The Composition–Structure Relationship and the Formation of Fly Ash Skeletal-Dendritic Ferrospheres
Abstract
1. Introduction
2. Results and Discussion
2.1. The Composition–Structure Relationship of Skeletal-Dendritic FSs
2.2. The Formation of Skeletal-Dendritic Structure of Globules During Thermochemical Transformations of Precursors
3. Materials and Methods
3.1. Materials
3.2. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FSs | Ferrospheres |
SEM | Scanning electronic microscopy |
EDS | Energy dispersive spectroscopy |
References
- Waqas, H.; Qureshi, A.H.; Subhan, K.; Shahzad, M. Nanograin Mn-Zn ferrite smart cores to miniaturize electronic devices. Ceram. Int. 2012, 38, 1235–1240. [Google Scholar] [CrossRef]
- Tomar, M.S.; Singh, S.P.; Perales-Perez, O.; Guzman, R.P.; Calderon, E.; Rinaldi-Ramos, C. Synthesis and magnetic behavior of nanostructured ferrites for spintronics. Microelectron. J. 2005, 36, 475–479. [Google Scholar] [CrossRef]
- Park, W.B.; Trinh-Van, S.; Yang, Y.; Lee, K.-Y.; Yu, B.; Park, J.; You, H.; Hwang, K.C. A low-profile ferrite dipole VHF antenna for integrated mast applications. Appl. Sci. 2020, 10, 1642. [Google Scholar] [CrossRef]
- Wu, X.; Ding, Z.; Song, N.; Li, L.; Wang, W. Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 2016, 42, 4246–4255. [Google Scholar] [CrossRef]
- Valenzuela, R. Novel applications of ferrites. Phys. Res. Int. 2012, 2012, 591839. [Google Scholar] [CrossRef]
- Andreev, V.G.; Men’shova, S.B.; Kostishyn, V.G.; Chitanov, D.N.; Klimov, A.N.; Kirina, A.Y.; Vergasov, R.M.; Bibikov, S.B.; Prokof’ev, M.V. The effect of the base composition and microstructure of nickel-zinc ferrites on the level of absorption of electromagnetic radiation. Russ. Microelectron. 2016, 45, 593–599. [Google Scholar] [CrossRef]
- Dosoudil, R.; Ušáková, M.; Franek, J.; Slama, J.; Olah, V. RF electromagnetic wave absorbing properties of ferrite polymer composite materials. J. Magn. Magn. Mater. 2006, 304, e755–e757. [Google Scholar] [CrossRef]
- Mandal, A.; Ghosh, D.; Malas, A.; Pal, P.; Das, C.K. Synthesis and microwave absorbing properties of Cu-doped nickel zinc ferrite/Pb(Zr0.52Ti0.48)O3 nanocomposites. J. Eng. 2013, 2013, 391083. [Google Scholar] [CrossRef]
- Panwar, R.; Puthucheri, S.; Singh, D.; Agarwala, V. Design of ferrite-graphene-based thin broadband radar wave absorber for stealth application. IEEE Trans. Magn. 2015, 51, 2802804. [Google Scholar] [CrossRef]
- Folgueras, L.C.; Alves, M.A.; Rezende, M.C. Evaluation of a nanostructured microwave absorbent coating applied to a glass fiber/polyphenylene sulfide laminated composite. Mater. Res. 2014, 17, 197–202. [Google Scholar] [CrossRef]
- Houbi, A.; Zharmenov, A.A.; Atassi, Y.; Bagasharova, Z.T.; Myrzalieva, S.; Kadyrakunov, K. Microwave absorbing properties of ferrite and their composites: A review. J. Magn. Magn. Mater. 2021, 529, 167839. [Google Scholar] [CrossRef]
- Apit, M.; Bura, R.O. Nickel ferrite/Chitosan composite as a RADAR absorbing material on missile: A review and prospective. AIP Conf. Proc. 2020, 2284, 020020-1–020020-6. [Google Scholar] [CrossRef]
