Comparative Analysis of Lespedeza Species: Traditional Uses and Biological Activity of the Fabaceae Family
Abstract
:1. Introduction
2. L. capitata: Polyphenol Profile and Antioxidant Activity
2.1. Extraction Methods
2.2. Phytochemical Profile
3. L. cuneata: Polyphenol Profile and Antioxidant Activity
3.1. Extraction and Fractionation
3.2. Phytochemical Profile
Compound Class | Specific Compounds | Biological Activity | References |
---|---|---|---|
Flavonoids |
| Antioxidant, anti-inflammatory, aldose reductase inhibition, NO inhibition | [62,63,64,65,66] |
Lignans |
| Newly discovered; assumed antioxidant and cytoprotective roles | [59] |
Phenylpropanoid Glycosides | Lespecunioside A and B (IC50: 5.86 μM) | Antioxidant and cytoprotective (general class behavior) | [60] |
Phenolic Acids |
| Antioxidant, tyrosinase inhibition | [36,58] |
Tannins (Condensed) | Unspecified condensed tannins | Developmentally regulated, antioxidant | [67] |
Flavonol Glycosides | Aviculin (reduced metabolic activity on MCF-7 cells below 50%, IC50: 75.47 ± 2.23 μM) | Induces apoptosis via mitochondrial pathway in cancer cells | [61] |
Total Polyphenols | — | High antioxidant capacity (total content, no individual ID) | [57,68] |
4. L. bicolor: Polyphenol Profile and Antioxidant Activity
4.1. Extraction Techniques
4.2. Phytochemical Profile
- Ethanol Extract (Ren et al., 2023): TPC: 190.4 mg GAE/g, TFC: 109.2 mg QE/g. Major polyphenols included rutin (22.1 mg/g), hyperoside (19.3 mg/g), and kaempferol-3-O-rutinoside (14.6 mg/g) [71].
- Aqueous Extract (Tarbeeva et al., 2019): TPC: 162.7 mg GAE/g, TFC: 91.5 mg QE/g. Key compounds included apigenin (10.8 mg/g) and luteolin (8.4 mg/g) [70].
Biomolecule | Source | Effects and Biological Activities | References |
---|---|---|---|
Flavonoids | Stems, roots, leaves | Includes kaempferol-3-O-galactoside, xanthoangelol, and others; involved in antioxidative activity, inhibition of NO production, and antimicrobial effects. | [71,72,73,77,78] |
Prenylated Isoflavanones | Roots, leaves | Compounds like prenylated polyphenolic isoflavanones have significant anti-inflammatory and antioxidative effects. These compounds also show potential in cancer research. | [74] |
Phenolic Acids | Roots, leaves, stems | Includes phenolic acids like gallic acid, caffeic acid, and p-coumaric acid, contributing to antioxidant activity and inhibition of certain enzymes. | [75,76] |
Tannins | Stems, leaves | Condensed tannins, which are typically present in L. bicolor, have antimicrobial and antioxidant properties, and are involved in plant defense mechanisms. | [75] |
Xanthoangelol | Leaves | A prenylated flavonoid with potent antioxidative and anti-inflammatory properties; demonstrated anticancer potential and modulation of tyrosinase activities. | [78] |
Isoflavonoids | Roots, leaves | Isoflavonoids have antioxidant, anti-inflammatory, and anticancer properties (L. bicolor ethanol extract 5 to 20 µg/mL stimulated melanogenesis in B16 melanoma cells); they regulate enzymes and modulate signaling pathways. | [74,77] |
Amino Acids | Aboveground organs (leaves, stems) | Essential amino acids, including glutamine, lysine, and proline, have been identified, contributing to protein synthesis and stress responses. | [76] |
Essential Oils | Aerial parts | Composed of terpenoids, sesquiterpenes, and phenylpropanoids, these oils exhibit antimicrobial (anti-β-lactamase activity IC50 27.54 ± 1.21 μg/mL), antioxidative (DPPH scavenging capacity of L. bicolour EO and Trolox were 10.44 ± 2.09 mg/mL and 9.94 ± 0.20 μg/mL, respectively), and enzyme inhibitory effects (anti-α-glucosidase activity IC50 360.47 ± 35.67 μg/mL, compared to the acarbose control which was 5.52 ± 0.22 ng/mL). | [79] |
