The Chemical and Sensory Impact of Cap Management Techniques, Maceration Length, and Ethanol Level in Syrah Wines from the Central Coast of California
Abstract
:1. Introduction
2. Results
2.1. Basic Chemical Composition
2.2. Phenolic Composition
2.3. Volatile Chemistry
2.4. Modified Pivot© Profile
3. Discussion
3.1. Anthocyanin Concentration and Perceived Color
3.2. Volatile Chemistry and Aromatic Perception
3.3. Tannin Concentration and Mouthfeel Perception
4. Materials and Methods
4.1. Winemaking
4.2. Chemical Analysis
4.2.1. Basic Chemical Composition
4.2.2. Phenolic Composition
4.2.3. Volatile Compound Analysis
4.3. Sensory Analysis
4.3.1. Modification to the Pivot© Profile Questionnaire and Selection of Attributes
4.3.2. Panel Training
4.3.3. Panel Testing
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TDS | Temporal Dominance of Sensations |
SPE | Solid-phase extraction |
ACE | Accentuated cut edges |
SPME | Solid-phase microextraction |
PP | Pivot© Profile |
DA | Descriptive analysis |
CATA | Check-All-That-Apply |
ANOVA | Analysis of variance |
Chap | Chaptalized |
Nat | Natural (not chaptalized) |
SubCap | Submerged cap |
PD | Punch down |
EM | Extended maceration |
MLV-3G | Malvidin-3-glucoside |
TPP | Total polymeric pigments |
CE | Catechin equivalents |
PD_Nat | Punch down, natural |
PD_Chap | Punch down, chaptalized |
SPP | Small polymeric pigments |
LPP | Large polymeric pigments |
EM_Nat | Extended maceration, natural |
EM_Chap | Extended maceration, chaptalized |
CA | Correspondence analysis |
SubCap_Chap | Submerged cap, chaptalized |
SubCap_Nat | Submerged cap, natural |
O | Orthonasal aroma |
R | Retronasal aroma |
RATA | Rate-All-That-Apply |
SBSE | Stir-bar sorptive extraction |
PROP | 6-n-propylthiouracil |
LSD | Least Significant Difference |
References
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A Review of the Effect of Winemaking Techniques on Phenolic Extraction in Red Wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar] [CrossRef]
- Bosso, A.; Panero, L.; Petrozziello, M.; Follis, R.; Motta, S.; Guaita, M. Influence of Submerged-Cap Vinification on Polyphenolic Composition and Volatile Compounds of Barbera Wines. Am. J. Enol. Vitic. 2011, 62, 503–511. [Google Scholar] [CrossRef]
- Smith, M.E.; Bekker, M.Z.; Smith, P.A.; Wilkes, E.N. Sources of Volatile Sulfur Compounds in Wine. Aust. J. Grape Wine Res. 2015, 21, 705–712. [Google Scholar] [CrossRef]
- Bekker, M.Z.; Day, M.P.; Holt, H.; Wilkes, E.; Smith, P.A. Effect of Oxygen Exposure during Fermentation on Volatile Sulfur Compounds in Shiraz Wine and a Comparison of Strategies for Remediation of Reductive Character. Aust. J. Grape Wine Res. 2016, 22, 24–35. [Google Scholar] [CrossRef]
- Lerno, L.A.; Panprivech, S.; Ponangi, R.; Hearne, L.; Blair, T.; Oberholster, A.; Block, D.E. Effect of Pump-over Conditions on the Extraction of Phenolic Compounds during Cabernet Sauvignon Fermentation. Am. J. Enol. Vitic. 2018, 69, 295–301. [Google Scholar] [CrossRef]
- Sparrow, A.M.; Holt, H.E.; Pearson, W.; Dambergs, R.G.; Close, D.C. Accentuated Cut Edges (ACE): Effects of Skin Fragmentation on the Composition and Sensory Attributes of Pinot Noir Wines. Am. J. Enol. Vitic. 2016, 67, 169–178. [Google Scholar] [CrossRef]