- Vinosha, P.A.; Manikandan, A.; Ceicilia, A.S.J.; Dinesh, A.A.; Nirmala, G.F.; Preetha, A.C.; Slimani, Y.; Almessiere, M.A.; Baykal, A.; Xavier, B. Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceram. Int. 2021, 47, 10512–10535. [Google Scholar] [CrossRef]
- Shultz, M.D.; Calvin, S.; Fatouros, P.P.; Morrison, S.A.; Carpenter, E.E. Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mater. 2007, 311, 464–468. [Google Scholar] [CrossRef]
- Akopdzhanov, A.G.; Shimanovskii, N.L.; Borisova, A.I.; Parshin, V.A.; Frolov, G.A. Magnetic ferrite nanoparticles as a possible platform for magnetic resonance contrast agents. Pharm. Chem. J. 2020, 53, 1164–1167. [Google Scholar] [CrossRef]
- Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalyst in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. [Google Scholar] [CrossRef]
- Govan, J.; Gun’ko, Y.K. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. Nanomaterials 2014, 4, 222–241. [Google Scholar] [CrossRef]
- Amiri, M.; Eskandari, K.; Salavati-Niasari, M. Magnetically recoverable ferrite nanoparticles in the catalysis application. Adv. Colloid Interface Sci. 2019, 271, 101982. [Google Scholar] [CrossRef]
- Rahman, A.; Jayaganthan, R. Photocatalytic studies of composite ferrite nanoparticles. Russ. J. Inorg. Chem. 2019, 64, 946–954. [Google Scholar] [CrossRef]
- He, J.; Yang, S.; Riisager, A. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catal. Sci. Technol. 2018, 8, 790–797. [Google Scholar] [CrossRef]
- Krupichka, S. Ferrite Physics and Its Magnetic Oxides, in 2 Volumes; Mir: Moscow, Russia, 1976; Volume 1, 353p. [Google Scholar]
- Chen, L.; Dai, H.; Shen, Y.; Bai, J. Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route. J. Alloys Compd. 2010, 49, L33–L38. [Google Scholar] [CrossRef]
- Uddin, M.E.; Kim, N.H.; Kuila, T.; Lee, S.H.; Hui, D.; Lee, J.H. Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Compos. B Eng. 2015, 79, 649–659. [Google Scholar] [CrossRef]
- Pechini, M.P. A Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent 3330697A, 11 July 1967. Available online: https://patents.google.com/patent/US3330697A/en (accessed on 21 February 2025).
- Han, L.; Zhou, X.; Wan, L.; Deng, Y.; Zhan, S. Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light. J. Environ. Chem. Eng. 2014, 2, 123–130. [Google Scholar] [CrossRef]
- Mobini, S.; Meshkani, F.; Rezaei, M. Surfactant-assisted hydrothermal synthesis of CuCr2O4 spinel catalyst and its application in CO oxidation process. J. Environ. Chem. Eng. 2017, 5, 4906–4916. [Google Scholar] [CrossRef]
- Mindru, I.; Gingasu, D.; Marinescu, G.; Patron, L.; Calderon-Moreno, J.M.; Bartha, C.; Andronescu, C.; Crisan, A. Cobalt chromite obtained by thermal decomposition of oxalate coordination compounds. Ceram. Int. 2014, 40 Pt B, 15249–15258. [Google Scholar] [CrossRef]
- Wang, S. Application of solid ash based catalysts in heterogeneous catalysis. Environ. Sci. Technol. 2008, 42, 7055–7063. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Hulett, L.D., Jr.; Weinberger, A.J.; Northcutt, K.J.; Ferguson, M. Chemical Species in Fly Ash from Coal-Burning Power Plants. Science 1980, 210, 1356–1358. [Google Scholar] [CrossRef]
