. [Google Scholar] [CrossRef] [PubMed]
- Rode, M.F.; Nedeltcheva-Antonova, D.; Antonov, L. Long-Range Proton Transfer in 7-Hydroxy-Quinoline-Based Azomethine Dyes: A Hidden Reason for the Low Efficiency. Molecules 2022, 27, 8225. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, L.; Deneva, V.; Kamounah, F.S.; Vassilev, N.; Angelov, I.; Pittelkow, M.; Antonov, L. Tautomerism and Switching in 7-Hydroxy-8-(Azophenyl)-Quinoline and Similar Compounds. Beilstein J. Org. Chem. 2025, 21, 1404–1421. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.H.; Bull, S.D.; He, X.P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited state Intramolecular Proton-Transfer (ESIPT) Based Fluorescence Sensors and Imaging Agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef]
- Hristova, S.; Dobrikov, G.; Kamounah, F.S.; Kawauchi, S.; Hansen, P.E.; Deneva, V.; Nedeltcheva, D.; Antonov, L. 10-Hydroxybenzo[h]Quinoline: Switching between Single- and Double-Well Proton Transfer through Structural Modifications. RSC Adv. 2015, 5, 102495–102507. [Google Scholar] [CrossRef]
- Ghosh, D.; Batuta, S.; Das, S.; Begum, N.A.; Mandal, D. Proton Transfer Dynamics of 4′-N,N-Dimethylamino-3-Hydroxyflavone Observed in Hydrogen-Bonding Solvents and Aqueous Micelles. J. Phys. Chem. B 2015, 119, 5650–5661. [Google Scholar] [CrossRef]
- Schmidtke, S.J.; Underwood, D.F.; Blank, D.A. Following the Solvent Directly during Ultrafast Excited State Proton Transfer. J. Am. Chem. Soc. 2004, 126, 8620–8621. [Google Scholar] [CrossRef]
- Ganorkar, K.; Mukherjee, S.; Wankar, S.; Joshi, R.; Das, C.; Ghosh, S.K. Exploration of the ESIPT Process in a Newly Designed Potential Bioactive Thiosemicarbazone Schiff Base: Spectroscopic Analysis Accompanied by Molecular Optimization and Crystallographic Study. J. Photochem. Photobiol. A Chem. 2019, 371, 81–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, X.; Cui, M.; Zhang, C.; Meng, Q. ESIPT and AIE Characteristics of Three Schiff Base Derivatives and the Relevant Photophysical Mechanism Analyses. J. Lumin. 2022, 248, 118951–118959. [Google Scholar] [CrossRef]
- Bag, R.; Sikdar, Y.; Sahu, S.; Islam, M.; Mandal, S.; Goswami, S. Experimental and Theoretical Exploration of ESIPT in a Systematically Constructed Series of Benzimidazole Based Schiff Base Probes: Application as Chemosensors. Chem. A Eur. J. 2023, 29, e202203399. [Google Scholar] [CrossRef] [PubMed]
- Belskaya, N.P.; Bakulev, V.A.; Fan, Z. Synthesis and (3+2) Cycloaddition Reactions of N,N′- and C,N-Cyclic Azomethine Imines. Chem. Heterocycl. Compd. 2016, 52, 627–636. [Google Scholar] [CrossRef]
- Deepthi, A.; Thomas, N.V.; Sruthi, S.L. An Overview of the Reactions Involving Azomethine Imines over Half a Decade. New J. Chem. 2021, 45, 8847–8873. [Google Scholar] [CrossRef]
- Popova, O.S.; Bren’, V.A.; Tkachev, V.V.; Utenyshev, A.N.; Revinskii, Y.V.; Tikhomirova, K.S.; Starikov, A.G.; Borodkin, G.S.; Dubonosov, A.D.; Shilov, G.V.; et al. Benzenoid-Quinoid Tautomerism of Azomethines and Their Structural Analogs 56. Azomethine Imines, Derivatives of Salicylic and 2-Hydroxynaphthoic Aldehydes. Russ. Chem. Bull. 2016, 65, 648–653. [Google Scholar] [CrossRef]
