Characteristics of In-Vitro Starch Digestibility in Wheat Bread with Arabinoxylans, Baked Using Sourdough or Postponed Baking Methods
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Isolation and Modification of Preparations
Isolation and Modifications of Arabinoxylans
3.2. Baking Breads
3.2.1. Baking Sourdough Wheat Bread with Arabinoxylans
3.2.2. Baking Wheat Bread Using the Postponed Baking Method with a Share of Arabinoxylans
3.3. Bread Characteristics
3.3.1. Determination of Crumb Digestion Dynamics and Resistant Starch Content in the Crumb of Breads
3.3.2. Determination of Resistant Starch in the Crumb of Breads
3.3.3. Determination of the Molar Mass of Resistant Starch in the Crumb of Breads
3.3.4. Measurements of Bread Crumb Viscosity During Heating in an Amylograph
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souci, S.W.; Fachmann, W.; Kraut, H. Food composition and nutrition tables. In Deutsche Forschungsanstalt für Lebensmittelchemie; MedPharm Scientific Publishers: Stuttgart, Germany, 2008; Volume XXXII, pp. 1–1276. [Google Scholar]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Cereals and cereal products. In Food Chemistry, 4th ed.; Belitz, H.D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 670–675. [Google Scholar]
- Koehler, P.; Wieser, H. Chemistry of Cereal Grains. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer: New York, NY, USA, 2012; pp. 11–45. [Google Scholar] [CrossRef]
- El Halal, S.L.M.; Kringel, D.H.; da Zavareze, E.R.; Dias, A.R.G. Methods for Extracting Cereal Starches from Different Sources: A Review. Starch-Stärke 2019, 71, 1900128. [Google Scholar] [CrossRef]
- Chung, H.J.; Shin, D.H.; Lim, S.T. In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res. Int. 2008, 41, 579–585. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B.R. Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, H.D.; Biliaderis, C.G. Action of α-amylases on amylose-lipid complex superstructures. J. Cereal Sci. 1991, 13, 129–143. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Woo, K.S.; Seib, P.A. Cross-Linked Resistant Starch: Preparation and Properties. Cereal Chem. 2002, 79, 819–825. [Google Scholar] [CrossRef]
- Han, J.A.; BeMiller, J.N. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym. 2007, 67, 366–374. [Google Scholar] [CrossRef]
- Santamaria, M.; Garzon, R.; Moreira, R.; Rosell, C.M. Estimation of viscosity and hydrolysis kinetics of corn starch gels based on microstructural features using a simplified model. Carbohydr. Polym. 2021, 273, 118549. [Google Scholar] [CrossRef]
- Santamaria, M.; Montes, L.; Garzon, R.; Moreira, R.; Rosell, C.M. Unraveling the impact of viscosity and starch type on the in vitro starch digestibility of different gels. Food Funct. 2022, 13, 7582–7590. [Google Scholar] [CrossRef]
- Zhu, J.; Gilbert, R.G. Starch molecular structure and diabetes. Carbohydr. Polym. 2024, 344, 122525. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef]
- Borczak, B.; Sikora, E.; Sikora, M.; Kapusta-Duch, J.; Rosell, C.M. Starch digestibility index and antioxidative properties of partially baked wheat—Flour bakery with an addition of dietary fibre. Starch-Stärke 2015, 67, 913–919. [Google Scholar] [CrossRef]
- Terrazas-Avila, P.; Palma-Rodríguez, H.M.; Navarro-Cortez, R.O.; Hernández-Uribe, J.P.; Piloni-Martini, J.; Vargas-Torres, A. The effects of fermentation time on sourdough bread: An analysis of texture profile, starch digestion rate, and protein hydrolysis rate. J. Texture Stud. 2024, 55, e12831. [Google Scholar] [CrossRef] [PubMed]
- Mikulec, A.; Kowalski, S.; Lukasiewicz, M. The impact of postponed bread baking technology on the quality properties of Kaiser rolls and in vitro starch digestibility. J. Food Process Eng. 2017, 41, e12628. [Google Scholar] [CrossRef]
- Tian, D.; Mu, W.; Jin, Z.; Liu, Y.; Wang, W.; Kang, J.; Guo, Q. The role of arabinoxylan purified from wheat bran in bread and biscuits: Impacts on digestibility and colonic fermentability in vitro. LWT 2024, 203, 116314. [Google Scholar] [CrossRef]
- Hu, H.; Lin, H.; Xiao, L.; Guo, M.; Yan, X.; Su, X.; Liu, L.; Sang, S. Impact of Native Form Oat β-Glucan on the Physical and Starch Digestive Properties of Whole Oat Bread. Foods 2022, 11, 2622. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.S.; Blake, D.E.; Ellis, P.R.; Schofield, J.D. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 1996, 24, 151–160. [Google Scholar] [CrossRef]
- Azeem, M.; Mu, T.H.; Zhang, M. Effects of hydrocolloids and proteins on dough rheology and in vitro starch digestibility of sweet potato-wheat bread. LWT 2021, 142, 110970. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N.; Hudson, G.J.; Cole, T.J.; Cummings, J.H. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef]
- Shumoy, H.; Gabaza, M.M.; Vandevelde, J.; Raes, K. Soluble and bound phenolic contents and antioxidant capacity of tef injera as affected by traditional fermentation. J. Food Compos. Anal. 2017, 58, 52–59. [Google Scholar] [CrossRef]
- Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Inter-laboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chem. 2018, 245, 1183–1189. [Google Scholar] [CrossRef]
- Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Bello-Perez, L.A.; Garcia-Hernandez, A.; Roldan-Cruz, C.; Garcia-Diaz, S. In vitro digestibility of normal and waxy corn starch is modified by the addition of Tween 80. Int. J. Biol. Macromol. 2018, 116, 715–720. [Google Scholar] [CrossRef]
- Zeng, F.; Li, T.; Gao, Q.; Liu, B.; Yu, S. Physicochemical properties and in vitro digestibility of high hydrostatic pressure treated waxy rice starch. Int. J. Biol. Macromol. 2018, 120, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Novotni, D.; Curić, D.; Bituh, M.; Barić, I.C.; Skevin, D.; Cukelj, N. Glycemic index and phenolics of partially-baked frozen bread with sourdough. Int. J. Food Sci. Nutr. 2011, 62, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hug-Iten, S.; Handschin, S.; Conde-Petit, B.; Escher, F. Changes in starch microstructure on baking and staling of wheat bread. LWT 1999, 32, 255–260. [Google Scholar] [CrossRef]
- Roman, L.; Martinez, M.M. Structural basis of resistant starch (RS) in bread: Natural and commercial alternatives. Foods 2019, 8, 267. [Google Scholar] [CrossRef]
- Martínez, M.; Román, L.; Gómez, M. Implications of hydration depletion in the in vitro starch digestibility of white bread crumb and crust. Food Chem. 2018, 239, 295–303. [Google Scholar] [CrossRef]
- Kang, J.; Huang-Fu, Z.Y.; Tian, X.; Cheng, L.; Zhang, J.; Liu, Y.; Liu, Y.; Wang, S.; Hu, X.; Zou, L.; et al. Arabinoxylan of varied structural features distinctively affects the functional and in vitro digestibility of wheat starch. Food Hydrocoll. 2023, 140, 108615. [Google Scholar] [CrossRef]
- Buksa, K. Extraction and characterization of rye grain starch and its susceptibility to resistant starch formation. Carbohydr. Polym. 2018, 194, 184–192. [Google Scholar] [CrossRef]
- Buksa, K.; Kowalczyk, M.; Boreczek, J. Extraction, purification and characterisation of exopolysaccharides produced by newly isolated lactic acid bacteria strains and the examination of their influence on resistant starch formation. Food Chem. 2021, 362, 130221. [Google Scholar] [CrossRef] [PubMed]
- Yasunaga, T.; Bushuk, W.; Irvine, G.N. Gelatinization of starch during bread-baking. Cereal Chem. 1968, 45, 269–279. [Google Scholar]
- Xu, A.; Chung, K.; Ponte, J.G. Bread crumb amylograph studies. I. Effects of storage time, shortening, flour lipids and surfactants. Cereal Chem. 1992, 69, 495–501. [Google Scholar]
- Xu, A.; Chung, K.; Ponte, J.G. Bread crumb amylograph studies. II. Cause of unique properties. Cereal Chem. 1992, 69, 502–507. [Google Scholar]
- Karaoglu, M.M. Effect of baking procedure and storage on the pasting properties and staling of part-baked and rebaked white pan bread crumb. Int. J. Food Prop. 2006, 9, 609–622. [Google Scholar] [CrossRef]
- Sluková, M.; Kubín, M.; Horackova, S.; Prihoda, J. Application of amylographic method for determination of the staling of bakery products. Czech J. Food Sci. 2015, 33, 507–512. [Google Scholar] [CrossRef]
- Brandt, M.; Gänzle, M. Sourdough. In Technology in the Bakery; PWN: Warsaw, Poland, 2015; pp. 1–408. (In Polish) [Google Scholar]
- Aoki, T.; Takami, M.; Takatani, T.; Motoyoshi, K.; Ishii, A.; Hara, A.; Toyoda, T.; Okada, R.; Hino, M.; Koyama-Nasu, R.; et al. Activated invariant natural killer T cells directly recognize leukemia cells in a CD1d—Independent manner. Cancer Sci. 2020, 111, 2223–2233. [Google Scholar] [CrossRef]
- Roman, L.; Reguilona, M.P.; Gomez, M.; Martineza, M.M. Intermediate length amylose increases the crumb hardness of rice flour gluten–free breads. Food Hydrocoll. 2020, 100, 105451. [Google Scholar] [CrossRef]
- Aoki, N.; Kataoka, T.; Nishiba, Y. Factors underlying the differential properties of gluten and additive-free rice bread following rice flour pulverization. Food Sci. Technol. Res. 2022, 28, 151–158. [Google Scholar] [CrossRef]
- Parker, R.; Ring, S.G. Aspects of the Physical Chemistry of Starch. J. Cereal Sci. 2001, 34, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Xu, D.; Li, D.; Yang, N.; Chen, F.; Jin, Z.; Xu, X. Effects of dextran with different molecular weights on the quality of wheat sourdough breads. Food Chem. 2018, 256, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Vamadevan, V.; Bertoft, E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll. 2020, 103, 105663. [Google Scholar] [CrossRef]
- Buksa, K.; Ziobro, R.; Nowotna, A.; Praznik, W.; Gambuś, H. Isolation, modification and characterization of soluble arabinoxylan fractions from rye grain. Eur. Food Res. Technol. 2012, 235, 385–395. [Google Scholar] [CrossRef]
- Bieniek, A.; Buksa, K. The Influence of Arabinoxylan on the Properties of Sourdough Wheat Bread. Appl. Sci. 2024, 14, 2649. [Google Scholar] [CrossRef]
- Bieniek, A.; Buksa, K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules 2024, 29, 904. [Google Scholar] [CrossRef]
- ICC-Standard Method No. 115/1; Method for Using the Brabender Farinograph. International Association for Cereal Science and Technology: Vienna, Austria, 1992.