- Ramsden, A.R.; Shibaoka, M. Characterization and analysis of individual fly-ash particles from coal fired power stations by a combination of optical microscopy, electron microscopy and quantitative electron microprobe analysis. Atmos. Environ. 1982, 16, 2191–2206. [Google Scholar] [CrossRef]
- Querol, X.; Fernández-Turiel, J.; López-Soler, A. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 1995, 74, 331–343. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Mineralogy of combustion wastes from coal-fired power stations. Fuel Process. Technol. 1996, 47, 261–280. [Google Scholar] [CrossRef]
- Hower, J.C.; Rathbone, R.F.; Robertson, J.D.; Peterson, G.; Trimble, A.S. Petrology, mineralogy, and chemistry of magnetically separated sized fly ash. Fuel 1999, 78, 197–203. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kalugin, V.M.; Nigmatulina, E.N.; Volkova, N.I.; Frenkel, A.E.; Maksimova, N.V. Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions. Fuel 2002, 81, 867–876. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Sun, J.; Bai, X.; Zheng, C. Mineralogy, Chemical Composition, and Microstructure of Ferrospheres in Fly Ashes from Coal Combustion. Energy Fuels 2006, 20, 1490–1497. [Google Scholar] [CrossRef]
- Sharonova, O.M.; Anshits, N.N.; Anshits, A.G. Composition and Morphology of Narrowly Sized Ferrospheres Isolated from Various Types of Fly Ash. Inorg. Mater. 2013, 49, 586–594. [Google Scholar] [CrossRef]
- Bayukov, O.A.; Anshits, N.N.; Balaev, A.D.; Sharonova, O.M.; Rabchevskii, E.V.; Petrov, M.I.; Anshits, A.G. Mössbauer study of magnetic microspheres isolated from power flay ash. Inorg. Mater. 2005, 41, 50–59. [Google Scholar] [CrossRef]
- Anshits, A.G.; Kondratenko, E.V.; Fomenko, E.V.; Kovalev, A.M.; Bajukov, O.A.; Anshits, N.N.; Sokol, E.V.; Kochubey, D.I.; Boronin, A.I.; Salanov, A.N.; et al. Physicochemical and catalytic properties of glass crystal catalysts for the oxidation of methane. J. Mol. Catal. A Chem. 2000, 158, 209–214. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Kondratenko, E.V.; Sharonova, O.M.; Plekhanov, V.P.; Koshcheev, S.V.; Boronin, A.I.; Salanov, A.N.; Bajukov, O.A.; Anshits, A.G. Novel microdesign of oxidation catalysts. Part 2. The influence of fluorination on the catalytic properties of glass crystal microspheres. Catal. Today 1998, 42, 273–277. [Google Scholar] [CrossRef]
- Vereshchagin, S.N.; Kondratenko, E.V.; Rabchevskii, E.V.; Anshits, N.N.; Solov’ev, L.A.; Anshits, A.G. New approach to the preparation of catalysts for the oxidative coupling of methane. Kinet. Catal. 2012, 53, 449–455. [Google Scholar] [CrossRef]
- Anshits, A.G.; Bayukov, O.A.; Kondratenko, E.V.; Anshits, N.N.; Pletnev, O.V.; Rabchevskii, E.V.; Solovyov, L.A. Catalytic properties and nature of active centers of ferrospheres in oxidative coupling of methane. Appl. Catal. A 2016, 524, 192–199. [Google Scholar] [CrossRef]
- Golovko, A.K.; Kopytov, M.A.; Sharonova, O.M.; Kirik, N.P.; Anshits, A.G. Cracking of heavy oils using catalytic additives based on coal fly ash ferrospheres. Catal. Ind. 2015, 7, 293–300. [Google Scholar] [CrossRef]
