Oilseed By-Products Valorization Using Lactic Acid Fermentation: Nutritional and Technological Aspects of Applications in Wheat Bread
Abstract
1. Introduction
2. Results
2.1. Bioactive Compounds in Unfermented and Fermented Oilseed Cakes
2.2. Fatty Acid Profile in Unfermented and Fermented Oilseed Cakes
2.3. Physical Characteristics of Bread Containing Unfermented and Fermented Oilseed Cakes
2.4. Bioactive Compounds in Bread Containing Unfermented and Fermented Oilseed Cakes
2.5. Fatty Acid Profile in Bread Containing Unfermented and Fermented Oilseed Cakes
3. Materials and Methods
3.1. Material
3.1.1. Preparation of Cakes and Fermentation
3.1.2. Preparation of Model Wheat Bread
3.2. Methods
3.2.1. Bioactive Compounds Content in Cakes and Breads
Determination of Flavonoids and Phenolic Acids Content
Determination of Silymarin and Thymoquinone Content
Determination of Carotenoid Content
3.2.2. Fatty Acid Profile (FAME) Analysis in Cakes and Breads
3.2.3. Bread Physical Characteristics
Bread Volume
Bread Crumb and Crust Color Analysis
Bread Texture Analysis
3.2.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grahovac, N.; Aleksić, M.; Trajkovska, B.; Marjanović Jeromela, A.; Nakov, G. Extraction and Valorization of Oilseed Cakes for Value-Added Food Components—A Review for a Sustainable Foodstuff Production in a Case Process Approach. Foods 2025, 14, 2244. [Google Scholar] [CrossRef]
- Usman, I.; Saif, H.; Imran, A.; Afzaal, M.; Saeed, F.; Azam, I.; Afzal, A.; Ateeq, H.; Islam, F.; Shah, Y.A.; et al. Innovative Applications and Therapeutic Potential of Oilseeds and Their By-products: An Eco-friendly and Sustainable Approach. Food Sci. Nutr. 2023, 11, 2599–2609. [Google Scholar] [CrossRef]
- Shevchuk, N.; Petrova, O.; Ziuzko, A.; Trybrat, R.; Oliinychenko, T. Use of Oilseeds as Organic Raw Materials for the Food Industry. Ukr. Black Sea Reg. Agrar. Sci. 2024, 28, 65–76. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO FAOSTAT—Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 December 2025).
- Rakita, S.; Kokić, B.; Manoni, M.; Mazzoleni, S.; Lin, P.; Luciano, A.; Ottoboni, M.; Cheli, F.; Pinotti, L. Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review. Foods 2023, 12, 432. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Kwiatkowski, P.; Drozłowska, E. Production and Characterization of Yogurt-Like Fermented Beverage Based on Camelina (Camelina sativa L.) Seed Press Cake. Appl. Sci. 2022, 12, 1085. [Google Scholar] [CrossRef]
- Burdock, G.A. Assessment of Black Cumin (Nigella sativa L.) as a Food Ingredient and Putative Therapeutic Agent. Regul. Toxicol. Pharmacol. 2022, 128, 105088. [Google Scholar] [CrossRef] [PubMed]
- Bártová, V.; Bárta, J.; Jarošová, M.; Bedrníček, J.; Lorenc, F.; Stupková, A.; Švajner, J.; Smetana, P.; Kyselka, J.; Filip, V.; et al. Milk Thistle (Silybum marianum L. Gaertner) Oilseed Cake Flour Functional, Nutritional and Antioxidant Characteristics as Effect of Cultivar and Preparation Process. Food Biosci. 2025, 63, 105735. [Google Scholar] [CrossRef]
- Vichare, S.A.; Morya, S. Exploring Waste Utilization Potential: Nutritional, Functional and Medicinal Properties of Oilseed Cakes. Front. Food Sci. Technol. 2024, 4, 1441029. [Google Scholar] [CrossRef]
- Ermosh, L.G.; Prisuhina, N.V.; Koch, D.A.; Eremina, E. V The Use of Oilseed Cake for Supplementation of Bakery Products. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 022090. [Google Scholar] [CrossRef]
- Krystyjan, M.; Gumul, D.; Adamczyk, G. The Effect of Milk Thistle (Silybum marianum L.) Fortification, Rich in Dietary Fibre and Antioxidants, on Structure and Physicochemical Properties of Biscuits. Appl. Sci. 2022, 12, 12501. [Google Scholar] [CrossRef]
- Makowska, A.; Zielińska-Dawidziak, M.; Waszkowiak, K.; Myszka, K. Effect of Flax Cake and Lupine Flour Addition on the Physicochemical, Sensory Properties, and Composition of Wheat Bread. Appl. Sci. 2023, 13, 7840. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Mika, M.; Wikiera, A. Rhizopus Oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules 2020, 25, 4759. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, O.; Cai, S.; Zhao, L.; Zhao, L. Composition, Functional Properties, Health Benefits and Applications of Oilseed Proteins: A Systematic Review. Food Res. Int. 2023, 171, 113061. [Google Scholar] [CrossRef] [PubMed]
