One-Step Solvothermal Synthesis of Carbon Dots for Rapid and Accurate Determination of Hemin Content
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CDs
2.2. Stability of CDs
2.3. Detection of Hemin by the CDs
2.4. Specificity of CDs
2.5. Mechanism Investigation of the Fluorescence Quenching of CDs by Hemin
2.6. Determination of Hemin in Real Samples
3. Materials and Methods
3.1. Apparatus
3.2. Materials
3.3. Synthesis of CDs
3.4. Fluorescence Property and Stability Test
3.5. Quantification of Hemin
3.6. Specificity of CDs
3.7. Fluorescence Lifetime of CDs
3.8. Detection of Hemin in Drugs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryu, W.H.; Gittleson, F.S.; Thomsen, J.M.; Li, J.; Schwab, M.J.; Brudvig, G.W.; Taylor, A.D. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 2016, 7, 12925. [Google Scholar] [CrossRef] [PubMed]
- Estrada, D.T.; Schwartz, K.A. Iron absorption: Comparison of oral heme-bound iron with inorganic ferrous sulfate. Blood 2007, 110, 3752. [Google Scholar] [CrossRef]
- Peterson, A.; Bossenmaier, I.; Cardinal, R.; Watson, C.J. Hematin treatment of acute porphyria: Early remission of an almost fatal relapse. JAMA 1976, 235, 520–522. [Google Scholar] [CrossRef]
- Lee, J.; Yesilkanal, A.E.; Wynne, J.P.; Frankenberger, C.; Liu, J.; Yan, J.; Elbaz, M.; Rabe, D.C.; Rustandy, F.D.; Tiwari, P.; et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 2019, 568, 254–258. [Google Scholar] [CrossRef]
- Whalin, J.; Wu, Y.T.; Wang, Y.F.; Suman, S.P.; Shohet, J.L.; Richards, M.P. Use of plasma induced modification of biomolecules (PLIMB) to evaluate hemin dissociation from fish and bovine methemoglobins. Food Chem. 2024, 452, 139576. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Li, J.; Zhang, J.; Peng, W.; Li, J.; Liu, J. Tri-functional Fe-based electrocatalyst with sturdy three-dimensional frame construction for the ORR, OER and HER. J. Mater. Chem. A 2024, 12, 19344–19351. [Google Scholar] [CrossRef]
- Song, N.; Fan, X.; Guo, X.; Tang, J.; Li, H.; Tao, R.; Li, F.; Li, J.; Yang, D.; Yao, C.; et al. A DNA/Upconversion Nanoparticle Complex Enables Controlled Co-Delivery of CRISPR-Cas9 and Photodynamic Agents for Synergistic Cancer Therapy. Adv. Mater. 2024, 36, 2309534. [Google Scholar] [CrossRef]
- Tang, S.; Xie, X.; Li, L.; Zhou, L.; Xing, Y.; Chen, Y.; Cai, K.; Li, F.; Zhang, J. High fidelity detection of miRNAs from complex physiological samples through electrochemical nanosensors empowered by proximity catalysis and magnetic separation. Biosens. Bioelectron. 2024, 260, 116435. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Wang, H.; Sun, S.; Wu, M.; Shen, H.; Chen, K.; Zhang, Z.; Li, S.; Lin, H. Specific Chemiluminescence Imaging and Enhanced Photodynamic Therapy of Bacterial Infections by Hemin-Modified Carbon Dots. Small 2023, 19, 2207868. [Google Scholar] [CrossRef]
- Li, D.; Li, C.; Liang, A.; Jiang, Z. SERS and fluorescence dual-mode sensing trace hemin and K+ based on G-quarplex/hemin DNAzyme catalytic amplification. Sens. Actuators B Chem. 2019, 297, 126799. [Google Scholar] [CrossRef]
- Wu, N.; Wong, K.-Y.; Yu, X.; Zhao, J.-W.; Zhang, X.-Y.; Wang, J.-H.; Yang, T. Multispectral 3D DNA Machine Combined with Multimodal Machine Learning for Noninvasive Precise Diagnosis of Bladder Cancer. Anal. Chem. 2024, 96, 10046–10055. [Google Scholar] [CrossRef]