- Vereshchagina, T.A.; Fedorchak, M.A.; Sharonova, O.M.; Fomenko, E.V.; Shishkina, N.N.; Zhizhaev, A.M.; Kudryavtsev, A.N.; Frank, L.A.; Anshits, A.G. Ni2+-zeolite/ferrosphere and Ni2+-silica/ferrospheres beads for magnetic affinity separation of histidine-tagged proteins. Dalton Trans. 2016, 45, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Helble, J.J.; Sarofim, A.F. Influence of char fragmentation on ash particle size distributions. Combust. Flame 1989, 76, 183–196. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Yumashev, V.V.; Kukhtetskiy, S.V.; Zhizhaev, A.M.; Anshits, A.G. Scanning Electron Microscopy-Energy-Dispersive X-ray Spectrometry (SEM-EDS) Analysis of PM1–2 Microspheres Located in Coal Char Particles with Different Morphologies. Energy Fuels 2020, 34, 8848–8856. [Google Scholar] [CrossRef]
- Yan, L.; Gupta, R.; Wall, T. Fragmentation behaviour of pyrite and calcite during high-temperature processing and mathematical simulation. Energy Fuels 2001, 15, 389–394. [Google Scholar] [CrossRef]
- Yan, L.; Gupta, R.P.; Wall, T.F. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion. Fuel 2001, 80, 1333–1340. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Anshits, N.N.; Kushnerova, O.A.; Akimochkina, G.V.; Kukhtetskiy, S.V.; Anshits, A.G. Separation of Nonmagnetic Fine Narrow Fractions of PM10 from Coal Fly Ash and Their Characteristics and Mineral Precursors. Energy Fuels 2019, 33, 3584–3593. [Google Scholar] [CrossRef]
- Wen, C.; Gao, X.; Yu, Y.; Wu, J.; Xu, M.; Wu, H. Emission of inorganic PM10 from included mineral matter during the combustion of pulverized coals of various ranks. Fuel 2015, 140, 526–530. [Google Scholar] [CrossRef]
- Kizil’shtein, L.Y.; Dubov, I.V.; Shpitsgluz, A.L.; Parada, S.G. Components of Ash and Slag of TPSs; Energoatomizdat: Moscow, Russia, 1995; 177p. [Google Scholar]
- Sharonova, O.M.; Anshits, N.N.; Yumashev, V.V.; Anshits, A.G. Composition and morphology of char particles of fly ashes from industrial burning of high-ash coals with different reactivity. Fuel 2008, 87, 1989–1997. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Menendez, R.; Borrego, A.G.; Diaz-Somoano, M.; Martinez-Tarazona, M.R. Phase mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates. Fuel 2004, 83, 1563–1583. [Google Scholar] [CrossRef]
- Sharonova, O.M.; Anshits, N.N.; Fedorchak, M.A.; Zhizhaev, A.M.; Anshits, A.G. Characterization of ferrospheres recovered from high-calcium fly ash. Energy Fuels 2015, 29, 5404–5414. [Google Scholar] [CrossRef]
- Kutchko, B.; Kim, A. Fly ash characterization by SEM–EDS. Fuel 2006, 85, 2537–2544. [Google Scholar] [CrossRef]
- Xue, Q.; Lu, S. Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis. J. Zhejiang Univ. Sci. A 2008, 9, 1595–1600. [Google Scholar] [CrossRef]
- Sharonova, O.M.; Anshits, N.N.; Solovyov, L.A.; Salanov, A.N.; Anshits, A.G. Relationship between composition and structure of globules in narrow fractions of ferrospheres. Fuel 2013, 111, 332–343. [Google Scholar] [CrossRef]