- Waszkowiak, K.; Makowska, A.; Mikołajczak, B.; Myszka, K.; Barthet, V.J.; Zielińska-Dawidziak, M.; Kmiecik, D.; Truszkowska, M. Fermenting of Flaxseed Cake with Lactiplantibacillus plantarum K06 to Increase Its Application as Food Ingredient—The Effect on Changes in Protein and Phenolic Profiles, Cyanogenic Glycoside Degradation, and Functional Properties. LWT 2025, 217, 117419. [Google Scholar] [CrossRef]
- Peschel, W.; Dieckmann, W.; Sonnenschein, M.; Plescher, A. High Antioxidant Potential of Pressing Residues from Evening Primrose in Comparison to Other Oilseed Cakes and Plant Antioxidants. Ind. Crops Prod. 2007, 25, 44–54. [Google Scholar] [CrossRef]
- Miedzianka, J.; Drzymała, K.; Nemś, A.; Kita, A. Comparative Evaluation of the Antioxidant, Antimicrobial and Nutritive Properties of Gluten-Free Flours. Sci. Rep. 2021, 11, 10385. [Google Scholar] [CrossRef] [PubMed]
- Terpinc, P.; Polak, T.; Makuc, D.; Ulrih, N.P.; Abramovič, H. The Occurrence and Characterisation of Phenolic Compounds in Camelina sativa Seed, Cake and Oil. Food Chem. 2012, 131, 580–589. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Graczyk, M.; Przybylska-Balcerek, A.; Stuper-Szablewska, K.; Szwajkowska-Michałek, L. An Analysis of Variability in the Content of Phenolic Acids and Flavonoids in Camelina Seeds Depending on Weather Conditions, Functional Form, and Genotypes. Molecules 2022, 27, 3364. [Google Scholar] [CrossRef]
- Kiss, A.; Derwińska, M.; Granica, S. Quantitative Analysis of Biologicaly Active Polyphenols in Evening Primrose (Oenothera paradoxa) Seeds Aqueous Extracts. Pol. J. Food Nutr. Sci. 2011, 61, 109–113. [Google Scholar] [CrossRef]
- Kadam, D.; Lele, S.S. Extraction, Characterization and Bioactive Properties of Nigella Sativa Seedcake. J. Food Sci. Technol. 2017, 54, 3936–3947. [Google Scholar] [CrossRef]
- Santamaría, L.; Reverón, I.; de Felipe, F.L.; de las Rivas, B.; Muñoz, R. Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols. Appl. Environ. Microbiol. 2018, 84, e01064-18. [Google Scholar] [CrossRef]
- Paventi, G.; Di Martino, C.; Coppola, F.; Iorizzo, M. β-Glucosidase Activity of Lactiplantibacillus plantarum: A Key Player in Food Fermentation and Human Health. Foods 2025, 14, 1451. [Google Scholar] [CrossRef]
- Pulido-Mateos, E.C.; Lessard-Lord, J.; Desjardins, Y.; Roy, D. Lactiplantibacillus plantarum Interstrain Variability in the Production of Bioactive Phenolic Metabolites from Flavan-3-Ols. J. Agric. Food Chem. 2024, 72, 21677–21689. [Google Scholar] [CrossRef]
- Garrido-Fernández, J.; Maldonado-Barragán, A.; Caballero-Guerrero, B.; Hornero-Méndez, D.; Ruiz-Barba, J.L. Carotenoid Production in Lactobacillus plantarum. Int. J. Food Microbiol. 2010, 140, 34–39. [Google Scholar] [CrossRef]
- Aziz, T.; Sarwar, A.; ud Din, J.; Al Dalali, S.; Khan, A.A.; Din, Z.U.; Yang, Z. Biotransformation of Linoleic Acid into Different Metabolites by Food Derived Lactobacillus plantarum 12-3 and in Silico Characterization of Relevant Reactions. Food Res. Int. 2021, 147, 110470. [Google Scholar] [CrossRef] [PubMed]
- De Lamo, B.; Gómez, M. Bread Enrichment with Oilseeds. A Review. Foods 2018, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.; Starowicz, M.; Ostaszyk, A.; Łopusiewicz, Ł.; Ferreira, I.M.P.L.V.O.; Pinto, E.; Krupa-Kozak, U. The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality. Foods 2023, 12, 4320. [Google Scholar] [CrossRef] [PubMed]
- Tarek-Tilistyák, J.; Agócs, J.; Lukács, M.; Dobró-Tóth, M.; Juhász-Román, M.; Dinya, Z.; Jekő, J.; Máthé, E. Novel Breads Fortified through Oilseed and Nut Cakes. Acta Aliment. 2014, 43, 444–451. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z. Impact of Melon Seed Oil Cake with Different Particle Sizes on Bread Quality. Food Prod. Process. Nutr. 2024, 6, 44. [Google Scholar] [CrossRef]
- Montrimaitė, K.; Moščenkova, E. Possibilities of Usage of Oilcakes from Non-Traditional Oil Plants for Development of Health-Friendly Functional Food Products. Food Sci. Appl. Biotechnol. 2018, 1, 154–164. [Google Scholar] [CrossRef]