- Buksa, K.; Nowotna, A.; Gambuś, H. Wpływ dodatku arabinoksylanów o różnej masie cząsteczkowej na właściwości chlebów żytnich wypieczonych metodą odroczonego wypieku. PTTZ 2016, 1, 14–22. (In Polish) [Google Scholar]
Level of | Technology ** | Share [%] | RDS *** [%] | SDS *** [%] | DS *** [%] | RS *** [%] | TS *** [%] | |
---|---|---|---|---|---|---|---|---|
Technology | SD | 4.1 ± 0.5 a | 9.0 ± 0.9 a | 32.4 ± 3.1 b | 7.6 ± 0.6 b | 39.9 ± 3.0 b | ||
Technology | PB | 4.4 ± 0.4 a | 8.9 ± 1.7 a | 31.1 ± 1.3 a | 6.6 ± 0.7 a | 37.7 ± 1.5 a | ||
Preparation | Control | 4.1 ± 0.6 a | 9.8 ± 0.4 a | 35.1 ± 2.7 c | 6.3 ± 0.5 a | 41.4 ± 3.2 b | ||
Preparation | AX_NM * | 4.2 ± 0.5 a | 8.8 ± 1.0 a | 30.6 ± 1.2 a | 6.8 ± 0.6 ab | 37.4 ± 1.5 a | ||
Preparation | AX_HYD * | 4.4 ± 0.4 a | 8.9 ± 1.2 a | 32.9 ± 1.7 b | 7.6 ± 0.6 c | 40.5 ± 2.3 b | ||
Preparation | AX_CR * | 4.2 ± 0.5 a | 8.7 ± 1.9 a | 30.0 ± 1.3 a | 7.2 ± 1.0 ab | 37.2 ± 1.1 a | ||
Share [%] | 0 | 4.1 ± 0.6 a | 9.8 ± 0.4 b | 35.1 ± 2.7 b | 6.3 ± 0.5 a | 41.4 ± 3.2 b | ||
Share [%] | 1 | 4.3 ± 0.6 a | 8.1 ± 1.4 a | 31.4 ± 2.0 a | 7.3 ± 0.9 b | 38.7 ± 2.3 a | ||
Share [%] | 2 | 4.3 ± 0.4 a | 9.5 ± 1.0 b | 30.9 ± 1.8 a | 7.0 ± 0.7 ab | 38.0 ± 2.2 a | ||
Sample×Technology | Control | SD | 0 | 3.7 ± 0.5 a | 10.0 ± 0.6 b | 37.2 ± 0.8 d | 6.7 ± 0.1 ab | 43.9 ± 0.9 d |
Sample×Technology | AX_NM * | SD | 1 | 4.0 ± 0.9 a | 8.2 ± 0.0 ab | 31.4 ± 0.1 abc | 7.3 ± 0.1 ab | 38.7 ± 0.3 abc |
Sample×Technology | AX_NM * | SD | 2 | 4.6 ± 0.3 a | 8.6 ± 0.3 ab | 31.0 ± 1.8 abc | 7.0 ± 0.2 ab | 38.0 ± 2.0 ab |
Sample×Technology | AX_HYD * | SD | 1 | 4.3 ± 0.5 a | 8.9 ± 01.5 ab | 34.8 ± 0.4 cd | 8.2 ± 0.3 ab | 43.0 ± 0.6 cd |
Sample×Technology | AX_HYD * | SD | 2 | 4.5 ± 0.4 a | 8.4 ± 1.5 ab | 34.0 ± 0.9 bcd | 8.0 ± 0.1 ab | 42.0 ± 0.7 bcd |
Sample×Technology | AX_CR * | SD | 1 | 3.7 ± 0.6 a | 9.3 ± 0.2 b | 29.1 ± 1.3 a | 8.3 ± 0.3 b | 37.4 ± 1.0 ab |
Sample×Technology | AX_CR * | SD | 2 | 4.1 ± 0.0 a | 9.5 ± 0.1 b | 28.9 ± 0.7 a | 7.4 ± 0.1 ab | 36.3 ± 0.6 a |
Sample×Technology | Control | PB | 0 | 4.5 ± 0.0 a | 9.7 ± 0.4 b | 33.0 ± 1.7 abc | 6.0 ± 0.6 a | 38.9 ± 2.2 abc |
Sample×Technology | AX_NM * | PB | 1 | 4.5 ± 0.5 a | 8.7 ± 1.1 ab | 30.1 ± 1.3 ab | 6.7 ± 0.7 ab | 36.8 ± 0.6 a |
Sample×Technology | AX_NM * | PB | 2 | 3.9 ± 0.3 a | 9.9 ± 1.4 b | 30.0 ± 1.5 ab | 6.1 ± 0.4 ab | 36.1 ± 1.9 a |
Sample×Technology | AX_HYD * | PB | 1 | 4.7 ± 0.8 a | 7.9 ± 0.7 ab | 32.0 ± 0.3 abc | 7.1 ± 0.6 ab | 39.1 ± 0.3 abcd |
Sample×Technology | AX_HYD * | PB | 2 | 4.3 ± 0.3 a | 10.1 ± 0.1 b | 31.0 ± 0.4 abc | 6.9 ± 0.1 ab | 37.9 ± 0.3 ab |
Sample×Technology | AX_CR * | PB | 1 | 4.4 ± 0.6 a | 5.8 ± 0.5 a | 31.2 ± 0.9 abc | 6.3 ± 1.2 ab | 37.5 ± 2.1 ab |
Sample×Technology | AX_CR * | PB | 2 | 4.5 ± 0.5 a | 10.1 ± 1.3 b | 30.8 ± 0.8 abc | 6.8 ± 1.2 ab | 37.6 ± 0.4 ab |