- Anshits, N.N.; Fomenko, E.V.; Anshits, A.G. The composition–structure relationship and routes of formation of blocklike ferrospheres produced by pulverized combustion of two coal types. ACS Omega 2021, 6, 26004–26015. [Google Scholar] [CrossRef] [PubMed]
- Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmos. Environ. 2008, 42, 8359–8370. [Google Scholar] [CrossRef]
- Sharonova, O.M.; Fedorchak, M.A.; Mazurova, E.V. The Composition and Structure of Ferrospheres Formed by Industrial Combustion of Ekibastuz Coal. J. Sib. Fed. Univ. Chem. 2017, 10, 175–185. [Google Scholar] [CrossRef]
- Anshits, N.N.; Fedorchak, M.A.; Zhizhaev, A.M.; Anshits, A.G. Structure–Composition Relationship of Skeletal and Dendritic Ferrospheres Isolated from Calcium-Rich Power Plant Ash. Inorg. Mater. 2018, 54, 253–260. [Google Scholar] [CrossRef]
- Anshits, N.N.; Fedorchak, M.A.; Zhizhaev, A.M.; Anshits, A.G. Composition-Structure Relationship of Skeletal-Dendritic Ferrospheres Formed during Industrial Combustion of Lignite and Coal. Energy Fuels 2019, 33, 6788–6796. [Google Scholar] [CrossRef]
- Vdovchenko, V.S.; Martynova, M.I.; Novitsky, N.V.; Yushina, G.D. (Eds.) Energy Fuel of the USSR (Fossil Coals, Oil Shale, Peat, Fuel Oil and Combustible Natural Gas), Handbook; Energoatomizdat: Moscow, Russia, 1991; 184p. [Google Scholar]
- Puffenholz, K.N. (Ed.) Geological Dictionary, 2nd ed.; Nedra: Moscow, Russia, 1978; Volume 2. [Google Scholar]
- Bruant, G.; Bailer, C.; Wu, H.; McLennan, A.; Stanmore, B.; Wall, T. Iron in Coal and Slagging. The Significance of the High Temperature Behaviour of Siderite Grains During Combustion. Springer. In Impact of Mineral Impurities in Solid Fuel Combustion; Gupta, R.P., Wall, T.F., Baxter, L., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 581–591. [Google Scholar]
- Bryers, R.W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 1996, 22, 29–120. [Google Scholar] [CrossRef]
- Kalugin, R.A.; Tretyakov, G.A.; Bobrov, V.A. Iron Ore Basalts in Burnt Rocks of East Kazakhstan; Trudy Instituta Geologii i Geofiziki, Akademiya Nauk SSSR, Sibirskoe Otdelenie: Novosibirsk, Russia, 1991; 79p. [Google Scholar]
- Kondratiev, A.; Jak, E. A Quasi-Chemical Viscosity Model for Fully Liquid Slags in the Al2O3–CaO–‘FeO’–SiO2 System. Metall. Mater. Trans. B 2005, 36, 623–638. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Zheng, C. Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal. Int. J. Coal Geol. 2012, 94, 182–190. [Google Scholar] [CrossRef]
- Udagawa, S. Thermal Transformation of Illite. J. Clay Sci. Soc. Jpn. 1973, 13, 95–107. [Google Scholar] [CrossRef]
- Roch, G.E.; Smith, M.E.; Drachman, S.R. Thermal transformation of an illite-rich clay. Clays Clay Miner. 1998, 46, 694–704. [Google Scholar] [CrossRef]
- Anshits, A.G.; Sharonova, O.M.; Anshits, N.N.; Vereshchagin, S.N.; Rabchevskii, E.V.; Solovyov, L.A. Ferrospheres from Fly Ashes: Composition and Catalytic Properties in High-Temperature Oxidation of Methane. In Proceedings of the World of Coal Ash Conference (WOCA), Denver, CO, USA, 9–12 May 2011; Paper #40, 21p. Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=2045&context=woca (accessed on 21 February 2025).
