Gradient Structure Construction of High Thermal Conductivity Polyurethane/Boron Nitride Composite Fiber Membrane for Thermal Management
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Structural Characterization of FBN/PU Composite Fiber Membrane
2.2. Thermal Conductive Properties and Thermal Conductive Mechanism of FBN/PU Composite Fiber Membrane
2.3. Mechanical Properties of FBN/PU Composite Fiber Membrane
2.4. Demonstration of FBN/PU Composite Fiber Membrane in Practical Application
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of FBN
3.2.2. Preparation of FBN/PU Precursor Solution
3.2.3. Preparation of FBN/PU Composite Fiber Membrane
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Xu, S.; Wang, Z.; Hao, L.; Shi, Z.; Zhao, J.; Zhang, Q.; Ishizaki, K.; Wang, B.; Yang, J. Wood-Derived, Vertically Aligned, and Densely Interconnected 3D SiC Frameworks for Anisotropically Highly Thermoconductive Polymer Composites. Adv. Sci. 2022, 9, e2103592. [Google Scholar] [CrossRef]
- Dong, J.; Feng, Y.; Lin, K.; Zhou, B.; Su, F.; Liu, C. A Stretchable Electromagnetic Interference Shielding Fabric with Dual-Mode Passive Personal Thermal Management. Adv. Funct. Mater. 2023, 34, 2310774. [Google Scholar] [CrossRef]
- Ma, Y.; Zou, M.; Chen, W.; Luo, W.; Hu, X.; Xiao, S.; Luo, L.; Jiang, X.; Li, Q. A structured phase change material integrated by MXene/AgNWs modified dual-network and polyethylene glycol for energy storage and thermal management. Appl. Energy 2023, 349, 121658. [Google Scholar] [CrossRef]
- Liu, J.; Feng, H.; Dai, J.; Yang, K.; Chen, G.; Wang, S.; Jin, D.; Liu, X. A Full-component recyclable Epoxy/BN thermal interface material with anisotropy high thermal conductivity and interface adaptability. Chem. Eng. J. 2023, 469, 143963. [Google Scholar] [CrossRef]
- Hu, D.; Liu, H.; Ma, W. Rational design of nanohybrids for highly thermally conductive polymer composites. Compos. Commun. 2020, 21, 100427. [Google Scholar] [CrossRef]
- Qian, C.; Gheitaghy, A.M.; Fan, J.; Tang, H.; Sun, B.; Ye, H.; Zhang, G. Thermal Management on IGBT Power Electronic Devices and Modules. IEEE Access 2018, 6, 12868–12884. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 2020, 142, 100580. [Google Scholar] [CrossRef]
- Dong, J.; Lin, J.; Zhang, H.; Wang, J.; Li, Y.; Pan, K.; Zhang, H.; Hu, D. Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing. Molecules 2024, 29, 4000. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, K.; Liu, H.; Chen, J.; Yan, X.; Kou, Y.; Shi, Q. Flexible insulating phase change composite film with improved thermal conductivity for wearable thermal management. Nano Energy 2024, 121, 109256. [Google Scholar] [CrossRef]
- Feng, C.P.; Wei, F.; Sun, K.Y.; Wang, Y.; Lan, H.B.; Shang, H.J.; Ding, F.Z.; Bai, L.; Yang, J.; Yang, W. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. Nanomicro Lett. 2022, 14, 127. [Google Scholar] [CrossRef]
- Losego, M.D.; Grady, M.E.; Sottos, N.R.; Cahill, D.G.; Braun, P.V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 2012, 11, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.D.; Kazem, N.; Powell-Palm, M.J.; Huang, X.; Sun, W.; Malen, J.A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2017, 114, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, Z.; Zhang, C.; Qiu, F.; Xu, J.; Xia, L.; Guo, Y.; Xu, W. Enhanced thermal conductivity of UHMWPE by coating boron nitride and polyurethane composites. Prog. Org. Coat. 2024, 197, 108848. [Google Scholar] [CrossRef]
- Wei, P.; Feng, L.; Chen, Q.; Dong, Z.; Song, Q.; Tian, R.; Zhang, R.; Guo, L.; Xu, D.; Hou, M.; et al. Highly thermally conductive composites with boron nitride nanoribbon array. Chem. Eng. J. 2024, 488, 150915. [Google Scholar] [CrossRef]
- Han, W.-H.; Wang, Q.-Y.; Long, Y.; Xin, M.; Long, Y.-Z.; Hao, C.-C. Personalized customization of in-plane thermal conductive networks by a novel electrospinning method. Compos. Part B Eng. 2025, 290, 111971. [Google Scholar] [CrossRef]
