Scaptotrigona mexicana Propolis from Totonacapan Region: Chemical Composition, Antioxidant and Antibacterial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profile of Ethanolic Extracts of EEP
2.2. Isolation of Compounds 1–7
2.3. Total Polyphenol and Flavonoid Content of EEP
2.4. Antibacterial Activity of EEP
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Stingless Bee Propolis Sample
3.3. Instrumentation
3.4. Extraction and Isolation of Compounds 1–6 from PEE
3.5. Headspace Solid-Phase Microextraction (HS-SPME), GC-MS-TOF, and Identification of Volatile Components
3.6. Physicochemical Characterization of the Stingless Bee Propolis Extract
3.6.1. Antioxidant Activity
3.6.2. Phenolic and Flavonoid Content
3.7. Bacterial Strains for the Antimicrobial Activity Tests
3.8. Minimum Inhibitory Concentration of the Stingless Bee Propolis Extract
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hrncir, M.; Jarau, S.; Barth, F.G. Stingless Bees (Meliponini): Senses and Behavior; Springer: Berlin/Heidelberg, Germany, 2016; Volume 202, pp. 597–601. [Google Scholar]
- Grüter, C. Stingless bees: An overview. In Stingless Bees: Their Behaviour, Ecology and Evolution; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–42. [Google Scholar]
- Roubik, D.W. Stingless bee nesting biology. Apidologie 2006, 37, 124–143. [Google Scholar] [CrossRef]
- Salatino, A.; Pereira, L.d.L.; Salatino, M.L.F. The emerging market of propolis of stingless bees in tropical countries. MOJ Food Process. Technol. 2019, 7, 27–29. [Google Scholar] [CrossRef]
- Ayala, R.; Gonzalez, V.; Engel, M. Mexican Stingless Bees (Hymenoptera: Apidae): Diversity, Distribution, and Indigenous Knowledge; Springer: New York, NY, USA, 2013; pp. 135–152. [Google Scholar]
- Michener, C.D. The Bees of the World; Johns Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Reyes-González, A.; Camou-Guerrero, A.; Reyes-Salas, O.; Argueta, A.; Casas, A. Diversity, local knowledge and use of stingless bees (Apidae: Meliponini) in the municipality of Nocupétaro, Michoacan, Mexico. J. Ethnobiol. Ethnomed. 2014, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Chuttong, B.; Lim, K.; Praphawilai, P.; Danmek, K.; Maitip, J.; Vit, P.; Wu, M.-C.; Ghosh, S.; Jung, C.; Burgett, M.; et al. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023, 12, 3909. [Google Scholar] [CrossRef]
- Rebelo, K.S.; de Lima Yamaguchi, K.K.; Maróstica Júnior, M.R. Chemical Composition and Therapeutic Properties of Geopropolis and Propolis of Stingless Bees from Brazil: A Review. In Stingless Bee Nest Cerumen and Propolis; Vit, P., Bankova, V., Popova, M., Roubik, D.W., Eds.; Springer Nature: Cham, Switzerland, 2024; Volume 2, pp. 217–229. [Google Scholar]
- Paz, M.M.; Sette, K.M.; dos Santos, R.E.; Barbosa e Vasconcelos, A.L.; Costa, D.C.F.d.; Amaral, A.C.F.; Rodrigues, I.A.; Pereira Rangel, L. Brazilian Stingless Bee Geopropolis Exhibit Antioxidant Properties and Anticancer Potential Against Hepatocellular Carcinoma Cells. Antioxidants 2025, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Silveira, Z.; Silva Macêdo, N.; de Menezes Dantas, D.; Vieira Brito, S.; Silva dos Santos, H.; Regis de Sousa Gomes, R.V.; Douglas Melo Coutinho, H.; Bezerra da Cunha, F.A.; Vanusa da Silva, M. Chemical Profile and Biological Potential of Scaptotrigona Bee Products (Hymenoptera, Apidae, Meliponini): An Review. Chem. Biodivers. 2024, 21, e202301962. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Trusheva, B.; Bankova, V. Propolis of stingless bees: A phytochemist’s guide through the jungle of tropical biodiversity. Phytomedicine 2021, 86, 153098. [Google Scholar] [CrossRef]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its Role and Efficacy in Human Health and Diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef]