- Pojić, M.; Dapčević Hadnađev, T.; Hadnađev, M.; Rakita, S.; Brlek, T. Bread Supplementation with Hemp Seed Cake: A By-Product of Hemp Oil Processing. J. Food Qual. 2015, 38, 431–440. [Google Scholar] [CrossRef]
- Ramos Magalhães, A.E.; Landim Neves, M.I.; dos Reis Gasparetto, B.; Oliveira Júnior, F.D.; Ribas Fonseca, L.; Joy Steel, C.; Lopes da Cunha, R. Organic Acids in Bread-Making Affecting Gluten Structure and Digestibility. Food Res. Int. 2023, 174, 113520. [Google Scholar] [CrossRef]
- Zain, N.M.; Ghani, M.A.; Kasim, Z.M. Effects of Water Addition Level on Physical Properties, Rheological Profile and Sensory Evaluation of Gluten-Free Bread: A Preliminary Approach. Sains Malays. 2023, 52, 487–499. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef]
- Dahdah, P.; Cabizza, R.; Farbo, M.G.; Fadda, C.; Del Caro, A.; Montanari, L.; Hassoun, G.; Piga, A. Effect of Partial Substitution of Wheat Flour with Freeze-Dried Olive Pomace on the Technological, Nutritional, and Sensory Properties of Bread. Front. Sustain. Food Syst. 2024, 8, 1400339. [Google Scholar] [CrossRef]
- Bárta, J.; Bártová, V.; Jarošová, M.; Švajner, J.; Smetana, P.; Kadlec, J.; Filip, V.; Kyselka, J.; Berčíková, M.; Zdráhal, Z.; et al. Oilseed Cake Flour Composition, Functional Properties and Antioxidant Potential as Effects of Sieving and Species Differences. Foods 2021, 10, 2766. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, M.; Djordjević, M.; Spychaj, R.; Pejcz, E.; Stupar, A.; Perović, L.; Pavličević, J. An Approach Combining Alfalfa Seeds and Biotechnological Methods to Enhance Wheat Bread Quality: Nutritional, Antioxidant, Spectroscopic and Sensory Aspects. Food Res. Int. 2025, 217, 116784. [Google Scholar] [CrossRef]
- Kowalski, S.; Mikulec, A.; Litwinek, D.; Mickowska, B.; Skotnicka, M.; Oracz, J.; Karwowska, K.; Wywrocka-Gurgul, A.; Sabat, R.; Platta, A. The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread. Molecules 2024, 29, 5455. [Google Scholar] [CrossRef] [PubMed]
- Torreggiani, A.; Demarinis, C.; Pinto, D.; Papale, A.; Difonzo, G.; Caponio, F.; Pontonio, E.; Verni, M.; Rizzello, C.G. Up-Cycling Grape Pomace through Sourdough Fermentation: Characterization of Phenolic Compounds, Antioxidant Activity, and Anti-Inflammatory Potential. Antioxidants 2023, 12, 1521. [Google Scholar] [CrossRef]
- Novotni, D.; Mutak, N.; Nanjara, L.; Drakula, S.; Čukelj Mustač, N.; Voučko, B.; Ćurić, D. Sourdough Fermentation of Carob Flour and Its Application to Wheat Bread. Food Technol. Biotechnol. 2020, 58, 465–474. [Google Scholar] [CrossRef]
- Boudaoud, S.; Aouf, C.; Devillers, H.; Sicard, D.; Segond, D. Sourdough Yeast-Bacteria Interactions Can Change Ferulic Acid Metabolism during Fermentation. Food Microbiol. 2021, 98, 103790. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Rabalski, I. Changes in Phenolic Acids and Antioxidant Properties during Baking of Bread and Muffin Made from Blends of Hairless Canary Seed, Wheat, and Corn. Antioxidants 2022, 11, 1059. [Google Scholar] [CrossRef]
- Chochkov, R.; Zlateva, D.; Stefanova, D.; Ivanova, P. Effect of Pumpkin Seed Flour, Chestnut Flour, and Rosehip Flour on Wheat Bread Staling Rate. Ukr. Food J. 2024, 13, 76–90. [Google Scholar] [CrossRef]
- Osuna, M.B.; Judis, M.A.; Romero, A.M.; Avallone, C.M.; Bertola, N.C. Improvement of Fatty Acid Profile and Studio of Rheological and Technological Characteristics in Breads Supplemented with Flaxseed, Soybean, and Wheat Bran Flours. Sci. World J. 2014, 2014, 401981. [Google Scholar] [CrossRef] [PubMed]
- Przybylska-Balcerek, A.; Frankowski, J.; Graczyk, M.; Niedziela, G.; Sieracka, D.; Wacławek, S.; Sázavská, T.H.; Buśko, M.; Szwajkowska-Michałek, L.; Stuper-Szablewska, K. Profile of Polyphenols, Fatty Acids, and Terpenes in Henola Hemp Seeds Depending on the Method of Fertilization. Molecules 2024, 29, 4178. [Google Scholar] [CrossRef]
- Kvasnička, F.; Bíba, B.; Ševčík, R.; Voldřich, M.; Krátká, J. Analysis of the Active Components of Silymarin. J. Chromatogr. A 2003, 990, 239–245. [Google Scholar] [CrossRef] [PubMed]
- AACC Method 10-05.01; Guidelines for Measurement of Volume by Rapeseed Displacement. AACC. Approved Methods of Analysis, 11th Edition. American Association of Cereal Chemists: St. Paul, MN, USA, 2010.