- Wimalasiri, P.M.; Zhan, J.; Tian, B. Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace. Fermentation 2022, 8, 718. [Google Scholar] [CrossRef]
- Frost, S.C.; Blackman, J.W.; Ebeler, S.E.; Heymann, H. Analysis of Temporal Dominance of Sensation Data Using Correspondence Analysis on Merlot Wine with Differing Maceration and Cap Management Regimes. Food Qual. Prefer. 2018, 64, 245–252. [Google Scholar] [CrossRef]
- Frost, S.C.; Blackman, J.W.; Hjelmeland, A.K.; Ebeler, S.E.; Heymann, H. Extended Maceration and Cap Management Impacts on the Phenolic, Volatile, and Sensory Profiles of Merlot Wine. Am. J. Enol. Vitic. 2018, 69, 360–370. [Google Scholar] [CrossRef]
- Stoffel, E.S.; Robertson, T.M.; Catania, A.A.; Casassa, L.F. The Impact of Fermentation Temperature and Cap Management on Selected Volatile Compounds and Temporal Sensory Characteristics of Grenache Wines from the Central Coast of California. Molecules 2023, 28, 4230. [Google Scholar] [CrossRef]
- Stoffel, E.S.; Robertson, T.M.; Catania, A.A.; Castro, L.F.; Casassa, L.F. Descriptive Temporal Sensory Properties and Volatile Composition of Pinot Noir Wines Produced with Contrasting Alcoholic Fermentation Temperatures and Cap Management Regimes. OENO One 2024, 58, 1–17. [Google Scholar] [CrossRef]
- Reynolds, A.; Cliff, M.; Girard, B.; Kopp, T. Influence of Fermentation on Properties of Semillon and Shiraz Wines. Am. J. Enol. Vitic. 2001, 52, 235–240. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Mireles, M.S.; Harwood, E.D.; Weller, K.M.; Ross, C.F. Chemical and Sensory Effects of Saignee, Water Addition, and Extended Maceration on High Brix Must. Am. J. Enol. Vitic. 2009, 60, 450–460. [Google Scholar] [CrossRef]
- Gawel, R.; Oberholster, A.; Francis, I. A ‘Mouth-Feel Wheel’: Terminology for Communicating the Mouth-Feel Characteristics of Red Wine. Aust. J. Grape Wine Res. 2000, 6, 203–207. [Google Scholar] [CrossRef]
- Casassa, L.F.; Larsen, R.C.; Beaver, C.W.; Mireles, M.S.; Keller, M.; Riley, W.R.; Smithyman, R.; Harbertson, J.F. Sensory Impact of Extended Maceration and Regulated Deficit Irrigation on Washington State Cabernet Sauvignon Wines. Am. J. Enol. Vitic. 2013, 64, 505–514. [Google Scholar] [CrossRef]
- Casassa, L.F.; Beaver, C.W.; Mireles, M.; Larsen, R.C.; Hopfer, H.; Heymann, H.; Harbertson, J.F. Influence of Fruit Maturity, Maceration Length, and Ethanol Amount on Chemical and Sensory Properties of Merlot Wines. Am. J. Enol. Vitic. 2013, 64, 437–449. [Google Scholar] [CrossRef]
- Casassa, L.F.; Beaver, C.W.; Mireles, M.S.; Harbertson, J.F. Effect of Extended Maceration and Ethanol Concentration on the Extraction and Evolution of Phenolics, Colour Components and Sensory Attributes of Merlot Wines. Aust. J. Grape Wine Res. 2013, 19, 25–39. [Google Scholar] [CrossRef]
- Sherman, E.; Greenwood, D.R.; Villas-Boâs, S.G.; Heymann, H.; Harbertson, J.F. Impact of Grape Maturity and Ethanol Concentration on Sensory Properties of Washington State Merlot Wines. Am. J. Enol. Vitic. 2017, 68, 344–356. [Google Scholar] [CrossRef]
- Frost, S.C.; Sanchez, J.M.; Merrell, C.; Larsen, R.; Heymann, H.; Harbertson, J.F. Sensory Evaluation of Syrah and Cabernet Sauvignon Wines: Effects of Harvest Maturity and Prefermentation Soluble Solids. Am. J. Enol. Vitic. 2021, 72, 36–45. [Google Scholar] [CrossRef]