- Jackson, K.A. Current concepts in crystal growth from the melt. Prog. Solid State Chem. 1967, 4, 53–80. [Google Scholar] [CrossRef]
- Kirkpatrick, R.J. Crystal Growth from the Melt: A Review. Am. Mineral. 1975, 60, 798–814. [Google Scholar]
- Kirkpatrick, R.J.; Klein, L.; Uhlmann, D.R.; Hays, J.F. Rates and processes of crystal growth in the system anorthite-albite. J. Geophys. Res. Solid Earth. 1979, 84, 3671–3676. [Google Scholar] [CrossRef]
- Sha, Z.L.; Alatalo, H.; Louhi-Kultanen, M.; Palosaari, S. Purification by crystallization from solutions of various viscosities. J. Cryst. Growth. 1999, 198–199, 692–696. [Google Scholar] [CrossRef]
Globule | SiO2 | Al2O3 | FeO | CaO | MgO | Na2O | K2O | TiO2 | SO3 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
2660 | 5.05 | 2.51 | 87.47 | 1.36 | 2.26 | 0.10 | 0.05 | 0.12 | 0 | 0.92 |
5097 | 6.24 | 4.16 | 83.85 | 1.05 | 2.03 | 0.33 | 0.05 | 0.04 | 0 | 2.18 |
2665 | 9.61 | 5.63 | 82.70 | 0.91 | 0.33 | 0.22 | 0.01 | 0.22 | 0 | 0.25 |
6671 | 10.56 | 3.93 | 78.48 | 1.18 | 2.98 | 1.22 | 0.06 | 0.02 | 0.13 | 1.41 |
2676 | 11.51 | 7.49 | 77.42 | 1.55 | 0.60 | 0.29 | 0.07 | 0.07 | 0 | 0.78 |
6673 | 12.54 | 8.12 | 73.86 | 0.97 | 1.45 | 1.33 | 0.06 | 0.16 | 0.16 | 1.37 |
6666 | 16.08 | 3.22 | 73.19 | 0.97 | 3.33 | 1.44 | 0.06 | 0.09 | 0.23 | 1.38 |
6610 | 13.25 | 7.62 | 72.31 | 2.13 | 1.62 | 1.12 | 0.01 | 0.29 | 0.03 | 1.61 |
6608 | 20.33 | 3.54 | 67.67 | 1.20 | 4.28 | 1.23 | 0.03 | 0.04 | 0.14 | 1.53 |
2675 | 28.40 | 1.56 | 66.78 | 0.61 | 1.86 | 0.23 | 0.04 | 0.03 | 0 | 0.37 |
6670 | 19.02 | 9.38 | 65.45 | 1.11 | 1.71 | 1.13 | 0.04 | 0.24 | 0.21 | 1.68 |
5104 | 20.69 | 10.01 | 62.77 | 1.96 | 2.16 | 0.24 | 0.01 | 0.38 | 0.10 | 1.64 |
6615 | 19.51 | 8.56 | 58.80 | 4.48 | 4.18 | 1.27 | 0.06 | 1.91 | 0.19 | 0.99 |
6597 | 29.36 | 7.88 | 57.34 | 0.83 | 1.98 | 1.20 | 0.07 | 0.13 | 0.10 | 1.08 |
6667 | 28.77 | 11.62 | 53.87 | 1.13 | 1.69 | 1.11 | 0.07 | 0.11 | 0.22 | 1.39 |
6674 | 32.37 | 7.43 | 53.78 | 1.09 | 2.49 | 1.22 | 0.17 | 0.15 | 0.20 | 1.08 |
2693 | 28.54 | 14.86 | 52.60 | 0.88 | 1.42 | 0.64 | 0.34 | 0.26 | 0 | 0.38 |
6616 | 30.82 | 11.61 | 51.80 | 0.90 | 1.86 | 1.43 | 0.19 | 0.03 | 0.27 | 1.07 |
6668 | 28.26 | 14.87 | 46.69 | 4.56 | 2.68 | 0.99 | 0.07 | 0.41 | 0.18 | 1.27 |
6669 | 29.30 | 20.08 | 45.45 | 0.92 | 1.73 | 0.98 | 0.10 | 0.27 | 0.13 | 1.03 |
6665 | 34.44 | 14.97 | 44.51 | 1.44 | 1.27 | 0.89 | 0.07 | 0.81 | 0.21 | 1.36 |
6672 | 39.36 | 17.56 | 38.69 | 0.69 | 1.07 | 1.18 | 0.21 | 0.02 | 0.14 | 1.07 |
6604 | 34.85 | 26.27 | 33.98 | 1.32 | 0.93 | 1.08 | 0.10 | 0.41 | 0.17 | 0.88 |
2661 | 42.65 | 16.94 | 32.47 | 2.32 | 4.01 | 0.59 | 0.14 | 0.73 | 0.15 | 0.00 |
Globule | SiO2 | Al2O3 | FeO | CaO | MgO | Na2O | K2O | TiO2 | SO3 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
2937 | 7.79 | 1.68 | 86.97 | 0.86 | 0.74 | 0.56 | 0.11 | 0.00 | 0 | 1.12 |
2941 | 1.95 | 1.62 | 86.66 | 2.99 | 4.85 | 0.80 | 0.04 | 0.02 | 0.03 | 1.04 |
2938 | 1.48 | 1.47 | 82.93 | 1.87 | 8.71 | 0.73 | 0 | 0.00 | 0 | 2.75 |
8598 | 10.58 | 4.48 | 82.84 | 0.28 | 0.52 | 0.96 | 0.06 | 0.19 | 0.05 | 0.00 |
2930 | 12.29 | 4.98 | 80.27 | 0.35 | 0.81 | 0.62 | 0.08 | 0.24 | 0 | 0.35 |