- Wang, F.; Dong, X.; Zuo, Y.; Xie, Z.; Guan, R. Effectively enhancing red fluorescence strategy and bioimaging applications of carbon dots. Mater. Today Phys. 2024, 41, 101332. [Google Scholar] [CrossRef]
- Isaji, Y.; Ogawa, N.O.; Takano, Y.; Ohkouchi, N. Quantification and carbon and nitrogen isotopic measurements of heme B in environmental samples. Anal. Chem. 2020, 92, 11213–11222. [Google Scholar] [CrossRef]
- Sikora, K.N.; Hardie, J.M.; Castellanos-García, L.J.; Liu, Y.; Reinhardt, B.M.; Farkas, M.E.; Rotello, V.M.; Vachet, R.W. Dual mass spectrometric tissue imaging of nanocarrier distributions and their biochemical effects. Anal. Chem. 2020, 92, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Yao, D.; Chen, C.; Zhang, C. An efficient human serum albumin-assisted fluorescence approach for hemin detection. Environ. Technol. Innov. 2023, 29, 102969. [Google Scholar] [CrossRef]
- Matsushima, T.; Qin, C.; Teng, T.; Kamatham, N.; Sosa Vargas, L.; Kreher, D.; Heinrich, B.; Ishii, T.; Terakawa, S.; Leyden, M.R.; et al. Efficient Electroluminescence from Organic Fluorophore-Containing Perovskite Films. Adv. Mater. 2024, 36, 2408775. [Google Scholar] [CrossRef]
- Zheng, G.-S.; Shen, C.-L.; Niu, C.-Y.; Lou, Q.; Jiang, T.-C.; Li, P.-F.; Shi, X.-J.; Song, R.-W.; Deng, Y.; Lv, C.-F.; et al. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat. Commun. 2024, 15, 2365. [Google Scholar] [CrossRef]
- van Riggelen-Doelman, F.; Wang, C.-A.; de Snoo, S.L.; Lawrie, W.I.L.; Hendrickx, N.W.; Rimbach-Russ, M.; Sammak, A.; Scappucci, G.; Déprez, C.; Veldhorst, M. Coherent spin qubit shuttling through germanium quantum dots. Nat. Commun. 2024, 15, 5716. [Google Scholar] [CrossRef]
- Desai, A.V.; Seymour, V.R.; Ettlinger, R.; Pramanik, A.; Manche, A.G.; Rainer, D.N.; Wheatley, P.S.; Griffin, J.M.; Morris, R.E.; Armstrong, A.R. Azo-functionalised metal–organic framework for charge storage in sodium-ion batteries. Chem. Comm. 2023, 59, 1321–1324. [Google Scholar] [CrossRef]
- Li, H.; Kang, X.; Zhu, M. Superlattice Assembly for Empowering Metal Nanoclusters. Acc. Chem. Res. 2024, 57, 3194–3205. [Google Scholar] [CrossRef]
- Jung, S.-R.; Deng, Y.; Kushmerick, C.; Asbury, C.L.; Hille, B.; Koh, D.-S. Minimizing ATP depletion by oxygen scavengers for single-molecule fluorescence imaging in live cells. Proc. Natl. Acad. Sci. USA 2018, 115, E5706–E5715. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Liu, X.; Huang, X.; Liu, Z.; Cao, X.; Gao, W.; Tang, B. Hepatotoxicity-related oxidative modifications of thioredoxin 1/peroxiredoxin 1 induced by different cadmium-based quantum dots. Anal. Chem. 2022, 94, 3608–3616. [Google Scholar] [CrossRef] [PubMed]
- Moayed Mohseni, M.; Jouyandeh, M.; Mohammad Sajadi, S.; Hejna, A.; Habibzadeh, S.; Mohaddespour, A.; Rabiee, N.; Daneshgar, H.; Akhavan, O.; Asadnia, M.; et al. Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chem. Eng. J. 2022, 449, 137700. [Google Scholar] [CrossRef]
- Shi, Y.; Xia, Y.; Zhou, M.; Wang, Y.; Bao, J.; Zhang, Y.; Cheng, J. Facile synthesis of Gd/Ru-doped fluorescent carbon dots for fluorescent/MR bimodal imaging and tumor therapy. J. Nanobiotechnol. 2024, 22, 88. [Google Scholar] [CrossRef]