Level of | Day of Storage | Share [%] | RDS *** [%] | SDS *** [%] | DS *** [%] | RS *** [%] | TS *** [%] | |
---|---|---|---|---|---|---|---|---|
Preparation | Control | 3.4 ± 0.4 a | 10.8 ± 0.8 b | 36.4 ± 1.0 c | 8.3 ± 1.5 ab | 44.7 ± 1.7 b | ||
Preparation | AX_NM * | 3.9 ± 0.7 b | 9.6 ± 1.2 a | 32.4 ± 1.5 a | 7.9 ± 1.0 a | 40.3 ± 2.1 a | ||
Preparation | AX_HYD * | 3.9 ± 0.7 b | 8.9 ± 1.0 a | 34.6 ± 1.0 b | 9.3 ± 1.0 b | 44.0 ± 1.3 b | ||
Preparation | AX_CR * | 3.4 ± 0.6 ab | 9.3 ± 0.7 a | 31.2 ± 2.4 a | 8.8 ± 1.3 ab | 40.0 ± 2.5 a | ||
Share [%] | 0 | 3.4 ± 0.4 a | 10.8 ± 0.8 b | 36.4 ± 1.0 b | 8.3 ± 1.5 a | 44.7 ± 1.7 b | ||
Share [%] | 1 | 3.7 ± 0.6 a | 9.3 ± 1.2 a | 33.2 ± 2.1 a | 8.4 ± 1.0 a | 41.7 ± 2.7 a | ||
Share [%] | 2 | 3.9 ± 0.8 a | 9.2 ± 0.9 a | 32.3 ± 2.2 a | 8.9 ± 1.4 a | 41.2 ± 2.7 a | ||
Day | 0 | 4.1 ± 0.5 b | 9.0 ± 0.9 a | 32.4 ± 3.1 a | 7.6 ± 0.6 a | 39.9 ± 3.0 a | ||
Day | 1 | 4.0 ± 0.5 b | 9.8 ± 1.0 a | 34.0 ± 1.7 b | 8.8 ± 1.0 b | 42.7 ± 2.4 b | ||
Day | 3 | 3.0 ± 0.4 a | 9.7 ± 1.3 a | 33.5 ± 2.3 ab | 9.5 ± 1.2 b | 43.0 ± 2.0 c | ||
Sample×Day | Control | 0 | 0 | 3.7 ± 0.5 abcd | 10.0 ± 0.6 ab | 37.2 ± 0.8 d | 6.7 ± 0.1 a | 43.9 ± 0.9 de |
Sample×Day | Control | 1 | 0 | 3.5 ± 0.3 abcd | 10.9 ± 0.3 ab | 35.5 ± 1.1 cd | 9.1 ± 1.4 abcd | 44.6 ± 2.5 e |
Sample×Day | Control | 3 | 0 | 3.2 ± 0.3 abcd | 11.7 ± 0.5 b | 36.6 ± 0.7 d | 9.1 ± 1.4 abcd | 45.6 ± 2.2 e |
Sample×Day | AX_NM * | 0 | 1 | 4.0 ± 0.9 abcd | 8.2 ± 0.0 a | 31.4 ± 0.1 abc | 7.3 ± 0.1 ab | 38.7 ± 0.3 abcd |
Sample×Day | AX_NM * | 1 | 1 | 4.0 ± 0.2 abcd | 9.9 ± 0.6 ab | 32.6 ± 2.1 abcd | 7.5 ± 1.4 abc | 40.1 ± 3.6 abcde |
Sample×Day | AX_NM * | 3 | 1 | 3.5 ± 0.1 abcd | 11.2 ± 1.2 ab | 33.5 ± 1.2 abcd | 8.3 ± 1.4 abcd | 41.8 ± 0.2 abcde |
Sample×Day | AX_NM * | 0 | 2 | 4.6 ± 0.3 d | 8.6 ± 0.3 ab | 31.0 ± 1.8 abc | 7.0 ± 0.2 ab | 38.0 ± 2.0 abc |
Sample×Day | AX_NM * | 1 | 2 | 4.5 ± 0.4 cd | 9.8 ± 1.3 ab | 33.3 ± 1.6 abcd | 8.4 ± 0.6 abcd | 41.7 ± 1.1 abcde |
Sample×Day | AX_NM * | 3 | 2 | 2.8 ± 0.4 ab | 9.7 ± 1.2 ab | 32.6 ± 1.9 abcd | 8.9 ± 0.5 abcd | 41.5 ± 1.4 abcde |
Sample×Day | AX_HYD * | 0 | 1 | 4.3 ± 0.5 abcd | 8.9 ± 1.5 ab | 34.8 ± 0.4 cd | 8.2 ± 0.3 abcd | 43.0 ± 0.6 cde |
Sample×Day | AX_HYD * | 1 | 1 | 4.4 ± 0.1 abcd | 10.1 ± 1.6 ab | 35.8 ± 1.1 cd | 9.5 ± 0.1 abcd | 45.3 ± 1.2 e |
Sample×Day | AX_HYD * | 3 | 1 | 2.9 ± 0.2 abc | 8.6 ± 0.4 ab | 34.9 ± 0.5 cd | 9.5 ± 0.0 abcd | 44.4 ± 0.5 e |
Sample×Day | AX_HYD * | 0 | 2 | 4.5 ± 0.4 cd | 8.4 ± 1.5 ab | 34.0 ± 0.9 bcd | 8.0 ± 0.1 abcd | 42.0 ± 0.7 bcde |
Sample×Day | AX_HYD * | 1 | 2 | 4.4 ± 0.6 bcd | 8.8 ± 0.1 ab | 34.6 ± 1.1 cd | 10.0 ± 0.4 bcd | 44.7 ± 0.8 e |
Sample×Day | AX_HYD * | 3 | 2 | 3.2 ± 0.4 abcd | 8.6 ± 0.6 ab | 33.8 ± 1.6 abcd | 10.6 ± 0.8 cd | 44.3 ± 0.9 e |