- Xiao, G.; Li, H.; Yu, Z.; Niu, H.; Yao, Y. Highly Thermoconductive, Strong Graphene-Based Composite Films by Eliminating Nanosheets Wrinkles. Nanomicro Lett. 2023, 16, 17. [Google Scholar] [CrossRef]
- Tu, H.; Xie, K.; Lin, X.; Zhang, R.; Chen, F.; Fu, Q.; Duan, B.; Zhang, L. Superior strength and highly thermoconductive cellulose/boron nitride film by stretch-induced alignment. J. Mater. Chem. A 2021, 9, 10304–10315. [Google Scholar] [CrossRef]
- Tian, R.; Jia, X.; Huang, C.; Yu, Y.; Lan, M.; Yang, J.; Su, Y.; Song, H. Flexible, Flame-Resistant, and Anisotropic Thermally Conductive Aerogel Films with Ionic Liquid Crystal-Armored Boron Nitride. ACS Appl. Mater. Interfaces 2023, 15, 27223–27233. [Google Scholar] [CrossRef]
- Moradi, A.; Szewczyk, P.K.; Roszko, A.; Fornalik-Wajs, E.; Stachewicz, U. Unraveling the Impact of Boron Nitride and Silicon Nitride Nanoparticles on Thermoplastic Polyurethane Fibers and Mats for Advanced Heat Management. ACS Appl. Mater. Interfaces 2024, 16, 41475–41486. [Google Scholar] [CrossRef]
- Jiang, Z.-H.; Xue, C.-H.; Guo, X.-J.; Liu, B.-Y.; Wang, H.-D.; Fan, T.-T.; Jia, S.-T.; Deng, F.-Q. Thermally Conductive, Superhydrophobic, and Flexible Composite Membrane of Polyurethane and Boron Nitride Nanosheets by Ultrasonic Assembly for Thermal Management. ACS Appl. Polym. Mater. 2023, 5, 1264–1275. [Google Scholar] [CrossRef]
- Chen, X.; Wei, C.; Ding, X.; Chen, J.; Chang, X.; Liu, Z.; Zhu, Y. Flexible hBN/Al2O3/TPU composite film with high thermal conductivities in in-plane and through-plane directions simultaneously. Compos. Commun. 2025, 53, 102251. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, J.; Wang, C.; Zou, P.; Zhang, X.; Xu, B.; Li, J. Multiscale study on the synergistic effect of interface heat transfer and filler structure on enhancing the thermal conductivity of boron nitride/alumina/polyurethane composites. Compos. Commun. 2025, 53, 102183. [Google Scholar] [CrossRef]
- Huang, T.; Yang, F.; Wang, T.; Wang, J.; Li, Y.; Huang, J.; Chen, M.; Wu, L. Ladder-structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl. Mater. Today 2022, 26, 101299. [Google Scholar] [CrossRef]
- Zheng, Z.; Cox, M.; Li, B. Surface modification of hexagonal boron nitride nanomaterials: A review. J. Mater. Sci. 2017, 53, 66–99. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Jiang, H.; Wu, H.; Lu, Y.; Zhao, X.; Liu, L.; Gao, Y.; Zhang, L. Influence of Surface Defects on the Thermal Conductivity of Hexagonal Boron Nitride/Poly(dimethylsiloxane) Nanocomposites: A Molecular Dynamics Simulation. Langmuir 2021, 37, 12038–12048. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Ruan, K. Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics. Nanomicro Lett. 2021, 13, 110. [Google Scholar] [CrossRef]
- Soong, Y.C.; Chiu, C.W. Multilayered graphene/boron nitride/thermoplastic polyurethane composite films with high thermal conductivity, stretchability, and washability for adjustable-cooling smart clothes. J. Colloid Interface Sci. 2021, 599, 611–619. [Google Scholar] [CrossRef]
- Sun, S.; Wu, Y.; Zhang, Y.; Sun, Y.-M.; Lin, H.; Wang, M.; Wang, C.; Chen, S. Silver doped boron nitride approach to improve the thermal conductivity of polyurethane composites. J. Polym. Res. 2024, 31, 255. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, B.; Zhang, X.; Qu, X. Amino Acid-Assisted Sand-Milling Exfoliation of Boron Nitride Nanosheets for High Thermally Conductive Thermoplastic Polyurethane Composites. Polymers 2022, 14, 4674. [Google Scholar] [CrossRef]
- Su, K.H.; Su, C.Y.; Cho, C.T.; Lin, C.H.; Jhou, G.F.; Chang, C.C. Development of Thermally Conductive Polyurethane Composite by Low Filler Loading of Spherical BN/PMMA Composite Powder. Sci. Rep. 2019, 9, 14397. [Google Scholar] [CrossRef]