5. Comparative Analysis of L. Species
5.1. Antioxidant Activity
5.2. Anti-Inflammatory Effects
5.3. Antidiabetic Activity (α-Glucosidase Inhibition)
5.4. Anticancer and Neuroprotective Effects
6. Literature Review Process
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
AMPK | AMP-activated protein kinase |
COX-2 | Cyclooxygenase-2 |
C/EBPα | CCAAT/enhancer-binding protein alpha |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
FRAP | Ferric reducing antioxidant power |
IC50 | Inhibitory concentration 50 |
iNOS | Inducible nitric oxide synthase |
IL-1β | Interleukin 1 beta |
LPS | Lipopolysaccharide |
NLRP3 | NOD-like receptor family, pyrin domain containing 3 |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
PPARγ | Peroxisome proliferator-activated receptor gamma |
RAW | Research animal workshop |
SOD | Superoxide dismutase |
TNF-α | Tumor necrosis factor alpha |
References
- Hasanuzzaman, M.; Araújo, S.; Gill, S.S. (Eds.) The Plant Family Fabaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Singapore, 2020; ISBN 978-981-15-4751-5. [Google Scholar]
- Rüping, B.; Ernst, A.M.; Jekat, S.B.; Nordzieke, S.; Reineke, A.R.; Müller, B.; Bornberg-Bauer, E.; Prüfer, D.; Noll, G.A. Molecular and Phylogenetic Characterization of the Sieve Element Occlusion Gene Family in Fabaceae and Non-Fabaceaeplants. BMC Plant Biol. 2010, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Shavanov, M.V. The Role of Food Crops within the Poaceae and Fabaceae Families as Nutritional Plants. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 012111. [Google Scholar] [CrossRef]
- Ciotir, C.; Applequist, W.; Crews, T.E.; Cristea, N.; DeHaan, L.R.; Frawley, E.; Herron, S.; Magill, R.; Miller, J.; Roskov, Y.; et al. Building a Botanical Foundation for Perennial Agriculture: Global Inventory of Wild, Perennial Herbaceous Fabaceae Species. Plants People Planet 2019, 1, 375–386. [Google Scholar] [CrossRef]
- Maroyi, A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. Plants 2023, 12, 1255. [Google Scholar] [CrossRef]
- Asfaw, M.M.; Abebe, F.B. Traditional Medicinal Plant Species Belonging to Fabaceae Family in Ethiopia: A Systematic Review. Int. J. Plant Biol. 2021, 12, 8473. [Google Scholar] [CrossRef]
- Souleymane, F.; Charlemagne, G.; Moussa, O.; Eloi, P.; Hc, N.R.; Baptiste, N.J.; Pierre, G.I.; Jacques, S. DPPH Radical Scavenging and Lipoxygenase Inhibitory Effects in Extracts from Erythrina Senegalensis (Fabaceae) DC. Afr. J. Pharm. Pharmacol. 2016, 10, 185–191. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods 2021, 10, 3118. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, M. Fabaceae or Leguminosae. In Identification and Control of Common Weeds; Xu, Z., Deng, M., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 2, pp. 547–615. ISBN 978-94-024-1157-7. [Google Scholar]
- Das, S.; Sharangi, A.B.; Egbuna, C.; Jeevanandam, J.; Ezzat, S.M.; Adetunji, C.O.; Tijjani, H.; Olisah, M.C.; Patrick-Iwuanyanwu, K.C.; Adetunji, J.B.; et al. Health Benefits of Isoflavones Found Exclusively of Plants of the Fabaceae Family. In Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations; Egbuna, C., Dable Tupas, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 473–508. ISBN 978-3-030-42319-3. [Google Scholar]