- Mokrzycki, W.; Tatol, M. Colour Difference Delta E—A Survey. Mach. Graph. Vis. 2021, 20, 383–411. [Google Scholar]

| Compounds | Black Cumin | Camelina | Milk Thistle | Evening Primrose | |||
|---|---|---|---|---|---|---|---|
| UF | F | UF | F | UF | F | UF | |
| Flavonoids | |||||||
| Apigenin | nd | nd | 11.22 ± 0.04 b | 14.59 ± 0.04 a | nd | nd | nd |
| Catechin | nd | nd | 1.12 ± 0.02 b | 1.47 ± 0.02 a | nd | nd | 0.10 ± 0.01 c |
| Kaempferol | nd | nd | 2.65 ± 0.02 b | 3.41 ± 0.03 a | nd | nd | 0.60 ± 0.06 c |
| Luteolin | nd | nd | 3.5 ± 0.02 b | 4.56 ± 0.02 a | nd | nd | 0.05 ± 0.01 c |
| Naringenin | nd | nd | 3.12 ± 0.03 b | 4.03 ± 0.02 a | nd | nd | 0.02 ± 0.00 c |
| Quercetin | nd | nd | 6.54 ± 0.02 b | 8.56 ± 0.05 a | nd | nd | 0.01 ± 0.00 c |
| Rutin | nd | nd | 6.22 ± 0.02 b | 8.08 ± 0.03 a | 0.03 ± 0.01 d | 0.04 ± 0.01 d | 4.80 ± 0.10 c |
| Vitexin | nd | nd | 3.26 ± 0.01 c | 4.19 ± 0.08 b | 0.08 ± 0.01 d | 0.10 ± 0.01 d | 7.50 ± 0.02 a |
| SUM | - | - | 36.14 | 46.94 | 0.11 | 0.13 | 12.58 |
| Phenolic acids | |||||||
| 4-hydroxybenzoic | 0.10 ± 0.01 c | 0.81 ± 0.59 c | 35.60 ± 0.07 b | 46.29 ± 0.07 a | nd | nd | nd |
| Caffeic | nd | nd | 132.70 ± 0.45 b | 171.88 ± 0.81 a | nd | nd | 5.00 ± 0.24 c |
| Chlorogenic | nd | nd | 50.28 ± 0.15 b | 65.21 ± 0.12 a | 0.05 ± 0.00 d | 0.07 ± 0.01 d | 3.20 ± 0.09 c |
| Ferulic | nd | nd | 82.32 ± 0.14 b | 107.41 ± 0.39 a | nd | nd | 14.80 ± 0.14 c |
| Gallic | nd | nd | 12.35 ± 0.06 c | 16.11 ± 0.09 b | nd | nd | 63.40 ± 0.05 a |
| p-Coumaric | 0.09 ± 0.00 d | 0.12 ± 0.00 d | 19.35 ± 0.06 b | 25.17 ± 0.04 a | 0.11 ± 0.00 d | 0.15 ± 0.01 d | 7.35 ± 0.00 c |
| Protocatechuic | nd | nd | 9.33 ± 0.02 b | 12.20 ± 0.06 a | nd | nd | nd |
| Sinapic | nd | nd | 652.22 ± 0.52 b | 848.18 ± 0.14 a | nd | nd | nd |
| Syringic | nd | nd | 21.21 ± 0.09 b | 27.66 ± 0.13 a | nd | nd | nd |
| Cinnamic | nd | nd | 132.97 ± 0.64 b | 172.71 ± 0.61 a | nd | nd | nd |
| Vanillic | nd | nd | 1.25 ± 0.02 b | 1.64 ± 0.02 a | nd | nd | nd |
| SUM | 0.19 | 0.93 | 1149.60 | 1494.45 | 0.16 | 0.22 | 93.75 |
| Others | |||||||
| Thymoquinone | 11,490.00 ± 11.14 a | 10,345.67 ± 5.13 b | nd | nd | nd | nd | nd |
| Silymarins | nd | nd | nd | nd | 30.53 ± 0.10 a | 27.50 ± 0.15 b | nd |
| Lutein | nd | nd | 3.55 ± 0.02 a | 2.45 ± 0.04 b | nd | nd | nd |
| Zeaxanthin | nd | nd | 0.05 ± 0.01 a | 0.03 ± 0.01 a | nd | nd | nd |
| β-carotene | nd | nd | 30.50 ± 0.08 a | 21.38 ± 0.05 b | nd | nd | nd |
| Fatty Acid | Black Cumin | Camelina | Milk Thistle | Evening Primrose | |||
|---|---|---|---|---|---|---|---|