- Goldner, M.C.; Zamora, M.C.; Lira, P.D.L.; Gianninoto, H.; Bandoni, A. Effect of Ethanol Level in the Perception of Aroma Attributes and the Detection of Volatile Compounds in Red Wine. J. Sens. Stud. 2009, 24, 243–257. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- King, E.S.; Dunn, R.L.; Heymann, H. The Influence of Alcohol on the Sensory Perception of Red Wines. Food Qual. Prefer. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Villamor, R.R.; Evans, M.A.; Mattinson, D.S.; Ross, C.F. Effects of Ethanol, Tannin and Fructose on the Headspace Concentration and Potential Sensory Significance of Odorants in a Model Wine. Food Res. Int. 2013, 50, 38–45. [Google Scholar] [CrossRef]
- Landon, J.L.; Weller, K.; Harbertson, J.F.; Ross, C.F. Chemical and Sensory Evaluation of Astringency in Washington State Red Wines. Am. J. Enol. Vitic. 2008, 59, 153–158. [Google Scholar] [CrossRef]
- Thuillier, B.; Valentin, D.; Marchal, R.; Dacremont, C. Pivot© Profile: A New Descriptive Method Based on Free Description. Food Qual. Prefer. 2015, 42, 66–77. [Google Scholar] [CrossRef]
- Valentin, D.; Chollet, S.; Lelièvre, M.; Abdi, H. Quick and Dirty but Still Pretty Good: A Review of New Descriptive Methods in Food Science. Int. J. Food Sci. Technol. 2012, 47, 1563–1578. [Google Scholar] [CrossRef]
- Lelièvre-Desmas, M.; Valentin, D.; Chollet, S. Pivot Profile Method: What Is the Influence of the Pivot and Product Space? Food Qual. Prefer. 2017, 61, 6–14. [Google Scholar] [CrossRef]
- Pearson, W.; Schmidtke, L.; Francis, I.L.; Blackman, J.W. An Investigation of the Pivot© Profile Sensory Analysis Method Using Wine Experts: Comparison with Descriptive Analysis and Results from Two Expert Panels. Food Qual. Prefer. 2020, 83, 103858. [Google Scholar] [CrossRef]
- Pearson, W.; Schmidtke, L.M.; Francis, I.L.; Carr, B.T.; Blackman, J.W. Characterising Inter- and Intra-Regional Variation in Sensory Profiles of Australian Shiraz Wines from Six Regions. Aust. J. Grape Wine Res. 2020, 26, 372–384. [Google Scholar] [CrossRef]
- Longo, R.; Pearson, W.; Merry, A.; Solomon, M.; Nicolotti, L.; Westmore, H.; Dambergs, R.; Kerslake, F. Preliminary Study of Australian Pinot Noir Wines by Colour and Volatile Analyses, and the Pivot© Profile Method Using Wine Professionals. Foods 2020, 9, 1142. [Google Scholar] [CrossRef]
- Croijmans, I.; Hendrickx, I.; Lefever, E.; Majid, A.; van Den Bosch, A. Uncovering the Language of Wine Experts. Nat. Lang. Eng. 2019, 26, 511–530. [Google Scholar] [CrossRef]
- Miraballes, M.; Hodos, N.; Gámbaro, A. Application of a Pivot Profile Variant Using CATA Questions in the Development of a Whey-Based Fermented Beverage. Beverages 2018, 4, 11. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Civille, G.V.; Carr, T.B. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Casassa, L.F.; Harbertson, J.F. Extraction, Evolution, and Sensory Impact of Phenolic Compounds during Red Wine Maceration. Annu. Rev. Food Sci. Technol. 2014, 5, 83–109. [Google Scholar] [CrossRef] [PubMed]
- Medina, K.; Boido, E.; Dellacassa, E.; Carrau, F. Yeast Interactions with Anthocyanins during Red Wine Fermentation. Am. J. Enol. Vitic. 2005, 56, 104–109. [Google Scholar] [CrossRef]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the Key Aroma Compounds in Shiraz Wine by Quantitation, Aroma Reconstitution, and Omission Studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef]