- Raj, S.P.; Solomon, P.R.; Thangaraj, B. Fabaceae. In Biodiesel from Flowering Plants; Raj, S.P., Solomon, P.R., Thangaraj, B., Eds.; Springer: Singapore, 2022; pp. 291–363. ISBN 978-981-16-4775-8. [Google Scholar]
- Schweingruber, F.H.; Dvorský, M.; Börner, A.; Doležal, J. Fabaceae. In Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe; Schweingruber, F.H., Dvorský, M., Börner, A., Doležal, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 194–206. ISBN 978-3-030-53976-4. [Google Scholar]
- Zou, P. Traditional Chinese Medicine, Food Therapy, and Hypertension Control: A Narrative Review of Chinese Literature. Am. J. Chin. Med. 2016, 44, 1579–1594. [Google Scholar] [CrossRef]
- Lou, D.; Li, Y.; Yan, G.; Bu, J.; Wang, H. Soy Consumption with Risk of Coronary Heart Disease and Stroke: A Meta-Analysis of Observational Studies. Neuroepidemiology 2016, 46, 242–252. [Google Scholar] [CrossRef]
- Li, L.; Lv, Y.; Xu, L.; Zheng, Q. Quantitative Efficacy of Soy Isoflavones on Menopausal Hot Flashes. Br. J. Clin. Pharmacol. 2015, 79, 593–604. [Google Scholar] [CrossRef]
- Xuan, X.; Zhang, J.; Fan, J.; Zhang, S. Research Progress of Traditional Chinese Medicine (TCM) in Targeting Inflammation and Lipid Metabolism Disorder for Arteriosclerosis Intervention: A Review. Medicine 2023, 102, e33748. [Google Scholar] [CrossRef] [PubMed]
- Singla, N.; Gupta, G.; Kulshrestha, R.; Sharma, K.; Bhat, A.A.; Mishra, R.; Patel, N.; Thapa, R.; Ali, H.; Mishra, A.; et al. Daidzein in Traditional Chinese Medicine: A Deep Dive into Its Ethnomedicinal and Therapeutic Applications. Pharmacol. Res. Mod. Chin. Med. 2024, 12, 100460. [Google Scholar] [CrossRef]
- Ren, Y.; Qiao, W.; Fu, D.; Han, Z.; Liu, W.; Ye, W.; Liu, Z. Traditional Chinese Medicine Protects Against Cytokine Production as the Potential Immunosuppressive Agents in Atherosclerosis. J. Immunol. Res. 2017, 2017, 7424307. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Y.; Liu, Y.; Ruan, R. Bioactive Peptides Derived from Traditional Chinese Medicine and Traditional Chinese Food: A Review. Food Res. Int. 2016, 89, 63–73. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J. Trifolium Species-Derived Substances and Extracts—Biological Activity and Prospects for Medicinal Applications. J. Ethnopharmacol. 2012, 143, 14–23. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J. Trifolium Species—The Latest Findings on Chemical Profile, Ethnomedicinal Use and Pharmacological Properties. J. Pharm. Pharmacol. 2016, 68, 845–861. [Google Scholar] [CrossRef]
- Sabudak, T.; Guler, N. Trifolium L.—A Review on Its Phytochemical and Pharmacological Profile. Phytother. Res. 2009, 23, 439–446. [Google Scholar] [CrossRef]
- Çölgeçen, H.; Koca, U.; Büyükkartal, H.N. Use of Red Clover (Trifolium pratense L.) Seeds in Human Therapeutics. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 421–427. ISBN 978-0-12-818553-7. [Google Scholar]
- Kubasova, E.D.; Krylov, I.A.; Kubasov, R.V.; Sukhanov, A.E.; Nezgovorov, D.V.; Korobitsyn, A.P.; Linchenko, S.N. Pharmaceutical potential of red clover (Trifolium pratense L.). Hum. Ecol. 2024, 31, 179–190. [Google Scholar] [CrossRef]
- Costin, A.D.; Muntean, L.; Butaș, A.A.; Mariș, R. Medicinal and Therapeutic Uses of Red Clover (Trifolium pratense L.)—Review. Hop Med. Plants 2021, 29, 73–81. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S.; Schwartsova, H.; Vojinovic-Miloradov, M. Antioxidant Profile of Trifolium pratense L. Molecules 2012, 17, 11156–11172. [Google Scholar] [CrossRef]
