Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H2O)
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthetic Procedures
3.2.1. Procedure for the Preparation of the Potassium Phosphate 2a
3.2.2. General Procedure for the Preparation of the Potassium Phosphates 2m,n
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maier, L. Synthesis of Organic Phosphorus Compounds from Elemental Phosphorus. In Fortschritte der Chemischen Forschung; Springer: Cham, Switzerland, 1971; Volume 19, pp. 1–59. [Google Scholar]
- Trofimov, B.; Gusarova, N.; Brandsma, L. The systems Elemental Phosphorus−Strong Bases as Synthetic Reagents. ChemInform 1996, 27, 18–24. [Google Scholar] [CrossRef]
- Albouy, D.; Etemad-Moghadam, G.; Koenig, M. Phosphorylating power of red phosphorus towards aldehydes in basic and in acidic media. Eur. J. Org. Chem. 1999, 1999, 861–868. [Google Scholar] [CrossRef]
- Abdreimova, R.R.; Akbayeva, D.N.; Polimbetova, G.S.; Caminade, A.-M.; Majorals, J.-P. Chlorine Free Synthesis of Organophosphorus Compounds Based on the Functionalization of White Phosphorus (P4). Phosphorus Sulfur Silicon Relat. Elem. 2000, 156, 239–254. [Google Scholar] [CrossRef]
- Weferling, N.; Stelzer, O.; Kolbe, G. Process for Alkylating Elemental Phosphorus. U.S. Patent 6,011,172, 4 January 2000. [Google Scholar]
- Milyukov, V.A.; Budnikova, Y.H.; Sinyashin, O.G. Organic chemistry of elemental phosphorus. Russ. Chem. Rev. 2005, 74, 781–805. [Google Scholar] [CrossRef]
- Yakhvarov, D.G.; Gorbachuk, E.V.; Kagirov, R.M.; Sinyashin, O.G. Electrochemical reactions of white phosphorus. Russ. Chem. Bull. 2013, 61, 1300–1312. [Google Scholar] [CrossRef]
- Corbridge, D.E.C. Phosphorus. Chemistry, Biochemistry and Technology, 6th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Cammarata, J.; Scott, D.J.; Wolf, R. Hydrostannylation of Red Phosphorus: A Convenient Route to Monophosphines. Chem. Eur. J. 2022, 28, e202202456. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.J. Recent Breakthroughs in P4 Chemistry: Towards Practical, Direct Transformations into P1 Compounds. Angew. Chem. Int. Ed. 2022, 61, e202205019. [Google Scholar] [CrossRef]
- Huangfu, X.; Wang, Z.; Chen, Y.; Wei, J.; Liu, W.; Zhang, W.-X. Recent progress on the functionalization of white phosphorus in China. Natl. Sci. Rev. 2024, 11, nwae162. [Google Scholar] [CrossRef]
- Segall, Y.; Quistad, G.B.; Sparks, S.E.; Casida, J.E. Major intermediates in organophosphate synthesis (PCl3, POCl3, PSCl3, and their diethyl esters) are anticholinesterase agents directly or on activation. Chem. Res. Toxicol. 2003, 16, 350–356. [Google Scholar] [CrossRef]
- Dragulescu-Andrasi, A.; Miller, L.Z.; Chen, B.H.; McQuade, D.T.; Shatruk, M. Facile Conversion of Red Phosphorus into Soluble Polyphosphide Anions by Reaction with Potassium Ethoxide. Angew. Chem. Int. Ed. 2016, 55, 3904–3908. [Google Scholar] [CrossRef]
- Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M. Benign Chlorine-Free Approaches to Organophosphorus Compounds. In Chemistry Beyond Chlorine, Part II; Tundo, P., He, L.N., Lokteva, E., Mota, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 97–136. [Google Scholar]
- Ung, S.P.M.; Li, C.-J. From rocks to bioactive compounds: A journey through the global P(v) organophosphorus industry and its sustainability. RSC Sustain. 2023, 1, 11–37. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Krasnov, S.A.; Graznova, T.V.; Tomilov, A.P.; Turigin, V.V.; Magdeev, I.M.; Sinyashin, O.G. “Green” Ways of Phosphorus Compounds Preparation. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 513–518. [Google Scholar] [CrossRef]