Sample×Day | AX_CR * | 0 | 1 | 3.7 ± 0.6 abcd | 9.3 ± 0.2 ab | 29.1 ± 1.3 ab | 8.3 ± 0.3 abcd | 37.4 ± 1.0 ab |
Sample×Day | AX_CR * | 1 | 1 | 3.2 ± 0.4 abcd | 8.5 ± 0.9 ab | 33.0 ± 1.3 abcd | 8.3 ± 0.3 abcd | 41.3 ± 1.0 abcde |
Sample×Day | AX_CR * | 3 | 1 | 2.9 ± 0.5 abcd | 8.9 ± 0.3 ab | 33.9 ± 0.7 abcd | 9.1 ± 1.4 abcd | 43.0 ± 0.7 cde |
Sample×Day | AX_CR * | 0 | 2 | 4.1 ± 0.0 abcd | 9.5 ± 0.1 ab | 28.9 ± 0.7 a | 7.4 ± 0.1 abc | 36.3 ± 0.6 a |
Sample×Day | AX_CR * | 1 | 2 | 3.9 ± 0.3 abcd | 10.3 ± 0.3 ab | 32.8 ± 1.6 abcd | 8.7 ± 0.4 abcd | 41.5 ± 1.2 abcde |
Sample×Day | AX_CR * | 3 | 2 | 2.7 ± 0.2 a | 9.1 ± 0.3 ab | 29.4 ± 1.1 ab | 11.0 ± 1.3 d | 40.3 ± 0.2 abcde |
Level of | Technology ** | Share [%] | Mw *** [g/mol] | Mn *** [g/mol] | Ð *** [-] | |
---|---|---|---|---|---|---|
Technology | SD | 18,860 ± 6298 a | 5544 ± 1063 a | 3.35 ± 0.47 a | ||
Technology | PB | 28,401 ± 3208 b | 6671 ± 488 b | 4.25 ± 0.34 b | ||
Preparation | Control | 21,505 ± 6120 a | 5916 ± 640 a | 3.58 ± 0.66 a | ||
Preparation | AX_NM * | 26,768 ± 6884 b | 6768 ± 724 b | 3.91 ± 0.65 d | ||
Preparation | AX_HYD * | 23,253 ± 7136 a | 5951 ± 918 a | 3.84 ± 0.72 c | ||
Preparation | AX_CR * | 21,935 ± 7215 a | 5700 ± 1239 a | 3.77 ± 0.52 b | ||
Share [%] | 0 | 21,505 ± 6120 a | 5916 ± 640 a | 3.58 ± 0.66 a | ||
Share [%] | 1 | 22,233 ± 5856 a | 6040 ± 862 a | 3.65 ± 0.61 b | ||
Share [%] | 2 | 25,737 ± 7987 b | 6239 ± 1239 a | 4.03 ± 0.57 c | ||
Sample×Technology | Control | SD | 0 | 16,240 ± 919 a | 5398 ± 316 abc | 3.01 ± 0.01 a |
Sample×Technology | AX_NM * | SD | 1 | 18,540 ± 524 ab | 6130 ± 187 bcd | 3.02 ± 0.01 a |
Sample×Technology | AX_NM * | SD | 2 | 33,390 ± 850 e | 7600 ± 221 e | 4.39 ± 0.02 i |
Sample×Technology | AX_HYD * | SD | 1 | 17,470 ± 494 a | 5775 ± 170 abc | 3.03 ± 0.00 a |
Sample×Technology | AX_HYD * | SD | 2 | 15,820 ± 1342 a | 4695 ± 418 a | 3.37 ± 0.01 c |
Sample×Technology | AX_CR * | SD | 1 | 15,770 ± 245 a | 4540 ± 85 a | 3.47 ± 0.01 d |
Sample×Technology | AX_CR * | SD | 2 | 14,790 ± 418 a | 4670 ± 160 a | 3.17 ± 0.02 b |
Sample×Technology | Control | PB | 0 | 26,770 ± 795 cd | 6435 ± 226 bcde | 4.16 ± 0.02 g |
Sample×Technology | AX_NM * | PB | 1 | 22,640 ± 480 bc | 6190 ± 145 bcd | 3.66 ± 0.01 e |
Sample×Technology | AX_NM * | PB | 2 | 32,500 ± 2758 e | 7150 ± 633 de | 4.55 ± 0.02 j |
Sample×Technology | AX_HYD * | PB | 1 | 30,110 ± 1277 de | 6395 ± 278 bcde | 4.71 ± 0.01 k |
Sample×Technology | AX_HYD * | PB | 2 | 29,610 ± 754 de | 6940 ± 218 cde | 4.27 ± 0.03 h |
Sample×Technology | AX_CR * | PB | 1 | 28,870 ± 2450 de | 7210 ± 559 de | 4.00 ± 0.03 f |
Sample×Technology | AX_CR * | PB | 2 | 28,310 ± 1601 de | 6380 ± 334 bcde | 4.44 ± 0.02 i |
Level of | Day of Storage | Share [%] | Mw ** [g/mol] | Mn ** [g/mol] | Ð [-] | |
