Investigation of Solution Microstructure in Ferric Sulfate Coagulation-Assisted Precipitation of Fluoride Ions
Abstract
:1. Introduction
2. Results and Discussion
2.1. The MD Simulation for Coagulation System
2.2. Selection, Optimization, and Analysis of Hydrated Clusters
2.2.1. Selection of Hydrated Clusters
2.2.2. Optimization of Hydrated Clusters
2.2.3. Analysis of Hydrated Clusters
The Binding Energy of Hydrated Clusters
Topological Analysis
Interaction Region Indicator Analysis
Electrostatic Potential Analysis of Hydrated Clusters
2.3. Analysis of Mixed Clusters
3. Simulation Details
3.1. MD Simulation Details
3.2. Structure Optimization of Hydrated Clusters
3.3. The Binding Energy for Hydrated Clusters
3.4. Topological and Interaction Region Indicator Analysis
3.5. Surface Electrostatic Potential Analysis
3.6. Electron Density Difference
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Gu, Z.; Wu, L.; Zhang, Y.; Tong, Y.; Meng, F.; Sun, L.; Zhang, H.; Liu, H. Efficient purification of graphite industry wastewater by a combined neutralization-coagulation-flocculation process strategy: Performance of flocculant combinations and defluoridation mechanism. Sep. Purif. Technol. 2023, 326, 124771. [Google Scholar] [CrossRef]
- El Diwani, G.; Amin, S.K.; Attia, N.K.; Hawash, S.I. Fluoride pollutants removal from industrial wastewater. Bull. Natl. Res. Cent. 2022, 46, 143. [Google Scholar] [CrossRef]
- Karunanithi, M.; Agarwal, R.; Qanungo, K. A Review of Fluoride Removal from Groundwater. Period. Polytech. Chem. Eng. 2018, 63, 425–437. [Google Scholar] [CrossRef]
- Patrick, M.; Sahu, O. Origins, Mechanisms, and Remedies of Fluoride Ions from Ground and Surface Water: A Review. Chem. Afr. 2023, 6, 2737–2768. [Google Scholar] [CrossRef]
- Sinharoy, A.; Lee, G.Y.; Chung, C.M. Optimization of Calcium Fluoride Crystallization Process for Treatment of High-Concentration Fluoride-Containing Semiconductor Industry Wastewater. Int. J. Mol. Sci. 2024, 25, 3960. [Google Scholar] [CrossRef] [PubMed]
- Gebremariam, A.M.; Asgedom, A.G.; Mekonnen, K.N.; Ashebir, M.E.; Gebremikael, Z.H.; Mesfin, K.A.; Lusquios, F. Defluoridation of Water Using Aluminum Hydroxide Activated Carbon Biosorbents. Adv. Mater. Sci. Eng. 2022, 2022, 4038444. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride contamination, consequences and removal techniques in water: A review. Environ. Sci. Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- Ante, A.A.; Bogale, G.A.; Adem, B.M. Bacteriological and physicochemical quality of drinking water and associated risk factors in Ethiopia. Cogent Food Agric. 2023, 9, 2219473. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Sci. Total Environ. 2019, 688, 184–198. [Google Scholar] [CrossRef]
- Grzegorzek, M.; Majewska-Nowak, K.; Ahmed, A.E. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Sci. Total Environ. 2020, 722, 137681. [Google Scholar] [CrossRef]
- Das, A.; Beni, A.N.; Bernal-Botero, C.; Warsinger, D.M. Temporally multi-staged batch counterflow reverse osmosis. Desalination 2024, 575, 117238. [Google Scholar] [CrossRef]
- Wambu, E.W.; Frau, F.; Machunda, R.; Pasape, L.; Barasa, S.S.; Ghiglieri, G. Water Defluoridation Methods Applied in Rural Areas Over the World; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Lacson, C.F.Z.; Lu, M.C.; Huang, Y.H. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management—An overview. J. Clean. Prod. 2021, 280, 124236. [Google Scholar] [CrossRef]
- Nan, C.; Zhenya, Z.; Chuanping, F.; Miao, L.; Norio, S. Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud. Desalination 2011, 268, 76–82. [Google Scholar]
- Ren, T.; Gao, X.R.; Zheng, T.; Wang, P. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride. IOP Conf. Ser. Earth Environ. Sci. 2016, 39, 012003. [Google Scholar] [CrossRef]