- Bren, V.A.; Dubonosov, A.D.; Popova, O.S.; Revinskii, Y.V.; Tikhomirova, K.S.; Minkin, V.I. Synthesis and Photo- and Ionochromic and Spectral-Luminescent Properties of 5-Phenylpyrazolidin-3-One Azomethine Imines. Int. J. Photoenergy 2018, 2018, 9746534. [Google Scholar] [CrossRef]
- Bren, V.A.; Popova, O.S.; Tolpygin, I.E.; Chernoivanov, V.A.; Revinskii, Y.V.; Dubonosov, A.D. New Ionochromic Azomethinimine Chemosensors. Russ. Chem. Bull. 2015, 64, 668–671. [Google Scholar] [CrossRef]
- Nikolaeva, O.G.; Popova, O.S.; Dubonosova, I.V.; Karlutova, O.Y.; Dubonosov, A.D.; Bren, V.A.; Minkin, V.I. Spectral-Luminescent and Ionochromic Properties of Azomethine Imine-Coumarin Conjugates. Russ. J. Gen. Chem. 2022, 92, 841–849. [Google Scholar] [CrossRef]
- Zaharieva, L.; Nedeltcheva-Antonova, D.; Antonov, L. 8-(Pyridin-2-Yl)Quinolin-7-Ol and Beyond: Theoretical Design of Tautomeric Molecular Switches with Pyridine as a Proton Crane Unit. Chemistry 2024, 6, 1608–1621. [Google Scholar] [CrossRef]
- Slavova, S.; Antonov, L. Theoretical Understanding of the Long-Range Proton Transfer Mechanism in 7-Hydroxy Quinoline-Based Molecular Switches: Varma’s Proton Crane and Its Analogues. J. Phys. Chem. A 2024, 128, 1280–1287. [Google Scholar] [CrossRef]
- Rehhagen, C.; Argüello Cordero, M.A.; Kamounah, F.S.; Deneva, V.; Angelov, I.; Krupp, M.; Svenningsen, S.W.; Pittelkow, M.; Lochbrunner, S.; Antonov, L. Reversible Switching Based on Truly Intramolecular Long-Range Proton Transfer─Turning the Theoretical Concept into Experimental Reality. J. Am. Chem. Soc. 2024, 146, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.J.; Robb, M.A.; Blancafort, L.; DeBellis, A.D. Mechanism of an Exceptional Class of Photostabilizers: A Seam of Conical Intersection Parallel to Excited State Intramolecular Proton Transfer (ESIPT) in o-Hydroxyphenyl-(1,3,5)-Triazine. J. Phys. Chem. A 2005, 109, 7527–7537. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Adamo, C.; Jacquemin, D. The Calculations of Excited state Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Wieder, M.; Fass, J.; Chodera, J.D. Fitting Quantum Machine Learning Potentials to Experimental Free Energy Data: Predicting Tautomer Ratios in Solution. Chem. Sci. 2021, 12, 11364–11381. [Google Scholar] [CrossRef]
- Dzib, E.; Merino, G. The Hindered Rotor Theory: A Review. WIREs Comput. Mol. Sci. 2021, 12, e1583. [Google Scholar] [CrossRef]
- Deneva, V.; Vassilev, N.G.; Hristova, S.; Yordanov, D.; Hayashi, Y.; Kawauchi, S.; Fennel, F.; Völzer, T.; Lochbrunner, S.; Antonov, L. Chercher de l’eau: The Switching Mechanism of the Rotary Switch Ethyl-2-(2-(Quinolin-8-Yl)Hydrazono)-2-(Pyridin-2-Yl)Acetate. Comput. Mater. Sci. 2020, 177, 109570. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. A Comparative Examination of Density Functional Performance against the ISOL24/11 Isomerization Energy Benchmark. Comput. Theor. Chem. 2016, 1090, 147–152. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Nedeltcheva-Antonova, D.; Antonov, L. Ground-State Tautomerism and Excited state Proton Transfer in 7-Hydroxy-4-Methyl-8-((Phenylimino)Methyl)-2H-Chromen-2-One as a Potential Proton Crane. Physchem 2024, 4, 91–105. [Google Scholar] [CrossRef]
- Avogadro: An Open-Source Molecular Builder and Visualization Tool. Available online: https://avogadro.cc/ (accessed on 29 December 2025).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]