---|---|---|---|---|---|---|
Preparation | Control | 22,963 ± 5356 a | 5296 ± 302 ab | 4.35 ± 1.04 c | ||
Preparation | AX_NM * | 26,377 ± 5206 b | 6370 ± 678 c | 4.14 ± 0.72 a | ||
Preparation | AX_HYD * | 23,232 ± 5065 a | 5518 ± 462 b | 4.19 ± 0.75 b | ||
Preparation | AX_CR * | 23,765 ± 6739 a | 5128 ± 445 a | 4.58 ± 1.04 d | ||
Share [%] | 0 | 22,963 ± 5356 a | 5296 ± 302 a | 4.35 ± 1.04 b | ||
Share [%] | 1 | 23,004 ± 4451 a | 5650 ± 614 b | 4.09 ± 0.77 a | ||
Share [%] | 2 | 25,911 ± 6575 b | 5694 ± 870 b | 4.52 ± 0.89 c | ||
Day | 0 | 18,860 ± 6293 a | 5544 ± 1063 a | 3.35 ± 0.47 a | ||
Day | 1 | 26,880 ± 2880 b | 5606 ± 364 a | 4.81 ± 0.60 c | ||
Day | 3 | 26,993 ± 2341 b | 5704 ± 545 a | 4.76 ± 0.53 b | ||
Sample×Day | Control | 0 | 0 | 16,240 ± 919 a | 5398 ± 316 abc | 3.01 ± 0.01 a |
Sample×Day | Control | 1 | 0 | 25,930 ± 1100 cde | 5100 ± 230 abc | 5.08 ± 0.01 l |
Sample×Day | Control | 3 | 0 | 26,720 ± 2267 cdef | 5390 ± 435 abc | 4.96 ± 0.02 k |
Sample×Day | AX_NM * | 0 | 1 | 18,540 ± 524 ab | 6130 ± 187 cd | 3.02 ± 0.01 a |
Sample×Day | AX_NM * | 1 | 1 | 28,060 ± 595 cdef | 5875 ± 146 cd | 4.78 ± 0.02 j |
Sample×Day | AX_NM * | 3 | 1 | 24,660 ± 1395 cd | 6670 ± 391 de | 3.70 ± 0.01 e |
Sample×Day | AX_NM * | 0 | 2 | 33,390 ± 850 g | 7600 ± 221 e | 4.39 ± 0.02 g |
Sample×Day | AX_NM * | 1 | 2 | 23,070 ± 1958 bc | 5915 ± 522 cd | 3.90 ± 0.01 f |
Sample×Day | AX_NM * | 3 | 2 | 30,540 ± 1296 efg | 6030 ± 270 cd | 5.06 ± 0.01 l |
Sample×Day | AX_HYD * | 0 | 1 | 17,470 ± 494 a | 5775 ± 270 bcd | 3.03 ± 0.00 a |
Sample×Day | AX_HYD * | 1 | 1 | 26,470 ± 2246 cde | 5745 ± 426 bcd | 4.61 ± 0.05 hi |
Sample×Day | AX_HYD * | 3 | 1 | 24,960 ± 635 cd | 5370 ± 151 abc | 4.65 ± 0.01 i |
Sample×Day | AX_HYD * | 0 | 2 | 15,820 ± 1342 a | 4695 ± 418 ab | 3.37 ± 0.01 c |
Sample×Day | AX_HYD * | 1 | 2 | 28,250 ± 599 defg | 5695 ± 142 abcd | 4.96 ± 0.02 k |
Sample×Day | AX_HYD * | 3 | 2 | 26,420 ± 673 cde | 5830 ± 176 bcd | 4.53 ± 0.02 h |
Sample×Day | AX_CR * | 0 | 1 | 15,770 ± 245 a | 4540 ± 85 a | 3.47 ± 0.01 d |
Sample×Day | AX_CR * | 1 | 1 | 24,700 ± 699 cd | 5565 ± 178 abcd | 4.44 ± 0.02 g |
Sample×Day | AX_CR * | 3 | 1 | 26,410 ± 2241 cde | 5180 ± 393 abc | 5.10 ± 0.05 l |
Sample×Day | AX_CR * | 0 | 2 | 14,790 ± 418 a | 4670 ± 160 ab | 3.17 ± 0.02 b |
Sample×Day | AX_CR * | 1 | 2 | 31,680 ± 1792 fg | 5350 ± 330 abc | 5.92 ± 0.03 n |
Sample×Day | AX_CR * | 3 | 2 | 29,240 ± 827 defg | 5460 ± 182 abc | 5.36 ± 0.03 m |
Level of | Technology ** | Share [%] | Initial Viscosity [BU] | PT *** [°C] | Maximum Viscosity [BU] | Viscosity at 50 °C [BU] | |
---|---|---|---|---|---|---|---|
Technology | SD | 15 ± 2 a | 89.3 ± 1.7 b | 76 ± 12 a | 139 ± 23 a | ||
Technology | PB | 21 ± 4 b | 88.2 ± 1.7 a | 270 ± 51 b | 386 ± 83 b | ||