- Nemoto, T.; Ohashi, H.; Itoh, T. A New Species of Lespedeza (Leguminosae) from China and Japan. J. Jpn. Bot. 2007, 82, 222–231. [Google Scholar]
- Ohashi, H.; Nemoto, T. A New System of Lespedeza (Leguminosae Tribe Desmodieae). J. Jpn. Bot. 2014, 89, 1–11. [Google Scholar]
- Ohashi, H.; Nemoto, T.; Ohashi, K. A Revision of Lespedeza Subgenus Lespedeza (Leguminosae) of China. J. Jpn. Bot. 2009, 84, 143–166. [Google Scholar]
- Kang, H.-K.; Yi, J.-Y.; Song, H.-S. Germination Characteristics and Maturity by Production Time of Chamaecrista nomame, Lespedeza cuneata and Lespedeza bicolor Seed in Fabaceae Plant. Korean J. Plant Resour. 2014, 27, 359–364. [Google Scholar] [CrossRef]
- Baek, J.; Lee, D.; Lee, T.K.; Song, J.H.; Lee, J.S.; Lee, S.; Yoo, S.-W.; Kang, K.S.; Moon, E.; Lee, S.; et al. (−)-9′-O-(α-l-Rhamnopyranosyl)Lyoniresinol from Lespedeza cuneata Suppresses Ovarian Cancer Cell Proliferation through Induction of Apoptosis. Bioorg. Med. Chem. Lett. 2018, 28, 122–128. [Google Scholar] [CrossRef]
- Wang, W.; Patra, A.K.; Puchala, R.; Ribeiro, L.; Gipson, T.A.; Goetsch, A.L. Effects of Dietary Inclusion of Sericea Lespedeza Hay on Feed Intake, Digestion, Nutrient Utilization, Growth Performance, and Ruminal Fermentation and Methane Emission of Alpine Doelings and Katahdin Ewe Lambs. Animals 2022, 12, 2064. [Google Scholar] [CrossRef]
- Wang, W.; Patra, A.K.; Puchala, R.; Ribeiro, L.; Gipson, T.A.; Goetsch, A.L. Effects of Dietary Inclusion of Tannin-Rich Sericea Lespedeza Hay on Relationships Among Linear Body Measurements, Body Condition Score, Body Mass Indexes, and Performance of Growing Alpine Doelings and Katahdin Ewe Lambs. Animals 2022, 12, 3183. [Google Scholar] [CrossRef]
- Lee, J.H.; Parveen, A.; Do, M.H.; Lim, Y.; Shim, S.H.; Kim, S.Y. Lespedeza cuneata Protects the Endothelial Dysfunction via eNOS Phosphorylation of PI3K/Akt Signaling Pathway in HUVECs. Phytomedicine 2018, 48, 1–9. [Google Scholar] [CrossRef]
- Kim, S.M.; Kang, K.; Jho, E.H.; Jung, Y.-J.; Nho, C.W.; Um, B.-H.; Pan, C.-H. Hepatoprotective Effect of Flavonoid Glycosides from Lespedeza Cuneata against Oxidative Stress Induced by Tert-Butyl Hyperoxide. Phytother. Res. 2011, 25, 1011–1017. [Google Scholar] [CrossRef]
- Ha, S.J.; Lee, J.; Song, K.-M.; Kim, Y.H.; Lee, N.H.; Kim, Y.-E.; Jung, S.K. Ultrasonicated Lespedeza Cuneata Extract Prevents TNF-α-Induced Early Atherosclerosis in Vitro and in Vivo. Food Funct. 2018, 9, 2090–2101. [Google Scholar] [CrossRef]
- Lungu, I.I. Catechin-Zinc-Complex: Synthesis, Characterization and Biological Activity Assessment. Farmacia 2023, 71, 755–763. [Google Scholar] [CrossRef]
- Springer, T.L.; McGraw, R.L.; Aiken, G.E. Variation of Condensed Tannins in Roundhead Lespedeza Germplasm. Crop Sci. 2002, 42, 2157–2160. [Google Scholar] [CrossRef]
- Kronberg, S.L.; Zeller, W.E.; Waghorn, G.C.; Grabber, J.H.; Terrill, T.H.; Liebig, M.A. Effects of Feeding Lespedeza cuneata Pellets with Medicago sativa Hay to Sheep: Nutritional Impact, Characterization and Degradation of Condensed Tannin During Digestion. Anim. Feed Sci. Technol. 2018, 245, 41–47. [Google Scholar] [CrossRef]
- Terrill, T.H.; Windham, W.R.; Evans, J.J.; Hoveland, C.S. Condensed Tannin Concentraton in Sericea Lespedeza as Influenced by Preservation Method. Crop Sci. 1990, 30, 219–224. [Google Scholar] [CrossRef]
- Muir, J.P.; Terrill, T.H.; Mosjidis, J.A.; Luginbuhl, J.-M.; Miller, J.E.; Burke, J.M.; Coleman, S.W. Season Progression, Ontogenesis, and Environment Affect Lespedeza cuneata Herbage Condensed Tannin, Fiber, and Crude Protein Concentrations. Crop Sci. 2017, 57, 515–524. [Google Scholar] [CrossRef]