- Gerginova, D.; Popova, M.; Chimshirova, R.; Trusheva, B.; Shanahan, M.; Guzman, M.; Solorzano-Gordillo, E.; Lopez-Roblero, E.; Spivak, M.; Simova, S.; et al. The Chemical Composition of Scaptotrigona mexicana Honey and Propolis Collected in Two Locations: Similarities and Differences. Foods 2023, 12, 3317. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; I Falcão, S.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- Shinozaki, J.; Nakane, T.; Onodera, N.; Takano, A.; Masuda, K. Composite constituent: Lactucenyl acetate, a novel migrated lupane triterpenoid from Lactuca indica revision of structure of tarolupenyl acetate. Chem. Pharm. Bull. 2011, 59, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Viet, T.D.; Xuan, T.D.; Anh, H. α-Amyrin and β-Amyrin Isolated from Celastrus hindsii Leaves and Their Antioxidant, Anti-Xanthine Oxidase, and Anti-Tyrosinase Potentials. Molecules 2021, 26, 7248. [Google Scholar] [CrossRef]
- Vázquez, L.H.; Palazón, J.; Navarro-Ocaña, A. The Pentacyclic Triterpenes, α, β-Amyrins: A Review of Sources and Biological Activities; IntechOpen: London, UK, 2018. [Google Scholar]
- Maldonado, E.; Diaz-Arumir, H.; Toscano, R.A.; Martinez, M. Lupane Triterpenes with a δ-Lactone at Ring E, from Lippia mexicana. J. Nat. Prod. 2010, 73, 1969–1972. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Martinez, C.; Concepcion Lozada, M.; Hernandez-Ortega, S.; Villarreal, M.L.; Gnecco, D.; Enriquez, R.G.; Reynolds, W. 1H and 13C NMR characterization of new cycloartane triterpenes from Mangifera indica. Magn. Reson. Chem. 2012, 50, 52–57. [Google Scholar] [CrossRef]
- Knoedler, M.; Conrad, J.; Wenzig, E.M.; Bauer, R.; Lacorn, M.; Beifuss, U.; Carle, R.; Schieber, A. Anti-inflammatory 5-(11′Z-heptadecenyl)- and 5-(8′Z,11′Z-heptadecadienyl)-resorcinols from mango (Mangifera indica L.) peels. Phytochem. 2008, 69, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Yam-Puc, A.; Santana-Hernandez, A.A.; Yah-Nahuat, P.N.; Ramon-Sierra, J.M.; Caceres-Farfan, M.R.; Borges-Argaez, R.L.; Ortiz-Vazquez, E. Pentacyclic triterpenes and other constituents in propolis extract from Melipona beecheii collected in Yucatan, Mexico. Rev. Bras. Farmacogn. 2019, 29, 358–363. [Google Scholar] [CrossRef]
- Tsai, F.-S.; Lin, L.-W.; Wu, C.-R. Lupeol and Its Role in Chronic Diseases. In Drug Discovery from Mother Nature; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–175. [Google Scholar]
- Liu, K.; Zhang, X.; Xie, L.; Deng, M.; Chen, H.; Song, J.; Long, J.; Li, X.; Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 2021, 164, 105373. [Google Scholar] [CrossRef]
- Eldeen, I.M.S.; Van Heerden, F.R.; Van Staden, J. Biological activities of cycloart-23-ene-3,25-diol isolated from the leaves of Trichilia dregeana. S. Afr. J. Bot. 2007, 73, 366–371. [Google Scholar] [CrossRef]