| Forms (See Figures S1–S3) | Optimized Geometry | α/β [°] | ∆E | ∆G | |
|---|---|---|---|---|---|
| Compound A | A3 | ![]() | −36.3/ −18.8 | 18.3 | 17.6 |
| A15 | ![]() | 157.6/ −13.1 | 16.5 | 15.4 | |
| A19 | - | - | - | - | |
| Compound B | B3 | ![]() | −37.2/ −13.2 | 17.6 | 17.6 |
| B15 | ![]() | 151.4/ −10.4 | 16.6 | 16.5 | |
| B19 | ![]() | −144.0/1.7 | 27.4 | 26.7 | |
| Compound C | C3 | ![]() | −35.7/ −14.0 | 18.2 | 17.9 |
| C15 | ![]() | 151.5/ −10.6 | 17.4 | 16.9 | |
| C19 | ![]() | −152.8/2.1 | 35.7 | 35.5 | |
| Experiment | M062X/TZVP | B3LYP/TZVP | |||||||
|---|---|---|---|---|---|---|---|---|---|
| A1 | B1 | C1 | A1 | B1 | C1 | A1 | B1 | C1 | |
| Atom | Chloroform | ||||||||
| >CH– | 7.1–7.8 1 | - | - | 8.0 | 8.0 | 8.1 | 7.6 | 7.6 | 7.7 |
| OH | 12.8 1 | - | - | 12.4 | 13.7 | 13.4 | 11.8 | 13.0 | 12.6 |
| Dimethyl sulfoxide | |||||||||
| >CH– | 7.7–8.4 1 | 7.8 2 | 7.9 2 | 8.1 | 8.0 | 8.2 | 7.7 | 7.7 | 7.8 |
| OH | 13.1 1 | 13.7 2 | 13.7 2 | 12.4 | 13.6 | 13.2 | 11.7 | 12.9 | 12.5 |
| Structure | Transition | Eigenvectors | E, eV | λ, nm | f | |
|---|---|---|---|---|---|---|
| A1 | Excited state 1 | 83 -> 84 (HOMO -> LUMO) | 0.69891 | 3.3286 | 372 | 0.3599 |
| Excited state 2 | 80 -> 84 | 0.13694 | 3.8878 | 319 | 0.1078 | |
| 82 -> 84 (HOMO-1 -> LUMO) | 0.66338 | |||||
| 83 -> 88 | −0.15625 | |||||
| B1 | Excited state 1 | 90 -> 92 | 0.23885 | 3.4878 | 355 | 0.1178 |
| 91 -> 92 (HOMO -> LUMO) | 0.62379 | |||||
| 91 -> 93 | 0.21217 | |||||
| Excited state 2 | 90 -> 92 (HOMO-1 -> LUMO) | 0.60418 | 3.7321 | 332 | 0.2923 | |
| 91 -> 92 | −0.29510 | |||||
| 91 -> 93 | 0.18044 | |||||
| Excited state 4 | 90 -> 92 | −0.24464 | 4.0549 | 306 | 0.4829 | |
| 91 -> 92 | −0.11647 | |||||
| 91 -> 93 (HOMO -> LUMO+1) | 0.63385 | |||||
| C1 | Excited state 1 | 99 -> 101 | −0.14335 | 3.3783 | 367 | 0.0979 |
| 100 -> 101 (HOMO -> LUMO) | 0.67067 | |||||
| 100 -> 102 | 0.12421 | |||||
| Excited state 2 | 99 -> 101 (HOMO-1 -> LUMO) | 0.66847 | 3.7694 | 329 | 0.4883 | |
| 100 -> 101 | 0.15006 | |||||
| Excited state 3 | 100 -> 101 | −0.11603 | 3.8056 | 326 | 0.1586 | |
| 100 -> 102 (HOMO -> LUMO+1) | 0.68358 | |||||
| Excited state 6 | 97 -> 101 | −0.20473 | 4.4026 | 282 | 0.3999 | |
| 99 -> 102 | −0.15033 | |||||
| 100 -> 103 (HOMO -> LUMO+2) | 0.62810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kircheva, N.; Angelova, S.; Dobrev, S.; Antonov, L. Theoretical Insight on the Tautomerism and ESIPT Process in Some Hydroxyaryl(hetaryl)idene Azomethine Imines. Molecules 2026, 31, 208. https://doi.org/10.3390/molecules31020208
Kircheva N, Angelova S, Dobrev S, Antonov L. Theoretical Insight on the Tautomerism and ESIPT Process in Some Hydroxyaryl(hetaryl)idene Azomethine Imines. Molecules. 2026; 31(2):208. https://doi.org/10.3390/molecules31020208
Chicago/Turabian StyleKircheva, Nikoleta, Silvia Angelova, Stefan Dobrev, and Liudmil Antonov. 2026. "Theoretical Insight on the Tautomerism and ESIPT Process in Some Hydroxyaryl(hetaryl)idene Azomethine Imines" Molecules 31, no. 2: 208. https://doi.org/10.3390/molecules31020208
APA StyleKircheva, N., Angelova, S., Dobrev, S., & Antonov, L. (2026). Theoretical Insight on the Tautomerism and ESIPT Process in Some Hydroxyaryl(hetaryl)idene Azomethine Imines. Molecules, 31(2), 208. https://doi.org/10.3390/molecules31020208