- Obistioiu, D.; Cocan, I.; Tîrziu, E.; Herman, V.; Negrea, M.; Cucerzan, A.; Neacsu, A.-G.; Cozma, A.L.; Nichita, I.; Hulea, A.; et al. Phytochemical Profile and Microbiological Activity of Some Plants Belonging to the Fabaceae Family. Antibiotics 2021, 10, 662. [Google Scholar] [CrossRef]
- Šibul, F.; Orčić, D.; Vasić, M.; Anačkov, G.; Nađpal, J.; Savić, A.; Mimica-Dukić, N. Phenolic Profile, Antioxidant and Anti-Inflammatory Potential of Herb and Root Extracts of Seven Selected Legumes. Ind. Crops Prod. 2016, 83, 641–653. [Google Scholar] [CrossRef]
- Gulewicz, P.; Martínez-Villaluenga, C.; Kasprowicz-Potocka, M.; Frías, J. Non-Nutritive Compounds in Fabaceae Family Seeds and the Improvement of Their Nutritional Quality by Traditional Processing—A Review. Pol. J. Food Nutr. Sci. 2014, 64, 75–89. [Google Scholar] [CrossRef]
- Alam, T.; Najam, L. Faba-Bean Antioxidant and Bioactive Composition: Biochemistry and Functionality. In Faba Bean: Chemistry, Properties and Functionality; Punia Bangar, S., Bala Dhull, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 123–162. ISBN 978-3-031-14587-2. [Google Scholar]
- Sharma, A.; Kaur, R.; Katnoria, J.K.; Kaur, R.; Nagpal, A.K. Family Fabaceae: A Boon for Cancer Therapy. In Biotechnology and Production of Anti-Cancer Compounds; Malik, S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 157–175. ISBN 978-3-319-53880-8. [Google Scholar]
- Ebada, S.S.; Ayoub, N.A.; Singab, A.N.B.; Al-Azizi, M.M. PHCOG MAG.: Research Article Phytophenolics from Peltophorum africanum Sond. (Fabaceae) with Promising Hepatoprotective Activity. Pharmacogn. Mag. 2008, 4, 287. [Google Scholar]
- Pereira, D.L.; Cunha, A.P.S.D.; Cardoso, C.R.P.; Rocha, C.Q.D.; Vilegas, W.; Sinhorin, A.P.; Sinhorin, V.D.G. Antioxidant and Hepatoprotective Effects of Ethanolic and Ethyl Acetate Stem Bark Extracts of Copaifera multijuga (Fabaceae) in Mice. Acta Amaz. 2018, 48, 347–357. [Google Scholar] [CrossRef]
- Donfack, J.H.; Nico, F.N.; Ngameni, B.; Tchana, A.; Chuisseu, D.; Finzi, P.V.; Ngadjui, B.T.; Moundipa, P.F. Activities of Diprenylated Isoflavonoids From. 2008. [Google Scholar]
- Obogwu, M.B.; Akindele, A.J.; Adeyemi, O.O. Hepatoprotective and In Vivo Antioxidant Activities of the Hydroethanolic Leaf Extract of Mucuna Pruriens (Fabaceae) in Antitubercular Drugs and Alcohol Models. Chin. J. Nat. Med. 2014, 12, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Chitiala, R.-D.; Burlec, A.F.; Nistor, A.; Caba, I.C.; Mircea, C.; Hancianu, M.; Cioanca, O. Chemical Assessment and Biologic Potential of a Special Lespedeza capitata Extract. Med. Surg. J. 2023, 127, 474–479. [Google Scholar] [CrossRef]
- Pastorino, G.; Marchetti, C.; Borghesi, B.; Cornara, L.; Ribulla, S.; Burlando, B. Biological Activities of the Legume Crops Melilotus Officinalis and Lespedeza Capitata for Skin Care and Pharmaceutical Applications. Ind. Crops Prod. 2017, 96, 158–164. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Iannitti, T.; Guidetti, G.; Centenaro, S.; Canello, S.; Cocco, R. A Nutraceutical Diet Based on Lespedeza Spp., Vaccinium macrocarpon and Taraxacum officinale Improves Spontaneous Feline Chronic Kidney Disease. Physiol. Rep. 2018, 6, e13737. [Google Scholar] [CrossRef]