- Badole, S.L.; Chaudhari, S.M.; Bagul, P.P.; Mahamuni, S.P.; Khose, R.D.; Joshi, A.C.; Raut, C.G.; Zanwar, A.A. Effect of concomitant administration of -glutamine and cycloart-23-ene-3β, 25-diol (B2) with sitagliptin in GLP-1 (7–36) amide secretion, biochemical and oxidative stress in streptozotocin—Nicotinamide induced diabetic Sprague Dawley rats. PLoS ONE 2013, 8, e72817. [Google Scholar] [CrossRef]
- Zabolotneva, A.A.; Shatova, O.P.; Sadova, A.A.; Shestopalov, A.V.; Roumiantsev, S.A. An Overview of Alkylresorcinols Biological Properties and Effects. J. Nutr. Metab. 2022, 2022, 4667607. [Google Scholar] [CrossRef]
- Torres-González, A.; López-Rivera, P.; Duarte-Lisci, G.; López-Ramírez, Á.; Correa-Benítez, A.; Rivero-Cruz, J.F. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction. Nat. Prod. Res. 2016, 30, 237–240. [Google Scholar] [CrossRef]
- Regnier, L.; Salatino, A.; Luiza, M. Production of propolis and geopropolis by stingless bees. MOJ Food Process. Technol. 2020, 8, 1–3. [Google Scholar]
- Ferreira, J.M.; Fernandes-Silva, C.C.; Salatino, A.; Message, D.; Negri, G. Antioxidant Activity of a Geopropolis from Northeast Brazil: Chemical Characterization and Likely Botanical Origin. Evid. Based Complement. Alternat. Med. 2017, 1, 4024721. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef] [PubMed]
- NOM-0003-SAG/GAN-2017; Producción Y Especificaciones Para Su Procesamiento. Diario Oficial de la Federacion: Ciudad de Mexico, Mexico, 2017. Available online: https://www.dof.gob.mx/normasOficiales/6794/sagarpa11_C/sagarpa11_C.html#:~:text=1.1%20Esta%20Norma%20es%20de,y%20comercializaci%C3%B3n%20en%20el%20pa%C3%ADs (accessed on 10 March 2025).
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food. Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Vongsak, B.; Kongkiatpaiboon, S.; Jaisamut, S.; Machana, S.; Pattarapanich, C. In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. Rev. Bras. Farmacogn. 2015, 25, 445–450. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Oliveira, A.P.; França, H.; Kuster, R.; Teixeira, L.; Rocha, L. Chemical composition and antibacterial activity of Brazilian propolis essential oil. J. Venom Anim. Toxins Incl. Trop. Dis. 2010, 16, 121–130. [Google Scholar] [CrossRef]
- Storch Portal, A.; Schiquet, S.; Padilha Amaral, B.; Mascarenhas Krepsky, L.; Curbani, L.; Andrade Rebelo, R.; Rau, M.; Althoff, S.L.; Guedes, A.; Mendes de Cordova, C.M. Composition, Antibiofilm, and Antibacterial Potential of Volatile Oils from Geopropolis of Different Stingless Bees’ Species. Chem. Biodivers. 2023, 20, e202300592. [Google Scholar] [CrossRef]
- Crighton, E.; Weisenseel, J.; Bunce, M.; Musgrave, I.F.; Trengove, R.; Maker, G. Exploring the Application of the DSA-TOF, a Direct, High-resolution Time-of-Flight Mass Spectrometry Technique for the Screening of Potential Adulterated and Contaminated Herbal Medicines. J. Am. Soc. Mass Spectrom. 2019, 30, 1713–1719. [Google Scholar] [CrossRef]
- Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Perez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants 2020, 9, 70. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. viii+804. [Google Scholar]