| UF | F | UF | F | UF | F | UF | |
| C14:0 | 0.00 | 0.11 ± 0.01 c | 0.29 ± 0.01 b | 0.39 ± 0.02 a | 0.00 | 0.10 ± 0.01 c | 0.00 |
| C15:0 | 0.00 | 0.51 ± 0,01 b | 0.00 | 0.46 ± 0.05 c | 0.00 | 0.60 ± 0.01 a | 0.00 |
| C16:0 | 16.70 ± 0.03 c | 18.60 ± 0.10 a | 3.50 ± 0.01 f | 4.53 ± 0.06 e | 15.60 ± 0.02 d | 17.13 ± 0.15 b | 7.80 ± 0.01 e |
| C16:1 | 0.00 | 0.10 ± 0.00 a | 0.09 ± 0.01 a | 0.17 ± 0.06 a | 0.00 | 0.13 ± 0.06 a | 0.00 |
| C17:0 | 0.00 | 0.50 ± 0.01 ab | 0.00 | 0.48 ± 0.03 b | 0.00 | 0.51 ± 0.01 a | 0.00 |
| C18:0 | 5.30 ± 0.01 b | 6.07 ± 0.06 a | 2.39 ± 0.03 e | 3.45 ± 0.05 d | 3.50 ± 0.05 d | 4.51 ± 0.02 c | 1.80 ± 0.01 f |
| C18:1 | 17.60 ± 0.02 c | 20.74 ± 0.23 a | 14.46 ± 0.05 d | 18.10 ± 0.19 b | 12.40 ± 0.01 d | 14.78 ± 0.19 d | 6.70 ± 0.03 f |
| C18:2 | 60.40 ± 0.01 c | 52.13 ± 0.15 e | 18.34 ± 0.04 f | 15.50 ± 0.10 g | 68.50 ± 0.07 b | 61.70 ± 0.10 c | 74.90 ± 0.02 a |
| C18:3 n-6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.70 ± 0.02 a |
| C18:3 n-3 | 0.00 | 0.00 | 36.84 ± 0.06 a | 31.40 ± 0.10 b | 0.00 | 0.00 | 0.10 ± 0.02 c |
| C20:0 | 0.00 | 0.17 ± 0.06 c | 0.89 ± 0.05 b | 1.10 ± 0.10 a | 0.00 | 0.23 ± 0.06 c | 0.00 |
| C20:1 | 0.00 | 0.00 | 18.75 ± 0.01 b | 19.50 ± 0.10 a | 0.00 | 0.00 | 0.00 |
| C20:2 | 0.00 | 0.00 | 0.49 ± 0.01 a | 0.53 ± 0.06 a | 0.00 | 0.00 | 0.00 |
| C22:1 | 0.00 | 0.00 | 3.27 ± 0.06 a | 3.30 ± 0.01 a | 0.00 | 0.00 | 0.00 |
| C24:0 | 0.00 | 1.07 ± 0.06 a | 0.39 ± 0.01 c | 0.60 ± 0.01 b | 0.00 | 0.29 ± 0.01 d | 0.00 |
| C24:1 | 0.00 | 0.00 | 0.30 ± 0.02 b | 0.49 ± 0.02 a | 0.00 | 0.00 | 0.00 |
| ∑SFAs | 22.00 | 27.03 | 7.46 | 11.01 | 19.10 | 23.38 | 9.60 |
| ∑MUFAs | 17.60 | 20.84 | 36.87 | 41.56 | 12.40 | 14.91 | 6.70 |
| ∑PUFAs | 60.40 | 52.13 | 55.67 | 47.43 | 68.50 | 61.70 | 83.70 |
| ∑PUFA/∑SFA | 2.75 | 1.93 | 7.46 | 4.31 | 3.59 | 2.64 | 8.72 |
| SUM | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| Characteristics | Wheat Bread Containing 9% | Wheat Bread | |||||
|---|---|---|---|---|---|---|---|
| Black Cumin Cake | Cameline Cake | Milk Thistle Cake | |||||
| UF | F | UF | F | UF | F | ||
| Texture parameters | |||||||
| Hardness (N) | 23.72 ± 1.11 bc | 28.99 ± 2.14 bc | 13.68 ± 1.38 de | 24.62 ± 1.45 c | 28.31 ± 3.18 a | 34.91 ± 1.94 a | 6.63 ± 1.29 f |
| Springiness (%) | 0.82 ± 0.03 e | 0.75 ± 0.07 e | 0.93 ± 0.02 abcd | 0.84 ± 0.03 abcd | 0.83 ± 0.07 e | 0.82 ± 0.04 a | 0.89 ± 0.05 abcde |
| Cohesiveness (-) | 0.76 ± 0.03 d | 0.73 ± 0.04 d | 0.87 ± 0.03 abc | 0.76 ± 0.03 a | 0.80 ± 0.03 cd | 0.78 ± 0.02 cd | 0.86 ± 0.02 ab |