- Fan, X.; Wei, W.; Huang, J.; Liu, X.; Ci, X. Isoorientin Attenuates Cisplatin-Induced Nephrotoxicity Through the Inhibition of Oxidative Stress and Apoptosis via Activating the SIRT1/SIRT6/Nrf-2 Pathway. Front. Pharmacol. 2020, 11, 264. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ko, J.Y.; Song, S.B.; Kim, J.I.; Seo, H.I.; Lee, J.S.; Kwak, D.Y.; Jung, T.W.; Kim, K.Y.; Oh, I.S.; et al. Antioxidant and α-Glucosidase Inhibition Activities of Solvent Fractions from Methanolic Extract of Sericea Lespedeza (Lespedeza cuneata G. Don). J. Korean Soc. Food Sci. Nutr. 2012, 41, 1508–1514. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Park, S.; Saravanakumar, K.; Sathiyaseelan, A.; Wang, M.-H. Phytochemical Profiling, In Vitro Antioxidants, and Antidiabetic Efficacy of Ethyl Acetate Fraction of Lespedeza cuneata on Streptozotocin-Induced Diabetic Rats. Environ. Sci. Pollut. Res. 2023, 30, 60976–60993. [Google Scholar] [CrossRef]
- Kim, E.-J.; Choi, J.-Y.; Yu, M.-R.; Kim, M.-Y.; Lee, S.-H.; Lee, B.-H. Total Polyphenols, Total Flavonoid Contents, and Antioxidant Activity of Korean Natural and Medicinal Plants. Korean J. Food Sci. Technol. 2012, 44, 337–342. [Google Scholar] [CrossRef]
- Cho, E.-J.; Ju, H.-M.; Jeong, C.-H.; Eom, S.-H.; Heo, H.-J.; Kim, D.-O. Effect of Phenolic Extract of Dry Leaves of Lespedeza cuneata G. Don on Antioxidant Capacity and Tyrosinase Inhibition. Hortic. Sci. Technol. 2011, 29, 358–365. [Google Scholar]
- Ou, Q.; Jiang, W.; Pan, Y.; Zheng, Y.; Qian, X.; Jin, H. Lignans from the Aerial Parts of Lespedeza cuneata. Chem. Nat. Compd. 2016, 52, 888–890. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, J.; Yang, J.; Li, C.; Ma, J.; Zhang, D.; Zhang, D. Two New Phenylpropanoid Glycosides from the Aerial Parts of Lespedeza cuneata. Acta Pharm. Sin. B 2016, 6, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, Y.H.; Lee, K.H.; Lee, B.S.; Alishir, A.; Ko, Y.-J.; Kang, K.S.; Kim, K.H. Aviculin Isolated from Lespedeza cuneata Induce Apoptosis in Breast Cancer Cells through Mitochondria-Mediated Caspase Activation Pathway. Molecules 2020, 25, 1708. [Google Scholar] [CrossRef] [PubMed]
- Yoo, G.; Park, S.J.; Lee, T.H.; Yang, H.; Baek, Y.; Kim, N.; Kim, Y.J.; Kim, S.H. Flavonoids Isolated from Lespedeza cuneata G. Don and Their Inhibitory Effects on Nitric Oxide Production in Lipopolysaccharide-Stimulated BV-2 Microglia Cells. Pharmacogn. Mag. 2015, 11, 651–656. [Google Scholar] [CrossRef]
- Lee, D.G.; Lee, J.S.; Quilantang, N.G.; Jacinto, S.D.; Lee, S. Determination of Afzelin and Astragalin from Lespedeza cuneata on Aldose Reductase Inhibition. J. Chromatogr. Sci. 2021, 59, 381–387. [Google Scholar] [CrossRef]
- Lee, J.S.; Paje, L.A.; Yoo, S.-W.; Lee, S.; Ku, J.-J.; Lee, S.H. Determination of Isovitexin from Lespedeza cuneata Using a Validated HPLC-UV Method. J. Appl. Biol. Chem. 2021, 64, 63–67. [Google Scholar] [CrossRef]
- Quilantang, N.; Lee, J.S.; Yun, Y.-S.; Limbo, C.; Yoo, S.W.; Lee, S.; Lee, S. Inhibitory Effects of Flavonoids from Lespedeza cuneata on Aldose Reductase. In Proceedings of the Plant Resources Society of Korea Conference; The Plant Resources Society of Korea: Jechon-si, Republic of Korea, 2018; p. 62. [Google Scholar]
- Cao, M.; Fan, B.; Zhen, T.; Wang, J. A Pre-Clinical Trial Study on Afzelin: Anti-Human Lung Cancer, Anti-Cholinesterase, and Anti-Glucosidase Properties. Arch. Med. Sci. 2021. [Google Scholar] [CrossRef]
- Mosjidis, C.O.; Peterson, C.M.; Mosjidis, J.A. Developmental Differences in the Location of Polyphenols and Condensed Tannins in Leaves and Stems of Sericea Lespedeza, Lespedeza cuneata. Ann. Bot. 1990, 65, 355–360. [Google Scholar] [CrossRef]