- Linstrom, P. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Kahraman, H.A.; Tutun, H.; Kaya, M.M.; Usluer, M.S.; Tutun, S.; Yaman, C.; Sevin, S.; Keyvan, E. Ethanolic extract of Turkish bee pollen and propolis: Phenolic composition, antiradical, antiproliferative and antibacterial activities. Biotechnol. Biotechnol. Equip. 2022, 36, 45–56. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J. [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Marquele, F.D.; Di Mambro, V.M.; Georgetti, S.R.; Casagrande, R.; Valim, Y.M.L.; Fonseca, M.J.V. Assessment of the antioxidant activities of Brazilian extracts of propolis alone and in topical pharmaceutical formulations. J. Pharm. Biomed. Anal. 2005, 39, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Wikler, M.A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard; Clinical and Laboratory Standards Institute (NCCLS): Wayne, PA, USA, 2006; p. 26. [Google Scholar]
- Sani, A.A.; Pereira, A.F.M.; Furlanetto, A.; de Sousa, D.S.M.; Zapata, T.B.; Rall, V.L.M.; Fernandes, A. Inhibitory activities of propolis, nisin, melittin and essential oil compounds on Paenibacillus alvei and Bacillus subtilis. J.Venom Anim. Toxins Incl. Trop. Dis. 2022, 28, 20220025. [Google Scholar] [CrossRef]
- Chakansin, C.; Yostaworakul, J.; Warin, C.; Kulthong, K.; Boonrungsiman, S. Resazurin rapid screening for antibacterial activities of organic and inorganic nanoparticles: Potential, limitations and precautions. Anal. Biochem. 2022, 637, 114449. [Google Scholar] [CrossRef]
EEP Sample | Total Phenolics mg GAE/g a | Total Flavonoids mg QE/g a | DPPH Scavenging IC50 μg/mL a | ABTS IC50 μg/mL a | FRAP IC50 μg/mL a |
---|---|---|---|---|---|
EEP-1 | 2.45 ± 0.03 | 0.69 ± 0.03 | 368.9 ± 12.6 | 438.7 ± 8.5 | 280.6 ± 9.3 |
EEP-2 | 3.47 ± 0.22 | 0.78 ± 0.006 | 287.6 ± 7.8 | 489.7 ± 5.2 | 286.4 ± 5.2 |
EEP-4 | 3.48 ± 0.56 | 0.84 ± 0.009 | 397.1 ± 9.3 | 496.1 ± 6.8 | 301.6 ± 7.9 |
EEP-5 | 2.68 ± 0.22 | 0.82 ± 0.002 | 303.6 ± 6.7 | 454.4 ± 7.5 | 294.5 ± 3.7 |
Trolox | - | - | 9.7 ± 3.4 | 13.9 ± 0.62 |
Compounds | MIC (μg/mL) | |||
---|---|---|---|---|
S. mutans | S. aureus | P. aeruginosa | P. gingivalis | |
Propolis Ethanolic extract | 256 | 512 | >1024 | 512 |
Sanguinarine a | 12.5 | 50 | 250 | 125 |
CHX a,b | 1.0 | 2.0 | 200 | 12.0 |
Chloramphenicol a | 2.0 | 12.5 | 600 | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero-Cruz, B.E.; Rojas-Brandao, M.E.; Correa-Benítez, A.; Becker, I.; Xolalpa-Aroche, A.; Delgado-Dominguez, J.; Rivero-Cruz, J.F. Scaptotrigona mexicana Propolis from Totonacapan Region: Chemical Composition, Antioxidant and Antibacterial Activities. Molecules 2025, 30, 1370. https://doi.org/10.3390/molecules30061370
Rivero-Cruz BE, Rojas-Brandao ME, Correa-Benítez A, Becker I, Xolalpa-Aroche A, Delgado-Dominguez J, Rivero-Cruz JF. Scaptotrigona mexicana Propolis from Totonacapan Region: Chemical Composition, Antioxidant and Antibacterial Activities. Molecules. 2025; 30(6):1370. https://doi.org/10.3390/molecules30061370
Chicago/Turabian StyleRivero-Cruz, Blanca E., Maria Ema Rojas-Brandao, Adriana Correa-Benítez, Ingeborg Becker, Aurora Xolalpa-Aroche, José Delgado-Dominguez, and J. Fausto Rivero-Cruz. 2025. "Scaptotrigona mexicana Propolis from Totonacapan Region: Chemical Composition, Antioxidant and Antibacterial Activities" Molecules 30, no. 6: 1370. https://doi.org/10.3390/molecules30061370
APA StyleRivero-Cruz, B. E., Rojas-Brandao, M. E., Correa-Benítez, A., Becker, I., Xolalpa-Aroche, A., Delgado-Dominguez, J., & Rivero-Cruz, J. F. (2025). Scaptotrigona mexicana Propolis from Totonacapan Region: Chemical Composition, Antioxidant and Antibacterial Activities. Molecules, 30(6), 1370. https://doi.org/10.3390/molecules30061370