- Prusova, B.; Humaj, J.; Sochor, J.; Baron, M. Formation, Losses, Preservation and Recovery of Aroma Compounds in the Winemaking Process. Fermentation 2022, 8, 93. [Google Scholar] [CrossRef]
- Ugliano, M.; Travis, B.; Francis, I.L.; Henschke, P.A. Volatile Composition and Sensory Properties of Shiraz Wines as Affected by Nitrogen Supplementation and Yeast Species: Rationalizing Nitrogen Modulation of Wine Aroma. J. Agric. Food Chem. 2010, 58, 12417–12425. [Google Scholar] [CrossRef]
- Franco-Luesma, E.; Ferreira, V. Reductive Off-Odors in Wines: Formation and Release of H2S and Methanethiol during the Accelerated Anoxic Storage of Wines. Food Chem. 2016, 199, 42–50. [Google Scholar] [CrossRef]
- Siebert, T.E.; Solomon, M.R.; Pollnitz, A.P.; Jeffery, D.W. Selective Determination of Volatile Sulfur Compounds in Wine by Gas Chromatography with Sulfur Chemiluminescence Detection. J. Agric. Food Chem. 2010, 58, 9454–9462. [Google Scholar] [CrossRef]
- Balboa-Lagunero, T.; Arroyo, T.; Cabellos, J.M.; Aznar, M. Sensory and Olfactometric Profiles of Red Wines after Natural and Forced Oxidation Processes. Am. J. Enol. Vitic. 2011, 62, 527–5365. [Google Scholar] [CrossRef]
- Garcia, L.; Perrin, C.; Nolleau, V.; Godet, T.; Farines, V.; Garcia, F.; Caillé, S.; Saucier, C. Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines. Foods 2022, 11, 1693. [Google Scholar] [CrossRef] [PubMed]
- Visan, L.; Tamba-Berehoiu, R.-M.; Popa, C.N.; Mihaela Danaila-Guidea, S.; Dobrinoiu, R.V. Syrah—Grapevine and Wine—A Critical Review. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2019, 19, 609–615. [Google Scholar]
- Arias-Pérez, I.; Sáenz-Navajas, M.P.; de-la-Fuente-Blanco, A.; Ferreira, V.; Escudero, A. Insights on the Role of Acetaldehyde and Other Aldehydes in the Odour and Tactile Nasal Perception of Red Wine. Food Chem. 2021, 361, 130081. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Merrell, C.P.; Larsen, R.C.; Harbertson, J.F. Effects of Berry Maturity and Wine Alcohol on Phenolic Content during Winemaking and Aging. Am. J. Enol. Vitic. 2018, 69, 1–11. [Google Scholar] [CrossRef]
- Stoffel, E.S.; Lesniauskas, R.O.; Anderson, S.R.; Krystoff, C.T.; Casassa, L.F. Temporal Evaluation of Retronasal and Mouthfeel Sensations in Cofermented and Blended Red Wines from California. Am. J. Enol. Vitic. 2023, 74, 1–15. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Picciotto, E.A.; Adams, D.O. Measurement of Polymeric Pigments in Grape Berry Extracts and Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. Am. J. Enol. Vitic. 2003, 54, 301–306. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Kennedy, J.A.; Adams, D.O. Tannin in Skins and Seeds of Cabernet Sauvignon, Syrah, and Pinot Noir Berries during Ripening. Am. J. Enol. Vitic. 2002, 53, 54–59. [Google Scholar] [CrossRef]
- Castro, L.F.; Ross, C.F. Determination of Flavour Compounds in Beer Using Stir-Bar Sorptive Extraction and Solid-Phase Microextraction. J. Inst. Brew. 2015, 121, 197–203. [Google Scholar] [CrossRef]
- Hjelmeland, A.K.; King, E.S.; Ebeler, S.E.; Heymann, H. Characterizing the Chemical and Sensory Profiles of United States Cabernet Sauvignon Wines and Blends. Am. J. Enol. Vitic. 2013, 64, 169–179. [Google Scholar] [CrossRef]