- Park, H.-M.; Hong, J.-H. Physiological activities of Lespedeza cuneata extracts. Food Sci. Preserv. 2014, 21, 844–850. [Google Scholar] [CrossRef]
- Shin, Y.H.; Song, C.-K. Antioxidant and Metalloproteinase Inhibitory Activities of Ethanol Extracts from Lespedeza cuneata G. Don. Korean J. Environ. Agric. 2017, 36, 263–268. [Google Scholar] [CrossRef]
- Tarbeeva, D.V.; Fedoreyev, S.A.; Veselova, M.V.; Blagodatski, A.S.; Klimenko, A.M.; Kalinovskiy, A.I.; Grigorchuk, V.P.; Berdyshev, D.V.; Gorovoy, P.G. Cytotoxic Polyphenolic Compounds from Lespedeza bicolor Stem Bark. Fitoterapia 2019, 135, 64–72. [Google Scholar] [CrossRef]
- Ren, C.; Li, Q.; Luo, T.; Betti, M.; Wang, M.; Qi, S.; Wu, L.; Zhao, L. Antioxidant Polyphenols from Lespedeza bicolor Turcz. Honey: Anti-Inflammatory Effects on Lipopolysaccharide-Treated RAW 264.7 Macrophages. Antioxidants 2023, 12, 1809. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-I.; Yang, S.-A.; Kim, S.-M. Antioxidative and Nitric Oxide Production Inhibitory Activities of Lespedeza bicolor Stem Extracts Depending on Solvents. Korean J. Med. Crop Sci. 2011, 19, 368–372. [Google Scholar] [CrossRef]
- Kim, S.; Choi, Y.J.; Goh, M.S.; Kim, Y.; Li, Z.; Park, J.U.; Ahn, Y.; Seon, J.H.; Yoo, H.M.; Ko, K.C.; et al. Seven New Secondary Metabolites Isolated from Roots of Lespedeza bicolor. Fitoterapia 2023, 170, 105671. [Google Scholar] [CrossRef] [PubMed]
- Maximov, O.B.; Kulesh, N.I.; Stepanenko, L.S.; Dmitrenok, P.S. New Prenylated Isoflavanones and Other Constituents of Lespedeza bicolor. Fitoterapia 2004, 75, 96–98. [Google Scholar] [CrossRef]
- Samiullah; Bano, A.; Girmay, S.; Tan, G.; Samiullah; Bano, A.; Girmay, S.; Tan, G. Total Phenolic Content, Antioxidant, Antimicobial and Anticancer Activities of Lespedeza bicolor Turcz (Papilionaceae). In International Conference on Applied Life Sciences; IntechOpen: London, UK, 2012; ISBN 978-953-51-0725-5. [Google Scholar]
- Nikitina, V.S.; Kucherov, E.V.; Galimova, G.K.; Shendel’, G.V. Contents of Some Phenolic Compounds and Amino Acids in Above-Ground Organs of Lespedeza bicolor Turcz. Introduced into the Bashkortostan Republic. Rastit. Resur. 2000, 36, 96–102. [Google Scholar]
- Ha, S.Y.; Jung, J.Y.; Nam, J.B.; Kim, J.S.; Yang, J.-K. In Vitro and in Vivo Assessments of Lespedeza bicolor Extract on the Melanocyte Growth and Tyrosinase Activities. BioResources 2015, 2015, 160–161. [Google Scholar]
- Woo, H.S.; Kim, Y.-S.; Oh, Y.J.; Cho, H.J.; Song, S.-K.; Kim, D.W. Isolation and HPLC-DAD validation of xanthoangelol in Lespedeza bicolor extract. Korean J. Food Sci. Technol. 2020, 52, 26–30. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Z.; Liu, X. Chemical Composition, Antioxidant Activities, and Enzyme Inhibitory Effects of Lespedeza Bicolour Turcz. Essential Oil. J. Enzym. Inhib. Med. Chem. 2025, 40, 2460053. [Google Scholar] [CrossRef]
- Bae, Y.; Pyun, G.; Choi, Y.; Yun, H.-Y.; Kim, I.; Cheon, S.; Yin, M.; Choi, P.; Lee, S.J.; Lee, Y.; et al. Antioxidant activity of Lespedeza cuneata G. Don against H2O2-induced oxidative stress in HepG2 cells. Korean Soc. Food Sci. Nutr. 2016, 504. [Google Scholar]
- Wahab, A.; Sim, H.; Choi, K.; Kim, Y.; Lee, Y.; Kang, B.; No, Y.S.; Lee, D.; Lee, I.; Lee, J.; et al. Antioxidant and Anti-Inflammatory Activities of Lespedeza cuneata in Coal Fly Ash-Induced Murine Alveolar Macrophage Cells. Korean J. Vet. Res. 2023, 63, 27.1–27.9. [Google Scholar] [CrossRef]