| Gumminess (-) | 18.08 ± 1.40 c | 21.25 ± 1.09 c | 11.41 ± 0.91 d | 18.80 ± 1.06 c | 22.54 ± 1.70 a | 27.03 ± 1.78 a | 5.74 ± 1.17 f |
| Chewiness (-) | 14.83 ± 1.75 cd | 16.06 ± 2.07 c | 10.66 ± 0.88 ef | 15.85 ± 1.44 abc | 18.84 ± 2.74 ab | 22.16 ± 2.33 ab | 5.14 ± 1.14 g |
| Resilience (-) | 0.30 ± 0.01 h | 0.29 ± 0.03 h | 0.46 ± 0.03 bcde | 0.35 ± 0.02 abcd | 0.42 ± 0.02 efg | 0.39 ± 0.03 ab | 0.48 ± 0.03 abcde |
| Specific volume (mL/100 g) | 265 ± 3 ea | 186 ± 4 e | 233 ± 2 i | 226 ± 3 k | 242 ± 2 ghb | 180 ± 6 e | 238 ± 3 hi |
| Crumb Color | |||||||
| L* | 30.1 ± 1.0 f | 53.0 ± 0.6 c | 49.6 ± 1.0 d | 56.1 ± 0.9 b | 47.2 ± 0.7 e | 56.3 ± 0.1 b | 70.6 ± 0.4 a |
| a* | 2.4 ± 0.0 d | 5.3 ± 0.1 a | 4.5 ± 0.0 b | 5.5 ± 0.3 a | 3.8 ± 0.3 c | 4.6 ± 0.1 b | 2.0 ± 0.1 e |
| b* | 0.8 ± 0.1 g | 11.1 ± 0.1 e | 12.7 ± 0.2 d | 17.4 ± 0.6 a | 10.5 ± 0.0 f | 15.5 ± 0.2 c | 16.6 ± 0.1 b |
| WI | 30.05 | 51.46 | 47.83 | 52.43 | 46.03 | 53.41 | 66.18 |
| ΔE | - | 11.8 | - | 8.1 | - | 10.4 | - |
| Crust Color | |||||||
| L* | 32.3 ± 1.0 f | 35.7 ± 0.4 e | 44.0 ± 0.7 d | 55.7 ± 0.2 c | 44.7 ± 0.4 d | 59.4 ± 0.1 b | 63.9 ± 1.6 a |
| a* | 2.5 ± 0.0 f | 3.9 ± 0.2 e | 9.9 ± 0.6 a | 10.2 ± 0.2 a | 8.9 ± 0.0 b | 8.6 ± 0.1 c | 5.8 ± 0.7 d |
| b* | 3.0 ± 0.2 g | 5.0 ± 0.6 f | 15.0 ± 0.4 fd | 24.6 ± 0.2 b | 13.2 ± 0.1 e | 22.4 ± 0.1 c | 26.4 ± 0.5 a |
| BI | 21.91 | 29.69 | 66.78 | 80.99 | 57.78 | 66.83 | 68.80 |
| ΔE | - | 4.2 | - | 15.1 | - | 14.4 | - |
| Compounds | Wheat Bread Containing 9% of | Wheat Bread | |||||
|---|---|---|---|---|---|---|---|
| Black Cumin Cake | Camelina Cake | Milk Thistle Cake | |||||
| UF | F | UF | F | UF | F | ||
| Flavonoids | |||||||
| Apigenin | nd | nd | 1.16 ± 0.03 a | 1.32 ± 0.01 b | nd | nd | nd |
| Catechin | nd | nd | 0.12 ± 0.02 a | 0.13 ± 0.00 a | nd | nd | nd |
| Kaempferol | nd | nd | 0.27 ± 0.01 b | 0.30 ± 0.00 a | nd | nd | nd |
| Luteolin | nd | nd | 0.36 ± 0.01 b | 0.42 ± 0.01 a | nd | nd | nd |
| Naringenin | nd | nd | 0.32 ± 0.02 b | 0.35 ± 0.01 a | nd | nd | nd |
| Quercetin | nd | nd | 0.66 ± 0.03 b | 0.76 ± 0.01 a | nd | nd | nd |
| Rutin | nd | nd | 0.63 ± 0.02 b | 0.72 ± 0.01 a | nd | nd | nd |
| Vitexin | nd | nd | 0.33 ± 0.03 a | 0.37 ± 0.01 a | 0.01 ± 0.00 c | 0.01 ± 0.00 c | nd |
| SUM | nd | nd | 3.85 | 4.37 | 0.01 | 0.01 | nd |
| Phenolic acids | |||||||
| 4-hydroxybenzoic | 0.01 ± 0.01 c | 0.01 ± 0.00 c | 3.53 ± 0.04 b | 4.08 ± 0.08 a | nd | nd | nd |
| Caffeic | nd | nd | 13.25 ± 0.04 b | 15.65 ± 0.30 a | nd | nd | nd |
| Chlorogenic | nd | nd | 5.03 ± 0.02 b | 5.88 ± 0.06 a | 0.01 ± 0.00 c | 0.01 ± 0.00 c | nd |