Preparation | Control | 13 ± 2 a | 90.5 ± 0.6 b | 183 ± 104 b | 273 ± 115 b | ||
Preparation | AX_NM * | 20 ± 6 b | 89.3 ± 1.8 ab | 187 ± 120 b | 283 ± 148 c | ||
Preparation | AX_HYD * | 18 ± 3 b | 88.1 ± 1.4 a | 131 ± 73 a | 194 ± 90 a | ||
Preparation | AX_CR * | 18 ± 3 b | 88.2 ± 1.8 a | 196 ± 125 c | 306 ± 176 d | ||
Share [%] | 0 | 13 ± 2 a | 90.5 ± 0.6 b | 183 ± 104 b | 273 ± 115 c | ||
Share [%] | 1 | 17 ± 3 b | 89.4 ± 1.4 b | 173 ± 105 a | 258 ± 133 a | ||
Share [%] | 2 | 20 ± 5 c | 87.6 ± 1.6 a | 170 ± 115 a | 264 ± 161 b | ||
Sample×Technology | Control | SD | 0 | 11 ± 1 a | 90.7 ± 0.9 de | 93 ± 7 b | 173 ± 3 d |
Sample×Technology | AX_NM * | SD | 1 | 13 ± 1 ab | 91.7 ± 0.5 e | 72 ± 10 ab | 144 ± 4 c |
Sample×Technology | AX_NM * | SD | 2 | 17 ± 1 bcd | 89.7 ± 1.3 bcde | 78 ± 5 b | 145 ± 2 c |
Sample×Technology | AX_HYD * | SD | 1 | 16 ± 1 abc | 89.4 ± 0.8 bcde | 77 ± 6 b | 129 ± 1 b |
Sample×Technology | AX_HYD * | SD | 2 | 17 ± 1 bcd | 86.8 ± 1.1 ab | 53 ± 1 a | 95 ± 1 a |
Sample×Technology | AX_CR * | SD | 1 | 16 ± 1 abc | 88.2 ± 0.9 abcd | 79 ± 4 b | 138 ± 1 bc |
Sample×Technology | AX_CR * | SD | 2 | 15 ± 1 abc | 88.8 ± 0.9 abcde | 79 ± 6 b | 150 ± 1 c |
Sample×Technology | Control | PB | 0 | 14 ± 0 ab | 90.3 ± 0.4 cde | 272 ± 8 e | 373 ± 5 g |
Sample×Technology | AX_NM * | PB | 1 | 21 ± 1 de | 87.8 ± 0.4 abcd | 296 ± 1 f | 411 ± 4 h |
Sample×Technology | AX_NM * | PB | 2 | 28 ± 1 f | 87.9 ± 1.3 abcd | 302 ± 2 f | 432 ± 5 i |
Sample×Technology | AX_HYD * | PB | 1 | 20 ± 1 cde | 89.1 ± 0.4 bcde | 216 ± 3 d | 298 ± 4 f |
Sample×Technology | AX_HYD * | PB | 2 | 21 ± 3 de | 87.0 ± 0.1 abc | 178 ± 7 c | 254 ± 1 e |
Sample×Technology | AX_CR * | PB | 1 | 21 ± 1 de | 90.0 ± 0.8 bcde | 297 ± 6 f | 428 ± 5 i |
Sample×Technology | AX_CR * | PB | 2 | 22 ± 0 e | 85.7 ± 0.8 a | 328 ± 4 g | 508 ± 5 j |
Level of | Day of Storage | Share [%] | Initial Viscosity [BU] | PT ** [°C] | Maximum Viscosity [BU] | Viscosity at 50 °C [BU] | |
---|---|---|---|---|---|---|---|
Preparation | Control | 8 ± 3 a | 88.2 ± 2.1 bc | 85 ± 12 a | 152 ± 22 d | ||
Preparation | AX_NM * | 12 ± 3 c | 88.7 ± 2.5 c | 74 ± 9 a | 139 ± 12 b | ||
Preparation | AX_HYD * | 10 ± 5 b | 86.3 ± 2.6 a | 57 ± 12 a | 102 ± 17 a | ||
Preparation | AX_CR * | 12 ± 3 c | 87.4 ± 1.5 b | 80 ± 9 a | 149 ± 17 c | ||
Share [%] | 0 | 8 ± 3 a | 88.2 ± 2.1 b | 85 ± 12 a | 152 ± 22 b | ||
Share [%] | 1 | 11 ± 3 b | 88.1 ± 2.3 b | 74 ± 10 a | 134 ± 17 b | ||
Share [%] | 2 | 12 ± 4 c | 86.8 ± 2.3 a | 67 ± 17 a | 126 ± 32 a | ||
Day | 0 | 15 ± 2 c | 89.3 ± 1.7 c | 76 ± 12 a | 139 ± 23 c | ||
Day | 1 | 10 ± 2 b | 87.2 ± 1.5 b | 73 ± 17 a | 133 ± 27 b | ||
Day | 3 | 8 ± 2 a | 86.2 ± 2.6 a | 69 ± 15 a | 128 ± 29 a | ||
Sample×Day | Control | 0 | 0 | 11 ± 1 fghi | 90.7 ± 0.9 gh | 93 ± 7 e | 173 ± 3 m |