- Lee, I.; Khujaniyoz, S.; Oh, H.; Kim, H.; Hong, T. The removal of microplastics from reverse osmosis wastewater by coagulation. J. Environ. Chem. Eng. 2024, 12, 113198. [Google Scholar] [CrossRef]
- Wang, B.; Shui, Y.; He, M.; Liu, P. Comparison of flocs characteristics using before and after composite coagulants under different coagulation mechanisms. Biochem. Eng. J. 2017, 121, 107–117. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P.; Zhu, X. Preparation and Application of Polyaluminum Ferric Sulfate from Red Mud: Behaviors of Leaching, Polymerizing, and Coagulation. ACS Omega 2024, 9, 2468–2479. [Google Scholar] [CrossRef]
- Kapil, J.; Shukla, P.; Pathak, A. Review Article on Density Functional Theory. In Recent Trends in Materials and Devices; Springer: Singapore, 2020; pp. 211–220. [Google Scholar]
- Shen, W.; Zhou, T.; Shi, X. Enhanced sampling in molecular dynamics simulations and their latest applications—A review. Nano Res. 2023, 16, 13474–13497. [Google Scholar] [CrossRef]
- Li, S.; Kang, Y. Effect of PO43-on the polymerization of polyferric phosphatic sulfate and its flocculation characteristics for different simulated dye wastewater. Sep. Purif. Technol. 2021, 276, 119373. [Google Scholar] [CrossRef]
- Stenlid, J.H.; Abild-Pedersen, F. Revealing Local and Directional Aspects of Catalytic Active Sites by the Nuclear and Surface Electrostatic Potential. J. Phys. Chem. C 2024, 128, 4544–4558. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- He, X.; Walker, B.; Man, V.H.; Ren, P.; Wang, J. Recent progress in general force fields of small molecules. Curr. Opin. Struct. Biol. 2022, 72, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Piquet, V.; Wax, J.F.; Xu, H.; Millot, C. Rotational and translational dynamics of the SPC/E water model. J. Mol. Liq. 2019, 275, 895–908. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J. Gaussian 16; Gaussian Inc.: Wallingford, UK, 2016. [Google Scholar]
- Lu, T. Sobtop, Version 1.0 (dev3.1). Available online: http://sobereva.com/soft/Sobtop (accessed on 14 March 2024).
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Lotfi, M.; Hosseini, S.M. An efficient Dai–Liao type conjugate gradient method by reformulating the CG parameter in the search direction equation. J. Comput. Appl. Math. 2020, 371, 112708. [Google Scholar] [CrossRef]
- Carretero-González, R.; Kevrekidis, P.G.; Kevrekidis, I.G.; Maroudas, D.; Frantzeskakis, D.J. A Parrinello–Rahman approach to vortex lattices. Phys. Lett. A 2005, 341, 128–134. [Google Scholar] [CrossRef]
- Ke, Q.; Gong, X.; Liao, S.; Duan, C.; Li, L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022, 365, 120116. [Google Scholar] [CrossRef]
- Vařeková, R.S.; Koča, J.; Zhan, C.G. Complexity and Convergence of Electrostatic and van der Waals Energies within PME and Cutoff Methods. Int. J. Mol. Sci. 2004, 5, 154–173. [Google Scholar] [CrossRef]
- Gauthier, J.A.; Ringe, S.; Dickens, C.F.; Garza, A.J.; Bell, A.T.; Head-Gordon, M.; Nørskov, J.K.; Chan, K. Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catal. 2018, 9, 920–931. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Li, X.; Zhang, M.; Zou, L.; Chi, R.; Zhou, F. The investigation of ion association characteristics in lanthanum sulfate solution by the density functional theory and molecular dynamics simulations. J. Mol. Graph. Model. 2024, 127, 108698. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W.; Beddall, P.M. Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties. J. Chem. Phys. 1972, 56, 3320–3329. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space. J. Phys. Chem. A 2013, 117, 3100–3108. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Interaction Region Indicator: A Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions. Chem. Methods 2021, 1, 231–239. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Visualization Analysis of Weak Interactions in Chemical Systems; Elsevier: Amsterdam, The Netherlands, 2024; pp. 240–264. [Google Scholar]