- van Wazer, J.R. (Ed.) Phosphorus and Its Compounds. Technology, Biological Functions, and Applications; Interacience Publishers: New York, NY, USA, 1958; Volume 2. [Google Scholar]
- Hartley, F.R. (Ed.) The Chemistry of Organophosphorus Compounds; John Wiley&Sons: New York, NY, USA, 1996; Volume 4. [Google Scholar]
- Büchel, K.H.; Moretto, H.-H.; Woditsch, P. (Eds.) Phosphorus and its compounds. In Industrial Inorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Swara, J.; Weferling, N.; Hofmann, T. Phosphorus Compounds, Organic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Havelange, S.; Lierde, N.; Germeau, A.; Martins, E.; Theys, T.; Sonveaux, M.; Toussaint, C.; Schrödter, K.; Bettermann, G.; Staffel, T.; et al. Phosphoric Acid and Phosphates. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2022; pp. 1–55. [Google Scholar] [CrossRef]
- Chen, F.; Bai, M.; Zhang, Y.; Liu, W.; Huangfu, X.; Liu, Y.; Tang, G.; Zhao, Y. Decarboxylative Selective Phosphorylation of Aliphatic Acids: A Transition-Metal- and Photocatalyst-Free Avenue to Dialkyl and Trialkyl Phosphine Oxides from White Phosphorus. Angew. Chem. Int. Ed. 2022, 61, e202210334. [Google Scholar] [CrossRef]
- Chen, F.; Peng, J.; Ying, Y.; Cao, Y.; Xu, P.; Tang, G.; Zhao, Y. Metal-free visible-light-induced phosphorylation of unactivated alkyl iodides with white phosphorus as the P-atom source. Green Chem. 2023, 25, 6629–6634. [Google Scholar] [CrossRef]
- Bai, M.; Cao, Y.; Huang, J.; Liu, Y.; Tang, G.; Zhao, Y. Direct Synthesis of α-Aminophosphonates from Amines, Alcohols, and White Phosphorus. CCS Chem. 2024, 6, 91–99. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Y.; Cao, Y.; Liu, Y.; Tang, G.; Zhao, Y. Ternary Photoredox/Nickel/Halide Catalysis for the Phosphorylation of Alcohols with White Phosphorus. ACS Catal. 2023, 13, 8330–8335. [Google Scholar] [CrossRef]
- Diskowski, H.; Hofmann, T. Phosphorus. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000; pp. 725–746. [Google Scholar] [CrossRef]
- Francois, M.R.; Stephen, F. Phosphorus Compounds. In Hamilton & Hardy’s Industrial Toxicology, 6th ed.; Harbison, R.D., Bourgeois, M.M., Johnson, G.T., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 383–390. [Google Scholar]
- Patnaik, P. Phosphorus and Its Compounds. In A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 834–853. [Google Scholar]
- Malysheva, S.F.; Kuimov, V.A.; Arbuzova, S.N. Elemental Phosphorus in the Synthesis of Organophosphorus Compounds: The Recent Advances (A Review). Russ. J. Gen. Chem. 2023, 93, S238–S255. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Rakhmatulina, T.N.; Gusarova, N.K.; Malysheva, S.F. Elementary Phosphorus-Strong Bases Systems in Organophosphorus Compounds Synthesis. Russ. Chem. Rev. 1991, 60, 2619–2632. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Trofimov, B.A. Organophosphorus chemistry based on elemental phosphorus: Advances and horizons. Russ. Chem. Rev. 2020, 89, 225–249. [Google Scholar] [CrossRef]