- Kim, Y.M.; Lee, J.; Park, S.-H.; Lee, C.; Lee, J.W.; Lee, D.; Kim, N.; Lee, D.; Kim, H.Y.; Lee, C.H. LC–MS-Based Chemotaxonomic Classification of Wild-Type Lespedeza Sp. and Its Correlation with Genotype. Plant Cell Rep. 2012, 31, 2085–2097. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Yoo, M.J.; Yi, S.A.; Kim, T.W.; Ha, J.W.; Na, M.W.; Park, K.H.; Kim, S.-H.; Han, J.-W.; Jang, T.S.; et al. Phytochemical Constituents Identified from the Aerial Parts of Lespedeza cuneata and Their Effects on Lipid Metabolism during Adipocyte Maturation. Separations 2021, 8, 203. [Google Scholar] [CrossRef]
- Kim, M.S.; Sharma, B.R.; Rhyu, D.Y. Beneficial Effect of Lespedeza cuneata (G. Don) Water Extract on Streptozotocin-Induced Type 1 Diabetes and Cytokine-Induced Beta-Cell Damage. Nat. Prod. Sci. 2016, 22, 175–179. [Google Scholar] [CrossRef]
- Do, M.H.; Lee, J.H.; Cho, K.; Kang, M.C.; Subedi, L.; Parveen, A.; Kim, S.Y. Therapeutic Potential of Lespedeza bicolor to Prevent Methylglyoxal-Induced Glucotoxicity in Familiar Diabetic Nephropathy. J. Clin. Med. 2019, 8, 1138. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Lee, H.; Kim, S.Y.; Lim, Y. Lespedeza bicolor Extract Ameliorated Renal Inflammation by Regulation of NLRP3 Inflammasome-Associated Hyperinflammation in Type 2 Diabetic Mice. Antioxidants 2020, 9, 148. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Tarbeeva, D.; Fedoreyev, S.; Busenbender, T.; Kaune, M.; Veselova, M.; Kalinovskiy, A.; Hauschild, J.; Grigorchuk, V.; Kim, N.; et al. Polyphenolic Compounds from Lespedeza bicolor Root Bark Inhibit Progression of Human Prostate Cancer Cells via Induction of Apoptosis and Cell Cycle Arrest. Biomolecules 2020, 10, 451. [Google Scholar] [CrossRef]
- Ko, Y.-H.; Shim, K.-Y.; Kim, S.-K.; Seo, J.-Y.; Lee, B.-R.; Hur, K.-H.; Kim, Y.-J.; Kim, S.-E.; Do, M.H.; Parveen, A.; et al. Lespedeza bicolor Extract Improves Amyloid Beta25—35-Induced Memory Impairments by Upregulating BDNF and Activating Akt, ERK, and CREB Signaling in Mice. Planta Medica 2019, 85, 1363–1373. [Google Scholar] [CrossRef]
Species | DPPH IC50 (µg/mL) |
---|---|
L. cuneata | 20–25 µg/mL (strong) |
L. bicolor | 35–50 µg/mL (moderate) |
L. capitata | 40–60 µg/mL (weak) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitiala, R.-D.; Lungu, I.I.; Marin, G.-A.; Mitran, A.-M.; Caba, I.-C.; Lungu, A.; Robu, S.; Mircea, C.; Stefanache, A.; Hancianu, M.; et al. Comparative Analysis of Lespedeza Species: Traditional Uses and Biological Activity of the Fabaceae Family. Molecules 2025, 30, 2013. https://doi.org/10.3390/molecules30092013
Chitiala R-D, Lungu II, Marin G-A, Mitran A-M, Caba I-C, Lungu A, Robu S, Mircea C, Stefanache A, Hancianu M, et al. Comparative Analysis of Lespedeza Species: Traditional Uses and Biological Activity of the Fabaceae Family. Molecules. 2025; 30(9):2013. https://doi.org/10.3390/molecules30092013
Chicago/Turabian StyleChitiala, Roxana-Delia, Ionut Iulian Lungu, George-Alexandru Marin, Andreea-Maria Mitran, Ioana-Cezara Caba, Andreea Lungu, Silvia Robu, Cornelia Mircea, Alina Stefanache, Monica Hancianu, and et al. 2025. "Comparative Analysis of Lespedeza Species: Traditional Uses and Biological Activity of the Fabaceae Family" Molecules 30, no. 9: 2013. https://doi.org/10.3390/molecules30092013
APA StyleChitiala, R.-D., Lungu, I. I., Marin, G.-A., Mitran, A.-M., Caba, I.-C., Lungu, A., Robu, S., Mircea, C., Stefanache, A., Hancianu, M., & Cioanca, O. (2025). Comparative Analysis of Lespedeza Species: Traditional Uses and Biological Activity of the Fabaceae Family. Molecules, 30(9), 2013. https://doi.org/10.3390/molecules30092013