- Zhang, Y.; Li, X.; Zhou, F.; Zhang, Z.; Yu, J.; Chi, R. The effect of anions of leaching agent on the extraction process of weathered crust elution-deposited rare earth ore. Chin. Rare Earths 2021, 42, 1–13. [Google Scholar]
- Medina, E.; Pinter, B. Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts. J. Phys. Chem. A 2020, 124, 4223–4234. [Google Scholar] [CrossRef]
Cluster | r(M-O)H2O | r(M-O/F)OH/F/SO4 | r(S-O)SO4 |
---|---|---|---|
[CaF2·(H2O)3] | 2.481 | 2.166 | - |
[Fe·(H2O)6]3+ | 2.020 | - | - |
[Fe(OH)·(H2O)5]2+ | 2.097 | 1.797 | - |
[Fe(OH)2·(H2O)4]+ | 2.158 | 1.858 | - |
[Fe(OH)3·(H2O)2] | 2.258 | 1.872 | - |
[Fe(SO4)·(H2O)5]+ | 2.077 | 1.851 | 1.518 |
[Fe(SO4)D·(H2O)5]+ | 2.153 | 2.045 | 1.520 |
[Fe(SO4)2·(H2O)4]− | 2.115 | 1.910 | 1.515 |
Species | BCP | ρ | ∇2ρ | H |
---|---|---|---|---|
[CaF2·(H2O)3] | F…Ca | 0.054 | 0.328 | 0.007 |
O(H2O)…Ca | 0.026 | 0.143 | 0.006 | |
O(H2O)…O(H2O) | 0.009 | 0.038 | 0.001 | |
[Fe(SO4)·(H2O)5]+ | O(SO4)…Fe | 0.120 | 0.638 | −0.025 |
O(SO4)…H(H2O) | 0.047 | 0.139 | −0.005 | |
[Fe(SO4)D·(H2O)5]+ | O(H2O)…Fe | 0.056 | 0.270 | 0.001 |
O(SO4)…Fe | 0.079 | 0.349 | −0.006 | |
[Fe(SO4)2·(H2O)4]− | O(H2O)…Fe | 0.060 | 0.287 | 0.000 |
O(SO4)…Fe | 0.102 | 0.534 | −0.014 | |
O(SO4)…H(H2O) | 0.047 | 0.139 | −0.005 | |
[Fe (H2O)6]3+ | O(H2O)…Fe | 0.076 | 0.395 | −0.002 |
[Fe(OH)·(H2O)5]2+ | O(OH)…Fe | 0.139 | 0.737 | −0.040 |
O(H2O)…Fe | 0.061 | 0.312 | 0.001 | |
[Fe(OH)2·(H2O)4]+ | O(OH)…Fe | 0.119 | 0.631 | −0.025 |
O(H2O)…Fe | 0.052 | 0.253 | 0.002 | |
[Fe(OH)3·(H2O)2] | O(OH)…Fe | 0.116 | 0.591 | −0.023 |
O(H2O)…Fe | 0.043 | 0.190 | 0.001 |
Cluster | A/(kcal/mol) | σtot2/(kcal/mol)2 | σ+2/(kcal/mol)2 | σ−2/(kcal/mol)2 | SA/(Bohr^2) | SA+/(Bohr^2) | SA−/(Bohr^2) |
---|---|---|---|---|---|---|---|
[CaF2·(H2O)3] | 42.304 | 884.446 | 349.549 | 534.897 | 594.163 | 348.739 | 245.424 |
[Fe·(H2O)6]3+ | 11.059 | 159.353 | 159.353 | 0 | 559.670 | 559.670 | 0 |
[Fe(OH)·(H2O)5]2+ | 16.131 | 480.337 | 480.337 | 0 | 566.476 | 566.476 | 0 |
[Fe(OH)2·(H2O)4]+ | 21.516 | 631.613 | 631.613 | 0 | 576.554 | 576.554 | 0 |
[Fe(OH)3·(H2O)2] | 24.436 | 498.466 | 253.745 | 244.721 | 530.130 | 275.057 | 255.073 |
[Fe(SO4)·(H2O)5]+ | 55.926 | 2898.566 | 2863.488 | 35.077 | 713.013 | 623.128 | 89.885 |
[Fe(SO4)D·(H2O)5]+ | 49.611 | 2390.392 | 2377.174 | 13.218 | 712.552 | 644.409 | 68.144 |
[Fe(SO4)2·(H2O)4]− | 39.227 | 1294.891 | 148.075 | 1146.816 | 859.964 | 99.019 | 760.941 |
System | Ca2+ | F− | Fe3+/Na+ | SO42−/Cl− | OH− | H2O |
---|---|---|---|---|---|---|
CaF2 | 9 | 16 | - | - | 2 | 11,190 |
CaF2 + Ferric sulfate | 9 | 16 | 6 | 9 | 2 | 10,768 |
CaF2 + NaCl | 9 | 16 | 18 | 18 | 2 | 10,759 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, C.; Zhang, Y.; Fang, W.; Zou, L.; Chi, R. Investigation of Solution Microstructure in Ferric Sulfate Coagulation-Assisted Precipitation of Fluoride Ions. Molecules 2025, 30, 1362. https://doi.org/10.3390/molecules30061362
Chen H, Li C, Zhang Y, Fang W, Zou L, Chi R. Investigation of Solution Microstructure in Ferric Sulfate Coagulation-Assisted Precipitation of Fluoride Ions. Molecules. 2025; 30(6):1362. https://doi.org/10.3390/molecules30061362
Chicago/Turabian StyleChen, Haodong, Caocheng Li, Yuefei Zhang, Wen Fang, Lian Zou, and Ruan Chi. 2025. "Investigation of Solution Microstructure in Ferric Sulfate Coagulation-Assisted Precipitation of Fluoride Ions" Molecules 30, no. 6: 1362. https://doi.org/10.3390/molecules30061362
APA StyleChen, H., Li, C., Zhang, Y., Fang, W., Zou, L., & Chi, R. (2025). Investigation of Solution Microstructure in Ferric Sulfate Coagulation-Assisted Precipitation of Fluoride Ions. Molecules, 30(6), 1362. https://doi.org/10.3390/molecules30061362