- Malysheva, S.F.; Kuimov, V.A.; Belogorlova, N.A.; Albanov, A.I.; Gusarova, N.K.; Trofimov, B.A. Superbase-Assisted Selective Synthesis of Triarylphosphines from Aryl Halides and Red Phosphorus: Three Consecutive Different SNAr Reactions in One Pot. Eur. J. Org. Chem. 2019, 2019, 6240–6245. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Gusarova, N.K.; Artem’ev, A.V.; Malysheva, S.F.; Belogorlova, N.A.; Korocheva, A.O.; Kazheva, O.N.; Alexandrov, G.G.; Dyachenko, O.A. Tris(2-pyridyl)phosphine: A straightforward microwave-assisted synthesis from 2-bromopyridine and red phosphorus and coordination with cobalt(II) dichloride. Mendeleev Commun. 2012, 22, 187–188. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Sutyrina, A.O.; Matveeva, E.A.; Albanov, A.I.; Klyba, L.V. Unexpected formation of 1,4-diphenylbutylphosphinic acid from 1,4-diphenylbuta-1,3-diene and elemental phosphorus via the Trofimov-Gusarova reaction. Mendeleev Commun. 2017, 27, 137–138. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Artem’ev, A.V.; Gusarova, N.K.; Sutyrina, A.O.; Malysheva, S.F.; Oparina, L.A. Hydrophosphorylation of vinyl sulfides with elemental phosphorus in the KOH/DMSO(H2O) system: Synthesis of 2-alkyl(aryl) thioethylphosphinic acids. J. Sulfur. Chem. 2018, 39, 112–118. [Google Scholar] [CrossRef]
- Gusarova, N.K.; Trofimov, B.A.; Rakhmatulina, T.N.; Malysheva, S.F.; Tatarinova, A.A.; Sinegovskaya, L.M.; Voronkov, M.G. Red Phosphorus Reaction with Electrophiles in Superbasic Systems. I. Tris(Z-Styryl)Phosphine and Its Derivatives. J. Gen. Chem. USSR 1990, 60, 256–258. [Google Scholar]
- Trofimov, B.A.; Gusarova, N.K.; Malysheva, S.F.; Vyalykh, E.P.; Rakhamtulina, T.N.; Voronkov, M.G. Preparation of Tris(2-Phenylvinyl)Phosphine from Phosphorus and Phenylacetylene. SU1549964 A1, 15 March 1990. (Chem.Abstr.No: 113:6603) in Russian. [Google Scholar]
- Arbuzova, S.N.; Brandsma, L.; Gusarova, N.K.; van der Kerk, A.H.T.M.; van Hooijdonk, M.C.J.M.; Trofimov, B.A. A convenient synthesis of primary 2-hydroxyorganophosphines from red phosphorus and oxiranes. Synthesis 2000, 2000, 65–66. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- Leoncini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. [Google Scholar] [CrossRef]
- Lee, L.Y.; Morad, N.; Ismail, N.; Talebi, A.; Rafatullah, M. Optimization for Liquid-Liquid Extraction of Cd(II) over Cu(II) Ions from Aqueous Solutions Using Ionic Liquid Aliquat 336 with Tributyl Phosphate. Int. J. Mol. Sci. 2020, 21, 6860. [Google Scholar] [CrossRef]
- Stecher, J.; Plank, J. Novel concrete superplasticizers based on phosphate esters. Cem. Concr. Res. 2019, 119, 36–43. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef]
- Ye, L.; Li, J.; Gong, S.; Herczegh, S.M.; Zhang, Q.; Letcher, R.J.; Su, G. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions. J. Hazard. Mater. 2023, 459, 132095. [Google Scholar] [CrossRef] [PubMed]
- Pirrung, F.O.H.; Noordam, A.; Harbers, P.J.; Loen, E.M.; Munneke, A.E. Phosphoric Acid Esters and Their Use as Wetting and Dispersing Agent. US 2007/0293692, 20 December 2007. [Google Scholar]
- Jiang, W.; Li, J.-F.; Li, Z.-Y.; Zhang, X.-Y.; Jin, F.-L.; Park, S.-J. A novel synthesis of ditrimethylolpropane biphosphoramide diethyleneamine as flame retardant and antistatic textiles. Korean J. Chem. Eng. 2021, 38, 872–884. [Google Scholar] [CrossRef]
- van Hoogevest, P.; Fahr, A. Phospholipids in Cosmetic Carriers. In Nanocosmetics; Cornier, J., Keck, C., Van de Voorde, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 95–140. [Google Scholar]
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Lecithin and Other Phosphoglycerides as Used in Cosmetics. Int. J. Toxicol. 2020, 39, 5S–25S. [Google Scholar] [CrossRef]
- Wickramasinghe, K.C.; Sasahara, H.; Rahim, E.A.; Perera, G.I.P. Green Metalworking Fluids for sustainable machining applications: A review. J. Clean. Prod. 2020, 257, 120552. [Google Scholar] [CrossRef]