Sample×Day | Control | 1 | 0 | 7 ± 1 abc | 86.9 ± 0.8 bcdef | 91 ± 7 e | 159 ± 3 kl |
Sample×Day | Control | 3 | 0 | 6 ± 1 a | 86.9 ± 0.8 bcdef | 72 ± 6 bcde | 125 ± 1 ef |
Sample×Day | AX_NM * | 0 | 1 | 13 ± 1 ijk | 91.7 ± 0.5 h | 72 ± 10 bcde | 144 ± 4 hij |
Sample×Day | AX_NM * | 1 | 1 | 13 ± 1 hijk | 86.3 ± 0.9 bcde | 83 ± 8 cde | 148 ± 1 ij |
Sample×Day | AX_NM * | 3 | 1 | 10 ± 1 cdefgh | 90.3 ± 0.4 fgh | 70 ± 6 bcd | 132 ± 3 fg |
Sample×Day | AX_NM * | 0 | 2 | 17 ± 1 l | 89.7 ± 1.3 efgh | 78 ± 5 cde | 145 ± 2 hij |
Sample×Day | AX_NM * | 1 | 2 | 12 ± 1 fghi | 89.4 ± 0.8 efgh | 63 ± 4 abc | 118 ± 1 de |
Sample×Day | AX_NM * | 3 | 2 | 9 ± 1 abcdef | 85.0 ± 0.8 abc | 82 ± 4 cde | 151 ± 4 jk |
Sample×Day | AX_HYD * | 0 | 1 | 16 ± 1 kl | 89.4 ± 0.8 efgh | 77 ± 6 cde | 129 ± 1 f |
Sample×Day | AX_HYD * | 1 | 1 | 8 ± 1 abcde | 88.8 ± 0.9 defgh | 62 ± 4 abc | 109 ± 1 c |
Sample×Day | AX_HYD * | 3 | 1 | 6 ± 0 ab | 84.4 ± 0.8 ab | 63 ± 1 abc | 112 ± 2 cd |
Sample×Day | AX_HYD * | 0 | 2 | 17 ± 1 l | 86.8 ± 1.1 bcde | 53 ± 1 ab | 95 ± 1 b |
Sample×Day | AX_HYD * | 1 | 2 | 9 ± 0 bcdefg | 86.3 ± 0.9 bcde | 46 ± 1 a | 89 ± 1 b |
Sample×Day | AX_HYD * | 3 | 2 | 7 ± 0 abcd | 82.5 ± 0.8 a | 42 ± 1 a | 78 ± 1 a |
Sample×Day | AX_CR * | 0 | 1 | 16 ± 1 kl | 88.2 ± 0.9 cdefgh | 79 ± 4 cde | 138 ± 1 gh |
Sample×Day | AX_CR * | 1 | 1 | 11 ± 1 efghi | 85.7 ± 0.9 abcd | 91 ± 6 de | 166 ± 1 lm |
Sample×Day | AX_CR * | 3 | 1 | 10 ± 0 defghi | 88.8 ± 0.9 defgh | 68 ± 6 bc | 125 ± 3 ef |
Sample×Day | AX_CR * | 0 | 2 | 15 ± 1 jkl | 88.8 ± 0.9 defgh | 79 ± 6 cde | 150 ± 1 j |
Sample×Day | AX_CR * | 1 | 2 | 12 ± 1 fghi | 87.5 ± 0.8 bcdefg | 74 ± 5 bcde | 140 ± 3 ghi |
Sample×Day | AX_CR * | 3 | 2 | 12 ± 0 ghij | 85.7 ± 0.9 abcd | 90 ± 4 de | 172 ± 3 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniek, A.; Buksa, K. Characteristics of In-Vitro Starch Digestibility in Wheat Bread with Arabinoxylans, Baked Using Sourdough or Postponed Baking Methods. Molecules 2025, 30, 1722. https://doi.org/10.3390/molecules30081722
Bieniek A, Buksa K. Characteristics of In-Vitro Starch Digestibility in Wheat Bread with Arabinoxylans, Baked Using Sourdough or Postponed Baking Methods. Molecules. 2025; 30(8):1722. https://doi.org/10.3390/molecules30081722
Chicago/Turabian StyleBieniek, Angelika, and Krzysztof Buksa. 2025. "Characteristics of In-Vitro Starch Digestibility in Wheat Bread with Arabinoxylans, Baked Using Sourdough or Postponed Baking Methods" Molecules 30, no. 8: 1722. https://doi.org/10.3390/molecules30081722
APA StyleBieniek, A., & Buksa, K. (2025). Characteristics of In-Vitro Starch Digestibility in Wheat Bread with Arabinoxylans, Baked Using Sourdough or Postponed Baking Methods. Molecules, 30(8), 1722. https://doi.org/10.3390/molecules30081722