| Ferulic | 120.40 ± 0.20 bc | 89.60 ± 0.70 e | 130.53 ± 0.45 a | 107.67 ± 0.20 d | 119.70 ± 0.36 c | 97.87 ± 0.70 e | 121.23 ± 0.80 b |
| Gallic | nd | nd | 1.25 ± 0.03 b | 1.39 ± 0.03 a | nd | nd | nd |
| p-Coumaric | nd | nd | 1.25 ±0.02 b | 1.39 ± 0.03 a | nd | nd | nd |
| Protocatechuic | nd | nd | 0.93 ± 0.02 b | 1.09 ± 0.02 a | nd | nd | nd |
| Sinapic | nd | nd | 65.26 ± 0.03 b | 76.32 ± 0.96 a | nd | nd | nd |
| Syringic | nd | nd | 2.15 ± 0.03 b | 2.48 ± 0.01 a | nd | nd | nd |
| Cinnamic | nd | nd | 13.23 ± 0.03 b | 15.14 ± 0.48 a | nd | nd | nd |
| Vanillic | nd | nd | 0.13 ± 0.01 a | 0.14 ± 0.00 a | nd | nd | nd |
| SUM | 120.41 | 89.61 | 236.53 | 231.25 | 119.71 | 97.88 | 121.23 |
| Others | |||||||
| Thymoquinone | 1155.00 ± 3.61 a | 921.15 ± 12.69 b | nd | nd | nd | nd | nd |
| Silymarins | nd | nd | nd | nd | 2.75 ± 0.05 a | 2.64 ± 0.02 b | nd |
| Lutein | nd | nd | 0.34 ± 0.02 a | 0.22 ± 0.01 b | nd | nd | nd |
| Zeaxanthin | nd | nd | 0.01 ± 0.01 a | nd | nd | nd | nd |
| β-carotene | nd | nd | 3.07 ± 0.03 a | 1.88 ± 0.03 b | nd | nd | nd |
| Fatty Acid | Wheat Bread Containing | Wheat Bread | |||||
|---|---|---|---|---|---|---|---|
| Black Cumin Cake | Camelina Cake | Milk Thistle Cake | |||||
| UF | F | UF | F | UF | F | ||
| C14:0 | 0.19 ± 0.01 cd | 0.21 ± 0.02 ab | 0.23 ± 0.01 a | 0.23 ± 0.01 ab | 0.20 ± 0.02 bcd | 0.20 ± 0.01 abc | 0.19 ± 0.01 cd |
| C16:0 | 19.40 ± 0.10 b | 19.90 ± 0.10 a | 18.83 ± 0.35 b | 19.10 ± 0.06 b | 19.23 ± 0.15 b | 19.50 ± 0.10 b | 21.00 ± 1.00 a |
| C16:1 | 0.55 ± 0.04 ab | 0.50 ± 0.00 abc | 0.53 ± 0.02 abc | 0.55 ± 0.00 a | 0.52 ± 0.03 abc | 0.50 ± 0.00 abc | 0.47 ± 0.06 bc |
| C18:0 | 3.67 ± 0.06 b | 10.20 ± 0.06 a | 9.22 ± 0.10 a | 9.02 ± 0.04 a | 9.60 ± 0.00 a | 9.90 ± 0.05 a | 9.90 ± 0.10 a |
| C18:1 | 26.87 ± 5.69 a | 31.09 ± 0.06 a | 26.53 ± 0.25 a | 30.30 ± 0.10 a | 29.40 ± 0.10 a | 30.70 ± 0.10 a | 30.10 ± 0.10 a |
| C18:2 | 45.36 ± 9.41 a | 33.80 ± 0.41 a | 34.87 ± 0.59 a | 31.20 ± 0.39 a | 37.18 ± 0.23 a | 34.90 ± 21.80 a | 33.88 ± 1.19 a |
| C18:3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C18:3 n-3 | 0.00 | 0.00 | 3.37 ± 0.12 a | 3.10 ± 0.06 b | 0.00 | 0.00 | 0.00 |
| C20:0 | 0.81 ± 0.01 c | 0.97 ± 0.06 abc | 0.92 ± 0.01 bc | 1.03 ± 0.06 ab | 0.93 ± 0.01 bc | 1.10 ± 0.10 a | 1.10 ± 0.10 a |
| C20:1 | 1.93 ± 0.06 bc | 2.17 ± 0.12 b | 3.80 ± 0.10 a | 3.90 ± 0.06 a | 1.83 ± 0.06 c | 2.00 ± 0.10 bb | 2.03 ± 0.06 bc |
| C20:2 | 0.28 ± 0.01 a | 0.30 ± 0.01 a | 0.32 ± 0.01 a | 0.30 ± 0.02 a | 0.20 ± 0.01 a | 0.30 ± 18.30 a | 0.31 ± 0.02 a |
| C22:1 | 0.00 | 0.00 | 0.31 ± 0.02 a | 0.30 ± 0.01 a | 0.00 | 0.00 | 0.00 |