- Arora, P.; Singh, R.; Seshadri, G.; Tyagi, A.K. Synthesis, Properties and Applications of Anionic Phosphate Ester Surfactants: A Review. Tenside Surf. Det. 2018, 55, 266–272. [Google Scholar] [CrossRef]
- Vehapi, M.; Özçimen, D. Antimicrobial and bacteriostatic activity of surfactants against B. subtilis for microbial cleaner formulation. Arch. Microbiol. 2021, 203, 3389–3397. [Google Scholar] [CrossRef]
- Li, Z.; Dolocan, A.; Morales-Collazo, O.; Sadowski, J.T.; Celio, H.; Chrostowski, R.; Brennecke, J.F.; Mangolini, F. Lubrication Mechanism of Phosphonium Phosphate Ionic Liquid in Nanoscale Single-Asperity Sliding Contacts. Adv. Mater. Interfaces 2020, 7, AN2000426. [Google Scholar] [CrossRef]
- Mulla, S.I.; Ameen, F.; Talwar, M.P.; Eqani, S.A.M.A.S.; Bharagava, R.N.; Saxena, G.; Tallur, P.N.; Ninnekar, H.Z. Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation. In Bioremediation of Industrial Waste for Environmental Safety; Saxena, G., Bharagava, R., Eds.; Springer: Singapore, 2020; pp. 265–290. [Google Scholar]
- Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in Inert C–H Bond Functionalization. Chem. Rev. 2017, 117, 9433–9520. [Google Scholar] [CrossRef]
- Aguirre, M.; Hamzehlou, S.; González, E.; Leiza, J.R. Renewable feedstocks in emulsion polymerization: Coating and adhesive applications. In Advances in Chemical Engineering; Moscatelli, D., Sponchioni, M., Eds.; Elsevier: Cambridge, UK, 2020; Volume 56, pp. 139–186. [Google Scholar]
- Barber, T.; Argent, S.P.; Ball, L.T. Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catal. 2020, 10, 5454–5461. [Google Scholar] [CrossRef]
- Munier, M.; Grosdemange-Billiard, C. Dibenzyl Phosphate. In Encyclopedia of Reagents for Organic Synthesis (e-EROS); Wiley: Hoboken, NJ, USA, 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Rubush, D.M. Diphenylphosphoric Acid. In Encyclopedia of Reagents for Organic Synthesis (e-EROS); Wiley: Hoboken, NJ, USA, 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Akiyama, T.; Meyers, D.J. Dinaphtho [2,1-d:1′,2′-f][1,3,2]dioxaphosphepin, 4-Hydroxy-2,6-diphenyl-, 4-Oxide, (11bR)- (Family of Reagents). In Encyclopedia of Reagents for Organic Synthesis (e-EROS); Wiley: Hoboken, NJ, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Azpilcueta-Nicolas, C.R.; Lumb, J.-P. Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters. Beilstein J. Org. Chem. 2024, 20, 346–378. [Google Scholar] [CrossRef]
- Ali, A.H.; Zou, X.; Abed, S.M.; Korma, S.A.; Jin, Q.; Wang, X. Natural phospholipids: Occurrence, biosynthesis, separation, identification, and beneficial health aspects. Crit. Rev. Food Sci. Nutr. 2017, 59, 253–275. [Google Scholar] [CrossRef]
- Duro, M.V.V.; Mustafa, D.; Kashemirov, B.A.; McKenna, C.E. Phosphorus in Chemical Biology and Medicinal Chemistry. In Organophosphorus Chemistry: From Molecules to Applications, 1st ed.; Iaroshenko, V., Ed.; Wiley-VCH: Weinheim, Germany, 2019; pp. 499–544. [Google Scholar]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Sun, M.; Liang, C.; Yang, L.; Ma, Y.; Cheng, R.; Ke, Y.; Yu, W.; Ye, J. A sequential continuous flow synthesis and purification process of calcium dibutyryladenosine cyclophosphate. Chin. Chem. Lett. 2024, 35, 108758. [Google Scholar] [CrossRef]
- Dickson, E.J.; Hille, B. Understanding phosphoinositides: Rare, dynamic, and essential membrane phospholipids. Biochem. J. 2019, 476, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Hatch, G.M.; Wang, Y.; Yu, F.; Wang, M. The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J. Cell. Mol. Med. 2018, 23, 702–710. [Google Scholar] [CrossRef]