2932 | 10.65 | 4.91 | 77.72 | 1.56 | 1.21 | 0.54 | 0.11 | 0.24 | 0 | 3.06 |
2931 | 7.42 | 4.14 | 76.66 | 3.37 | 6.19 | 0.82 | 0 | 0.11 | 0.05 | 1.23 |
2936 | 12.65 | 5.58 | 72.25 | 2.35 | 4.50 | 0.64 | 0.08 | 0.13 | 0 | 1.81 |
2943 | 17.36 | 7.38 | 69.14 | 1.09 | 3.37 | 0.55 | 0.05 | 0.17 | 0 | 0.85 |
8642 | 20.33 | 5.93 | 67.30 | 3.75 | 1.57 | 0.51 | 0.10 | 0.17 | 0.05 | 0.24 |
9210 | 20.10 | 3.44 | 67.22 | 2.58 | 2.05 | 1.07 | 0.10 | 0.16 | 0.11 | 3.17 |
9048 | 18.22 | 7.06 | 66.59 | 1.83 | 2.19 | 0.92 | 0.11 | 0.85 | 0 | 2.16 |
8596 | 20.82 | 8.33 | 63.60 | 2.15 | 2.06 | 1.61 | 0.18 | 0.09 | 0.08 | 1.05 |
8594 | 22.98 | 9.19 | 60.30 | 1.73 | 3.06 | 0.74 | 0.15 | 0.09 | 0.08 | 1.64 |
8647 | 29.07 | 4.79 | 58.75 | 1.75 | 3.86 | 0.65 | 0.23 | 0.03 | 0.02 | 0.82 |
8652 | 23.43 | 9.99 | 58.31 | 2.09 | 1.70 | 1.57 | 0.23 | 0.31 | 0 | 2.35 |
8599 | 25.07 | 8.56 | 55.83 | 2.74 | 6.32 | 0.69 | 0.35 | 0.40 | 0.03 | 0.00 |
8600 | 21.43 | 13.31 | 54.43 | 7.26 | 1.57 | 1.09 | 0.08 | 0.17 | 0.05 | 0.56 |
2656 | 18.70 | 7.01 | 53.85 | 6.66 | 11.11 | 0.63 | 0.07 | 0.36 | 0.10 | 1.45 |
5520 | 26.84 | 9.13 | 51.53 | 2.21 | 6.60 | 0.56 | 0.36 | 0.53 | 0.05 | 2.20 |
5527 | 27.79 | 9.07 | 51.18 | 2.24 | 6.36 | 0.36 | 0.32 | 0.27 | 0 | 2.36 |
9211 | 31.54 | 9.12 | 50.73 | 1.41 | 3.12 | 1.56 | 1.06 | 0.83 | 0.05 | 0.56 |
5517 | 30.07 | 8.95 | 48.35 | 2.53 | 7.51 | 0.31 | 0.09 | 0.16 | 0.03 | 2.01 |
8593 | 30.58 | 10.24 | 47.51 | 2.56 | 6.94 | 0.76 | 0.42 | 0.72 | 0.08 | 0.20 |
5532 | 31.36 | 8.65 | 45.64 | 2.32 | 7.89 | 0.50 | 0.79 | 1.23 | 0.11 | 1.53 |
9209 | 25.84 | 17.02 | 43.66 | 2.63 | 8.25 | 0.87 | 0.95 | 0.65 | 0.10 | 0.04 |
8641 | 28.77 | 16.17 | 43.38 | 7.99 | 1.94 | 0.58 | 0.29 | 0.20 | 0 | 0.62 |
5366 | 42.46 | 12.73 | 35.60 | 2.41 | 3.19 | 0.48 | 1.69 | 0.34 | 0 | 1.09 |
5529 | 40.04 | 19.44 | 33.81 | 1.02 | 3.03 | 0.35 | 1.14 | 0.15 | 0.03 | 0.98 |
5526 | 32.66 | 19.03 | 31.11 | 8.17 | 6.97 | 0.75 | 0.25 | 0.24 | 0.05 | 0.76 |
5528 | 41.07 | 16.37 | 30.84 | 3.34 | 4.52 | 0.56 | 1.83 | 0.65 | 0 | 0.83 |
5519 | 34.36 | 21.77 | 30.49 | 7.27 | 3.58 | 0.67 | 0.43 | 0.36 | 0.03 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anshits, N.N.; Fomenko, E.V.; Kirik, N.P.; Anshits, A.G. The Composition–Structure Relationship and the Formation of Fly Ash Skeletal-Dendritic Ferrospheres. Molecules 2025, 30, 1442. https://doi.org/10.3390/molecules30071442
Anshits NN, Fomenko EV, Kirik NP, Anshits AG. The Composition–Structure Relationship and the Formation of Fly Ash Skeletal-Dendritic Ferrospheres. Molecules. 2025; 30(7):1442. https://doi.org/10.3390/molecules30071442
Chicago/Turabian StyleAnshits, Natalia N., Elena V. Fomenko, Nadezhda P. Kirik, and Alexander G. Anshits. 2025. "The Composition–Structure Relationship and the Formation of Fly Ash Skeletal-Dendritic Ferrospheres" Molecules 30, no. 7: 1442. https://doi.org/10.3390/molecules30071442
APA StyleAnshits, N. N., Fomenko, E. V., Kirik, N. P., & Anshits, A. G. (2025). The Composition–Structure Relationship and the Formation of Fly Ash Skeletal-Dendritic Ferrospheres. Molecules, 30(7), 1442. https://doi.org/10.3390/molecules30071442