- Yao, C.; Leahu, G.; Holicky, M.; Liu, S.; Fenech-Salerno, B.; Lai, M.C.; Larciprete, M.C.; Ducati, C.; Divitini, G.; Voti, R.L.; et al. Thermally Conductive Hexagonal Boron Nitride/Polymer Composites for Efficient Heat Transport. Adv. Funct. Mater. 2024, 34, 2405235. [Google Scholar] [CrossRef]
- Gao, J.; Hao, M.; Wang, Y.; Kong, X.; Yang, B.; Wang, R.; Lu, Y.; Zhang, L.; Gong, M.; Zhang, L.; et al. 3D printing boron nitride nanosheets filled thermoplastic polyurethane composites with enhanced mechanical and thermal conductive properties. Addit. Manuf. 2022, 56, 102897. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Li, Y.; Gao, C.; Tian, X.; Wu, N.; Geng, Z.; Che, S.; Yang, F.; Li, Y. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B Eng. 2021, 224, 109168. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Zhang, Y.-F. RGO/TPU composite with a segregated structure as thermal interface material. Compos. Part A Appl. Sci. Manuf. 2017, 101, 108–114. [Google Scholar] [CrossRef]
- Cui, Y.; Bao, D.; Xu, F.; Gao, Y.; Zhang, X.; Geng, H.; Zhou, Y.; Zhu, Y.; Wang, H. Fabrication of EVA connected 3D BN network for enhancing the thermal conductivity of epoxy composites. Compos. Part B Eng. 2021, 224, 109203. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Xia, L.; Xu, J.; Sun, X.; Zhang, C.; Liu, X. Boron Nitride/Polyurethane Composites with Good Thermal Conductivity and Flexibility. Int. J. Mol. Sci. 2023, 24, 8221. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Lei, Z.; Chen, Z. Electrostatic flocking assisted aligned boron nitride platelets scaffold for enhancing the through-plane thermal conductivity of flexible thermal interface materials. Ceram. Int. 2023, 49, 22623–22629. [Google Scholar] [CrossRef]
- Bozkurt, Y.E.; Emanetoğlu, U.; Yıldız, A.; Türkarslan, Ö.; Şaşal, F.N.; Cebeci, H. 3D printable CNTs and BN hybridized PEEK composites for thermal management applications. J. Mater. Sci. 2023, 58, 15086–15099. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Zhu, G.; Liu, Y.; Fang, Q.; Bai, X.; Zhao, Y.; Li, X.; Huang, X.; Zhang, T.-Y.; et al. A new route to fabricate flexible, breathable composites with advanced thermal management capability for wearable electronics. npj Flex. Electron. 2023, 7, 24. [Google Scholar] [CrossRef]
Matrix | Filler | Filler Content | In-Plane TC (W·m−1·K−1) | Reference |
---|---|---|---|---|
TPU | BNNSs | 30 wt% | 1.80 | [32] |
PU | BNNS/CNTs | 20 wt% | 1.49 | [33] |
TPU | RGO | 1.04 wt% | 0.80 | [34] |
Epoxy | 3D-BN | 28.1 wt% | 1.85 | [35] |
PU | BN | 70 wt% | 0.653 | [36] |
PU | BN-Ag | 2.5 wt% | 0.84 | [28] |
TPU | Lys@BNNSs | 3 wt% | 0.52 | [28] |
Epoxy | BN | 17.57 wt% | 0.65 | [37] |
PEEK | n-BN/m-BN | 40 wt% | 1.77 | [38] |
TPU | BNNSs | 25 wt% | 0.844 | [39] |
PU | FBN | 20 wt% | 2.96 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Z.; Li, J.; Liu, Y.; Jiang, F. Gradient Structure Construction of High Thermal Conductivity Polyurethane/Boron Nitride Composite Fiber Membrane for Thermal Management. Molecules 2025, 30, 1449. https://doi.org/10.3390/molecules30071449
Miao Z, Li J, Liu Y, Jiang F. Gradient Structure Construction of High Thermal Conductivity Polyurethane/Boron Nitride Composite Fiber Membrane for Thermal Management. Molecules. 2025; 30(7):1449. https://doi.org/10.3390/molecules30071449
Chicago/Turabian StyleMiao, Zhengyang, Jingwei Li, Yidan Liu, and Fang Jiang. 2025. "Gradient Structure Construction of High Thermal Conductivity Polyurethane/Boron Nitride Composite Fiber Membrane for Thermal Management" Molecules 30, no. 7: 1449. https://doi.org/10.3390/molecules30071449
APA StyleMiao, Z., Li, J., Liu, Y., & Jiang, F. (2025). Gradient Structure Construction of High Thermal Conductivity Polyurethane/Boron Nitride Composite Fiber Membrane for Thermal Management. Molecules, 30(7), 1449. https://doi.org/10.3390/molecules30071449