- Drescher, S.; van Hoogevest, P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics 2020, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.-Q.; Lin, J.-F.; Tian, T.; Xie, D.; Xu, R.-H. NADPH homeostasis in cancer: Functions, mechanisms and therapeutic implications. Signal Transduct. Target. Ther. 2020, 5, AN231. [Google Scholar] [CrossRef]
- Rather, G.M.; Pramono, A.A.; Szekely, Z.; Bertino, J.R.; Tedeschi, P.M. In cancer, all roads lead to NADPH. Pharmacol. Ther. 2021, 226, 107864. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kitamura, H.; Fuse, S. Microflow Synthesis of Unsymmetrical H-Phosphonates via Sequential and Direct Substitution of Chlorine Atoms in Phosphorus Trichloride with Alkoxy Groups. J. Org. Chem. 2024, 89, 1777–1783. [Google Scholar] [CrossRef]
- Petursson, S. Compounds with One Carbon-Heteroatom Bonds. In Science of Synthesis; Forsyth, C.J., Ed.; Thieme: Stuttgart, Germany, 2008; Volume 37.8, pp. 847–892. [Google Scholar]
- Atherton, F.R.; Howard, H.T.; Todd, A.R. 220. Studies on phosphorylation. Part IV. Further studies on the use of dibenzyl chlorophosphonate and the examination of certain alternative phosphorylation methods. J. Chem. Soc. 1948, 1106. [Google Scholar] [CrossRef]
- Lowe, G.; Sproat, B.S. A synthesis of adenosine 5′-[β-18O2]triphosphate. J. Chem. Soc. Perkin Trans. 1 1981, 1874–1878. [Google Scholar] [CrossRef]
- Froussios, C.; Kolovos, M. Preparation of Diphenylmethyl Esters and Ethers of Unprotected Amino Acids and β-Hydroxy-α-amino Acids. Synthesis 1987, 1987, 1106–1108. [Google Scholar] [CrossRef]
- Abdel-Magid, A.F. Potassium Hydroxide-Dimethyl Sulfoxide. In Encyclopedia of Reagents for Organic Synthesis (e-EROS); Wiley: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Kurosawa, M.B.; Kato, K.; Muto, K.; Yamaguchi, J. Unified synthesis of multiply arylated alkanes by catalytic deoxygenative transformation of diarylketones. Chem. Sci. 2022, 13, 10743–10751. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Singh, R.P. Stereoselective Reductive Coupling Reactions Utilizing [1,2]-Phospha-Brook Rearrangement: A Powerful Umpolung Approach. J. Org. Chem. 2023, 88, 10325–10338. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Guo, N.; Yang, L.; Wang, F.; Feng, X.; Liu, X. Asymmetric Organocatalytic 1,6-Conjugate Addition of para-Quinone Methides Using [1,2]-Phospha-Brook Rearrangement. J. Org. Chem. 2023, 88, 9332–9342. [Google Scholar] [CrossRef]
- Kondoh, A.; Terada, M. [1,2]-Phospha-Brook Rearrangement as Tool for Generation of Anionic Nucleophiles in Addition Reactions under Brønsted Base Catalysis. Asian J. Org. Chem. 2023, 12, e202300003. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 2002, 91, 165–195. [Google Scholar] [CrossRef]
- Rossi, R.A.; Pierini, A.B.; Santiago, A.N. Aromatic substitution by the SRN1 reaction. In Organic Reactions; Paquette, L.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 54, pp. 1–271. [Google Scholar]
- Rossi, R.A.; Pierini, A.B.; Peñéñory, A.B. Nucleophilic Substitution Reactions by Electron Transfer. Chem. Rev. 2002, 103, 71–168. [Google Scholar] [CrossRef]
- Borys, A.M.; Vedani, L.; Hevia, E. The coordination of alkali–metal nickelates to organic π-systems: Synthetic, structural and spectroscopic insights. Dalton Trans. 2024, 53, 8382–8390. [Google Scholar] [CrossRef]
- Hevia, E.; Uzelac, M.; Borys, A.M. Organometallic Complexes of the Alkali Metals. In Comprehensive Organometallic Chemistry IV, 4th ed.; Parkin, G., Meyer, K., O’hare, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 5–70. [Google Scholar]