- Llobell, F.; Cariou, V.; Vigneau, E.; Labenne, A.; Qannari, E.M. A New Approach for the Analysis of Data and the Clustering of Subjects in a CATA Experiment. Food Qual. Prefer. 2019, 72, 31–39. [Google Scholar] [CrossRef]
Treatment | Ethanol (v/v%) | pH | Titratable Acidity (g/L) | Glucose + Fructose (g/L) | Lactic Acid (g/L) | Malic Acid (g/L) | Acetic Acid (g/L) | Acetaldehyde (mg/L) |
---|---|---|---|---|---|---|---|---|
Cap Management | ||||||||
PD | 14.60 ± 0.47 | 3.11 ± 0.02 b 1 | 11.00 ± 0.16 a | 0.17 ± 0.04 | 0.36 ± 0.11 | 0.41 ± 0.16 | 0.50 ± 0.02 b | 27.50 ± 3.89 |
SubCap | 13.10 ± 0.50 | 3.28 ± 0.04 a | 10.90 ± 0.22 a | 0.17 ± 0.03 | 0.56 ± 0.11 | 0.28 ± 0.14 | 0.61 ± 0.04 a | 22.30 ± 3.14 |
EM | 14.40 ± 0.47 | 3.16 ± 0.01 b | 9.56 ± 0.07 b | 0.19 ± 0.03 | 0.41 ± 0.07 | 0.45 ± 0.16 | 0.53 ± 0.01 ab | 16.70 ± 4.51 |
p-value 2 | n.s. | ** | *** | n.s. | n.s | n.s | * | n.s |
Chaptalization | ||||||||
Nat | 13.00 ± 0.28 b | 3.20 ± 0.25 | 10.30 ± 0.04 | 0.11 ± 0.01 b | 0.64 ± 0.04 a | 0.08 ± 0.01 b | 0.54 ± 0.02 | 24.60 ± 3.31 |
Chap | 15.10 ± 0.24 a | 3.16 ± 0.23 | 10.70 ± 0.02 | 0.24 ± 0.01 a | 0.25 ± 0.05 b | 0.69 ± 0.08 a | 0.56 ± 0.03 | 19.70 ± 3.36 |
p-value | *** | n.s. | n.s. | *** | *** | *** | n.s. | n.s. |
Cap Management × Chaptalization | ||||||||
p-value | ** | ** | *** | ** | ** | ** | n.s. | n.s. |
Treatment | Anthocyanins (mg/L MLV-3G) | SPP | LPP | TPP | Tannins (mg/L CE) | Total Phenolics (mg/L CE) |
---|---|---|---|---|---|---|
Cap Management | ||||||
PD | 798 ± 28.9 a 1 | 1.86 ± 0.05 a | 0.84 ± 0.06 a | 2.70 ± 0.11 a | 228 ± 9.06 a | 844 ± 19.9 a |
SubCap | 715 ± 18.6 b | 1.88 ± 0.11 a | 0.38 ± 0.08 b | 2.26 ± 0.19 b | 125 ± 9.16 c | 774 ± 17.5 b |
EM | 519 ± 17.9 c | 1.22 ± 0.02 b | 0.17 ± 0.04 c | 1.39 ± 0.05 c | 155 ± 9.02 b | 739 ± 18.4 b |
p-value 2 | *** | *** | *** | *** | *** | ** |
Chaptalization | ||||||
Nat | 646 ± 41.1 | 1.61 ± 0.12 | 0.40 ± 0.10 | 2.01 ± 0.21 | 160 ± 16.1 | 785 ± 21.1 |
Chap | 708 ± 46.1 | 1.69 ± 0.12 | 0.53 ± 0.12 | 2.22 ± 0.22 | 178 ± 17.0 | 786 ± 21.6 |
p-value | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Cap Management × Chaptalization | ||||||
p-value | *** | ** | ** | ** | *** | n.s. |
Compounds | Cap Management | Chaptalization | Cap Management × Chaptalization | |||||
---|---|---|---|---|---|---|---|---|
PD | SubCap | EM | p-value 2 | Nat | Chap | p-value | ||
Esters | ||||||||
Ethyl butyrate | 129 | 117 | 124 | n.s. | 119 | 128 | n.s. | * |
Isoamyl acetate | 636 a 1 | 513 b | 165 c | *** | 386 | 490 | n.s. | *** |
Ethyl hexanoate | 494 | 505 | 476 | n.s. | 485 | 498 | n.s. | n.s. |
Ethyl lactate | 2.89 × 103 | 2.06 × 103 | 1.28 × 103 | n.s. | 3.95 × 103 a | 199 b | *** | *** |
Hexyl acetate | 6.01 a | 5.06 a | n.d. 3 | ** | 2.35 | 5.03 | n.s. | ** |
Ethyl octanoate | 167 b | 225 a | 117 c | ** | 159 | 181 | n.s. | * |
Ethyl hexadecanoate | n.d. | 108 a | 96.0 a | n.s. | 60.5 | 75.2 | n.s. | * |
Ethyl decanoate | 6.80 b | 9.73 a | 2.79 c | ** | 4.94 | 7.94 | n.s. | *** |
Diethyl succinate | 367 | 336 | 430 | n.s. | 336 b | 420 a | ** | ** |
Phenylethyl acetate | 32.4 a | 40.5 a | 4.87 b | ** | 16.7 | 35.1 | n.s. | ** |
Nor-isoprenoids | ||||||||
β-Damascenone | 1.22 b | 1.34 a | n.d. | *** | 0.842 | 0.860 | n.s. | *** |
Terpenes | ||||||||
Citronellol | 6.73 | 8.96 | 9.58 | n.s. | 9.23 | 7.62 | n.s. | n.s. |
trans-Farnesol | 3.18 | 3.58 | 3.02 | n.s. | 2.38 b | 4.14 a | ** | * |