| C24:0 | 0.49 ± 0.01 bc | 0.50 ± 0.01 bc | 0.55 ± 0.01 a | 0.50 ± 0.01 b | 0.48 ± 0.01 c | 0.50 ± 0.01 b | 0.51 ± 0.01 b |
| C24:1 | 0.45 ± 0.03 b | 0.40 ± 0.01 c | 0.52 ± 0.01 a | 0.50 ± 0.01 a | 0.43 ± 0.01 bc | 0.40 ± 0.01 c | 0.51 ± 0.01 a |
| ∑SFAs | 24.56 | 31.81 | 29.75 | 29.85 | 30.44 | 31.20 | 29.35 |
| ∑MUFAs | 29.80 | 34.09 | 31.69 | 35.55 | 32.18 | 33.60 | 32.24 |
| ∑PUFAs | 45.64 | 34.10 | 38.56 | 34.60 | 37.38 | 35.20 | 38.40 |
| ∑PUFA/∑SFA | 1.86 | 1.07 | 1.30 | 1.16 | 1.23 | 1.13 | 1.31 |
| SUM | 100.00 | 100.00 | 100 | 100.00 | 100.00 | 100.00 | 100.00 |
| Type of Cake | Compounds (g/100 g d.m.) | Dry Matter | |||||
|---|---|---|---|---|---|---|---|
| Protein | Total Fat | Ash | IDF | SDF | TDF | ||
| Black cumin | 28.64 ± 1.04 | 17.65 ± 0.41 | 6.67 ± 0.19 | 27.63 ± 0.40 | 5.15 ± 0.46 | 32.78 | 92.42 ± 0.09 |
| Camelina | 33.60 ± 1.23 | 14.04 ± 0.28 | 6.88 ± 0.04 | 31.50 ± 4.77 | 10.16 ± 1.68 | 41.66 | 89.35 ± 0.02 |
| Evening primrose | 21.91 ± 0.52 | 10.22 ± 0.16 | 7.04 ± 0.09 | 58.60 ± 0.39 | 0.56 ± 0.20 | 59.16 | 92.15 ± 0.05 |
| Milk thistle | 20.09 ± 0.15 | 8.24 ± 0.12 | 6.99 ± 0.06 | 50.94 ± 0.06 | 3.88 ± 0.50 | 54.82 | 93.19 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Królak, J.R.; Makowska, A.; Waszkowiak, K.; Myszka, K.; Stuper-Szablewska, K.; Przybylska-Balcerek, A.; Rzyska-Szczupak, K. Oilseed By-Products Valorization Using Lactic Acid Fermentation: Nutritional and Technological Aspects of Applications in Wheat Bread. Molecules 2026, 31, 15. https://doi.org/10.3390/molecules31010015
Królak JR, Makowska A, Waszkowiak K, Myszka K, Stuper-Szablewska K, Przybylska-Balcerek A, Rzyska-Szczupak K. Oilseed By-Products Valorization Using Lactic Acid Fermentation: Nutritional and Technological Aspects of Applications in Wheat Bread. Molecules. 2026; 31(1):15. https://doi.org/10.3390/molecules31010015
Chicago/Turabian StyleKrólak, Jakub Roman, Agnieszka Makowska, Katarzyna Waszkowiak, Kamila Myszka, Kinga Stuper-Szablewska, Anna Przybylska-Balcerek, and Katarzyna Rzyska-Szczupak. 2026. "Oilseed By-Products Valorization Using Lactic Acid Fermentation: Nutritional and Technological Aspects of Applications in Wheat Bread" Molecules 31, no. 1: 15. https://doi.org/10.3390/molecules31010015
APA StyleKrólak, J. R., Makowska, A., Waszkowiak, K., Myszka, K., Stuper-Szablewska, K., Przybylska-Balcerek, A., & Rzyska-Szczupak, K. (2026). Oilseed By-Products Valorization Using Lactic Acid Fermentation: Nutritional and Technological Aspects of Applications in Wheat Bread. Molecules, 31(1), 15. https://doi.org/10.3390/molecules31010015