- Gusarova, N.K.; Arbuzova, S.N.; Trofimov, B.A. Novel general halogen-free methodology for the synthesis of organophosphorus compounds. Pure Appl. Chem. 2012, 84, 439–459. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Gusarova, N.K. Elemental phosphorus in strongly basic media as phosphorylating reagent: A dawn of halogen-free ’green’ organophosphorus chemistry. Mendeleev Commun. 2009, 19, 295–302. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Yuan, Q.; Zhang, S.; Wang, J.-Y.; Jin, S.; Xu, T.; Pan, J.; Surowiec, K.; Li, G. Aggregation-Induced Catalysis: Asymmetric Catalysis with Chiral Aggregates. Research 2023, 6, 0163. [Google Scholar] [CrossRef]
- Rouh, H.; Tang, Y.; Xu, T.; Yuan, Q.; Zhang, S.; Wang, J.-Y.; Jin, S.; Wang, Y.; Pan, J.; Wood, H.L.; et al. Aggregation-Induced Synthesis (AIS): Asymmetric Synthesis via Chiral Aggregates. Research 2022, 2022. [Google Scholar] [CrossRef]
- Deno, N.C.; Peterson, H.J.; Saines, G.S. The Hydride-Transfer Reaction. Chem. Rev. 1960, 60, 7–14. [Google Scholar] [CrossRef]
- Vogel, W.M.; Routsis, K.J.; Kehrer, V.J.; Landsman, D.A.; Tschinkel, J.G. Physicochemical properties of the potassium hydroxide-water system. Range: 55 to 85 weight % and 120o to 250 °C. J. Chem. Eng. Data 1967, 12, 465–472. [Google Scholar] [CrossRef]
- Abdel-Magid, A.F. Potassium Hydroxide. In Encyclopedia of Reagents for Organic Synthesis (e-EROS); Wiley: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Deprele, S.; Montchamp, J.L. A novel and convenient preparation of hypophosphite esters. J. Organomet. Chem. 2002, 643, 154–163. [Google Scholar] [CrossRef]
- Carden, J.L.; Gierlichs, L.J.; Wass, D.F.; Browne, D.L.; Melen, R.L. Unlocking the catalytic potential of tris(3,4,5-trifluorophenyl)borane with microwave irradiation. Chem. Commun. 2019, 55, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.O.; Jun, J.H.; Yu, J.S.; Lee, C.K. Infrared and nuclear magnetic resonance properties of benzoyl derivatives of five-membered monoheterocycles and determination of aromaticity indices. J. Heterocycl. Chem. 2009, 40, 763–771. [Google Scholar] [CrossRef]
- Müller, C.; Gleixner, J.; Tahk, M.-J.; Kopanchuk, S.; Laasfeld, T.; Weinhart, M.; Schollmeyer, D.; Betschart, M.U.; Lüdeke, S.; Koch, P.; et al. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y1 Receptor. J. Med. Chem. 2022, 65, 4832–4853. [Google Scholar] [CrossRef]
- Asachenko, A.F.; Valaeva, V.N.; Kudakina, V.A.; Uborsky, D.V.; Izmer, V.V.; Kononovich, D.S.; Voskoboynikov, A.Z. Coupling of aromatic aldehydes with aryl halides in the presence of nickel catalysts with diazabutadiene ligands. Russ. Chem. Bull. 2016, 65, 456–463. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Ma, C.; Yu, Z.; Zhu, H.; Yun, L.; Meng, Q. Visible-Light-Driven Oxidative Cleavage of Alkenes Using Water-Soluble CdSe Quantum Dots. Chemsuschem 2021, 14, 4985–4992. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Yang, L.; Cheng, K.; Qi, C. Pd(II)-Catalyzed Denitrogenative and Desulfinative Addition of Arylsulfonyl Hydrazides with Nitriles. J. Org. Chem. 2018, 83, 3275–3284. [Google Scholar] [CrossRef] [PubMed]
- Vandavasi, J.K.; Hua, X.; Halima, H.B.; Newman, S.G. A Nickel-Catalyzed Carbonyl-Heck Reaction. Angew. Chem. Int. Ed. 2017, 56, 15441–15445. [Google Scholar] [CrossRef]
- Chodroff, S.; Klein, H.C. Acylation of Benzene Compounds with Iodine as a Catalyst. J. Am. Chem. Soc. 1948, 70, 1647–1648. [Google Scholar] [CrossRef]