Nerolidol | 7.06 a | 7.99 a | 1.86 b | *** | 4.47 | 6.80 | n.s. | *** |
Alcohols | ||||||||
1-Hexanol | 3.06 × 103 ab | 2.68 × 103 b | 3.39 × 103 a | ** | 3.11 × 103 | 3.00 × 104 | n.s. | ** |
1-Octanol | 1.09 | n.d. | 2.72 | n.s. | n.d. | 2.54 a | * | ** |
1-Nonanol | 3.44 a | 3.06 ab | 2.72 b | * | 2.77 b | 3.37 a | ** | ** |
Isobutanol | 1.30 × 103 a | 713 b | 855 b | * | 1.05 × 103 | 858 | n.s. | n.s. |
Isoamyl alcohol | 1.30 × 104 | 1.00 × 104 | 1.03 × 104 | n.s. | 9.93 × 103 | 1.23 × 104 | n.s. | n.s. |
Phenylethyl alcohol | 2.23 × 104 | 2.27 × 104 | 2.25 × 104 | n.s. | 2.08 × 104 b | 2.43 × 104 a | * | n.s. |
Aldehydes | ||||||||
Benzaldehyde | n.d. | n.d. | 34.4 a | *** | 8.16 | 14.8 | n.s. | ** |
Treatment | Saturation | Purple Hue | Overall Aroma Intensity | Blueberry | Jammy | Meaty | Herbal | Acetaldehyde | Reduction |
---|---|---|---|---|---|---|---|---|---|
PD_Chap | > 1,2 | > | < | > | < | < | < | > | < |
p-value 3 | *** | *** | n.s. | ** | ** | ** | n.s. | n.s. | * |
SubCap_Nat | > | > | > | < | < | > | < | < | > |
p-value | * | *** | * | n.s. | *** | ** | ** | * | ** |
SubCap_Chap | > | > | > | < | < | > | > | < | > |
p-value | n.s. | n.s. | n.s. | * | n.s. | * | n.s. | n.s. | n.s. |
EM_Nat | < | < | > | > | > | < | > | > | < |
p-value | *** | *** | n.s. | n.s. | ** | * | * | n.s. | n.s. |
EM_Chap | < | < | < | < | > | < | > | > | < |
p-value | *** | *** | n.s. | n.s. | *** | n.s. | n.s. | ** | n.s. |
Treatment | Black Fruit | Jammy | Dried Fruit | Meaty | Herbal | Baking Spice | Acetaldehyde | Reduction | Satin |
---|---|---|---|---|---|---|---|---|---|
PD_Chap | > 1,2 | > | < | < | < | > | < | < | < |
p-value 3 | * | * | * | n.s. | * | n.s. | n.s. | n.s. | * |
SubCap_Nat | < | < | < | > | < | < | < | > | > |
p-value | n.s. | *** | n.s. | ** | n.s. | ** | * | ** | n.s. |
SubCap_Chap | > | < | < | > | < | > | < | > | > |
p-value | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. |
EM_Nat | < | > | > | < | > | < | > | < | < |
p-value | n.s. | n.s. | * | * | * | n.s. | n.s. | ** | n.s. |
EM_Chap | < | > | > | < | > | > | > | < | > |
p-value | n.s. | n.s. | * | * | n.s. | n.s. | ** | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoffel, E.S.; Kuster, S.T.; Casassa, L.F. The Chemical and Sensory Impact of Cap Management Techniques, Maceration Length, and Ethanol Level in Syrah Wines from the Central Coast of California. Molecules 2025, 30, 1694. https://doi.org/10.3390/molecules30081694
Stoffel ES, Kuster ST, Casassa LF. The Chemical and Sensory Impact of Cap Management Techniques, Maceration Length, and Ethanol Level in Syrah Wines from the Central Coast of California. Molecules. 2025; 30(8):1694. https://doi.org/10.3390/molecules30081694
Chicago/Turabian StyleStoffel, Emily S., Sean T. Kuster, and L. Federico Casassa. 2025. "The Chemical and Sensory Impact of Cap Management Techniques, Maceration Length, and Ethanol Level in Syrah Wines from the Central Coast of California" Molecules 30, no. 8: 1694. https://doi.org/10.3390/molecules30081694
APA StyleStoffel, E. S., Kuster, S. T., & Casassa, L. F. (2025). The Chemical and Sensory Impact of Cap Management Techniques, Maceration Length, and Ethanol Level in Syrah Wines from the Central Coast of California. Molecules, 30(8), 1694. https://doi.org/10.3390/molecules30081694