- Ghosh, P.; Ganguly, B.; Das, S. Pd-NHC catalysed Carbonylative Suzuki coupling reaction and its application towards the synthesis of biologically active 3-aroylquinolin-4 (1H)-one and acridone scaffolds. Appl. Organomet. Chem. 2017, 32, e4173. [Google Scholar] [CrossRef]
- Muniyappan, N.; Sabiah, S. Synthesis, structure, and characterization of picolyl- and benzyl-linked biphenyl palladium N-heterocyclic carbene complexes and their catalytic activity in acylative cross-coupling reactions. Appl. Organomet. Chem. 2020, 34, e5421. [Google Scholar] [CrossRef]
- Villani, F.J.; King, M.S. 3-Benzoylpyridine [Online]. Org. Synth. 1957, 37, 6. [Google Scholar]
- Ye, R.; Cao, Y.; Xi, X.; Liu, L.; Chen, T. Metal- and radical-free aerobic oxidation of heteroaromatic methanes: An efficient synthesis of heteroaromatic aldehydes. Org. Biomol. Chem. 2019, 17, 4220–4224. [Google Scholar] [CrossRef]
- Minnis, W. Phenyl Thienyl Ketone. Org. Synth. 1932, 12, 62. [Google Scholar]
- D’Vries, R.F.; Grande, C.D.; Chaur, M.N.; Ellena, J.A.; Advincula, R.C. [4-(Allyloxy)phenyl](phenyl)methanone. Acta Crystallogr. Sect. E Struct. Rep. Online 2014, 70, o814–o815. [Google Scholar] [CrossRef]
- Gerrard, W.; Shepherd, B.D. 422. Formation of sulphites, phosphites, and phosphates of alcohols containing an aryl group. J. Chem. Soc. 1953, 2069–2074. [Google Scholar] [CrossRef]
- Lehmann, H.A.; Grossmann, G. Zum Reaktionsverhalten des P4-Molekuls und Vorzugsweise seiner in “Langsamer” Reaktion primar gebildeten Reaktionsproudukte mit Oxydationsstufen Zwischen null und drei. Pure Appl. Chem. 1980, 52, 905–915. [Google Scholar] [CrossRef]
- Kazakova, V.M.; Lipkind, G.M.; Makarov, I.G.; Shapiro, B.I.; Sirkin, Y.K. EPR study of some derivatives of aromatic ion-radicals. III. Various derivatives of benzophenone. Radio Spectrosc. Quantum Chem. Methods Struct. Stud. 1967, 16, 99–105. [Google Scholar]
- Kazakova, V.M.; Sirkin, Y.K. Hyperfine structure of EPR spectra of benzophenone-k-ketyl. Dokl. Chem. 1960, 131, 346–347. [Google Scholar]
- Rieger, P.H.; Fraenkel, G.K. Electron Spin Resonance Spectra of Carbonyl Anion Radicals. J. Chem. Phys. 1962, 37, 2811–2831. [Google Scholar] [CrossRef]
- Ayscough, P.B.; Wilson, R. 1033. Electron spin resonance studies of radical anions. Part I. Aromatic ketyls. J. Chem. Soc. 1963, 5412–5417. [Google Scholar] [CrossRef]
- Salikhov, K.M. Electron Paramagnetic Resonance: From Fundamental Research to Pioneering Applications; AXAS Publishing Ltd.: Wellington, The Netherlands, 2009; p. 209. [Google Scholar]
- Shukla, A. EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials; Springer: New Delhi, India, 2017; p. 183. [Google Scholar]
- Milyukov, V.A.; Kataev, A.V.; Sinyashin, O.G.; Hey-Hawkins, E. A new method for the preparation of solution of sodium pentaphosphacyclopentadienide. Russ. Chem. Bull. 2006, 55, 1297–1299. [Google Scholar] [CrossRef]
- Jo, M.; Dragulescu-Andrasi, A.; Miller, L.Z.; Pak, C.; Shatruk, M. Nucleophilic Activation of Red Phosphorus for Controlled Synthesis of Polyphosphides. Inorg. Chem. 2020, 59, 5483–5489. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Hu, J.; Chai, Z.; Zhang, W.X.; Xi, Z. Isolation and Characterization of Four Phosphorus Cluster Anions P73–, P144–, P162– and P264– from the Nucleophilic Functionalization of White Phosphorus with 1,4-Dilithio-1,3-butadienes. Chin. J. Chem. 2018, 37, 71–75. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- SADABS, 2008–1; Bruker AXS: Madison, WI, USA, 2008.
- Spek, A.L. PLATON, A Multipurpose Crystallographic Tool, 10M; Utrecht University: Utrecht, The Netherlands, 2003. [Google Scholar]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.T.R.; Towler, M.; van de Stree, J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef]
- Allen, F.H.; Kenard, O.; Watson, D.G.; Bramer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. II. 1987, S1–S19. [Google Scholar] [CrossRef]
Entry | 1a:Pred:H2 OMolar Ratio | Base | Solvent b | T, °C | t, h | Conversion of 1a, % | Yield of, (%) | ||
---|---|---|---|---|---|---|---|---|---|
2a c | 3a d | 4a d | |||||||
1 | 1:1:3.5 | KOH | DMSO | 85 | 3.0 | 74 | 24 | 9 | 7 |
2 | 1:1:1.7 | KOH | DMSO | 85 | 3.0 | 86 | 31 | 23 | e |
3 | 1:1:0.9 | KOH | DMSO | 85 | 3.0 | 86 | 34 | 19 | 11 |
4 | 1:1:1.7 | KOH | DMSO | 60 | 3.0 | 87 | 29 | 27 | 12 |
5 | 1:1.5:1.7 | KOH | DMSO | 75 | 3.0 | 98 | 33 | 48 | 14 |
6 | 1:1:1.7 | KOH | DMSO | 96 | 6.0 | ~100 | 32 | 36 | 2 |
7 | 1:2:3.5 | KOH | DMSO | 85 | 3.0 | 81 | 36 | 44 | 5 |
8 | 1:4:3.5 | KOH | DMSO | 85 | 1.5 | 100 | 31 | 49 c | e |
9 | 1:2:1.7 | KOH | DMSO | 85 | 1.5 | 100 | 38 | 37 c | e |
10 | 1:3:0.9 | KOH | DMSO | 85 | 1.5 | 100 | 45 | 18 | 4 |
11 f | 1:3:0.9 | KOH | DMSO | 85 | 1.5 | 100 | 11 | 84 c | e |
12 | 1:3:0.5 | KOH | DMSO | 85 | 1.5 | 100 | 41 | 15 | 7 |
13 | 1:3:0 | KOH | DMSO | 85 | 1.5 | 100 | 39 | 9 | 7 |
14 | 1:3:0 | KOH | DMSO g | 85 | 1.5 | 100 | 31 | 26 | 12 |
15 | 1:3:0.9 | KOH | HMPA | 85 | 1.5 | 100 | 30 dh | 29 c | e |
16 | 1:3:0.9 | KOH | NMP | 85 | 1.5 | 100 | 14 | 68 c | e |
17 | 1:3:0.9 | KOH | Sulfolane | 85 | 1.5 | 100 | 20 dh | 29 c | e |
18 | 1:3:0.9 | KOH | DMF | 85 | 1.5 | 42 | 4 | 5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuimov, V.A.; Malysheva, S.F.; Belogorlova, N.A.; Fattakhov, R.I.; Albanov, A.I.; Bagryanskaya, I.Y.; Tikhonov, N.I.; Trofimov, B.A. Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H2O). Molecules 2025, 30, 1367. https://doi.org/10.3390/molecules30061367
Kuimov VA, Malysheva SF, Belogorlova NA, Fattakhov RI, Albanov AI, Bagryanskaya IY, Tikhonov NI, Trofimov BA. Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H2O). Molecules. 2025; 30(6):1367. https://doi.org/10.3390/molecules30061367
Chicago/Turabian StyleKuimov, Vladimir A., Svetlana F. Malysheva, Natalia A. Belogorlova, Ruslan I. Fattakhov, Alexander I. Albanov, Irina Yu. Bagryanskaya, Nikolay I. Tikhonov, and Boris A. Trofimov. 2025. "Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H2O)" Molecules 30, no. 6: 1367. https://doi.org/10.3390/molecules30061367
APA StyleKuimov, V. A., Malysheva, S. F., Belogorlova, N. A., Fattakhov, R. I., Albanov, A. I., Bagryanskaya, I. Y., Tikhonov, N. I., & Trofimov, B. A. (2025). Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H2O). Molecules, 30(6), 1367. https://doi.org/10.3390/molecules30061367