- Tang, T.; Zhao, J.; Shen, Y.; Yang, F.; Yao, S.; An, C. Carbon dots bridged Zn0.5Cd0.5S with interfacial amide bond facilitating electron transfer for efficient photocatalytic hydrogen peroxide production. Appl. Catal. B-Environ. Energy 2024, 346, 123721. [Google Scholar] [CrossRef]
- Ai, L.; Xiang, W.; Xiao, J.; Liu, H.; Yu, J.; Zhang, L.; Wu, X.; Qu, X.; Lu, S. Tailored Fabrication of Full-Color Ultrastable Room-Temperature Phosphorescence Carbon Dots Composites with Unexpected Thermally Activated Delayed Fluorescence. Adv. Mater. 2024, 36, 2401220. [Google Scholar] [CrossRef]
- Chen, H.; Geng, X.; Ning, Q.; Shi, L.; Zhang, N.; He, S.; Zhao, M.; Zhang, J.; Li, Z.; Shi, J.; et al. Biophilic Positive Carbon Dot Exerts Antifungal Activity and Augments Corneal Permeation for Fungal Keratitis. Nano Lett. 2024, 24, 4044–4053. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Liu, B.; Yu, S.; Yang, Y.; Liu, X. Multicolor Afterglow Carbon Dots: Luminescence Regulation, Preparation, and Application. Adv. Funct. Mater. 2024, 34, 2315366. [Google Scholar] [CrossRef]
- Ma, H.; Guan, L.; Chen, M.; Zhang, Y.; Wu, Y.; Liu, Z.; Wang, D.; Wang, F.; Li, X. Synthesis and enhancement of carbon quantum dots from Mopan persimmons for Fe3+ sensing and anti-counterfeiting applications. Chem. Eng. J. 2022, 453, 139906. [Google Scholar] [CrossRef]
- Bai, X.; Deng, W.; Wang, J.; Zhou, M. Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chin Chem. Lett. 2025, 36, 109959. [Google Scholar] [CrossRef]
- Guo, P.; He, X.; An, X.; Zhang, X.; Liang, S.; Zhang, J.; Fu, Y. N-doped carbon dots/SnS2 heterostructures for ultra-fast and sub-ppb-level detection of NO2 in multiple environments. Chem. Eng. J. 2024, 500, 156882. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, S.; Zhang, W.; Shi, G.; He, Y.; Qiao, X.; Pang, X. How Luminescence Performances of Silicon-Doped Carbon Dots Contribute to Copper-Catalyzed photoATRP? ACS Catal. 2024, 14, 10418–10426. [Google Scholar] [CrossRef]
- Barhum, H.; McDonnell, C.; Peltek, O.; Jain, R.; Amer, M.; Kain, D.; Elad-Sfadia, G.; Athamna, M.; Blinder, P.; Ginzburg, P. In-Brain Multiphoton Imaging of Vaterite Cargoes Loaded with Carbon Dots. Nano Lett. 2024, 24, 8232–8239. [Google Scholar] [CrossRef]
- Tan, N.K.; Chan, H.; Lu, Z.; Zreiqat, H.; Lakhwani, G.; Lesani, P.; New, E.J. Ultrasensitive Dual Fluorophore-Conjugated Carbon Dots for Intracellular pH Sensing in 3D Tumor Models. ACS Appl. Mater. Interfaces 2024, 16, 47303–47313. [Google Scholar] [CrossRef] [PubMed]
- Lesani, P.; Mohamad Hadi, A.H.; Lu, Z.; Palomba, S.; New, E.J.; Zreiqat, H. Design principles and biological applications of red-emissive two-photon carbon dots. Commun. Mater. 2021, 2, 108. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Hu, J.; Sun, Y.; Yang, R.; Li, Z.; Qu, L. Rapid colorimetric and ratiometric fluorescence method for on-site detection and visualization of phosgene by amino-functionalized carbon dot-based portable droplet system. Chem. Eng. J. 2023, 452, 139173. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, K.F.; Wang, G.; Durrani, S.; Lin, F.; Wu, F.G. “One stone, five birds”: Ultrabright and multifaceted carbon dots for precise cell imaging and glutathione detection. Chem. Eng. J. 2023, 457, 140997. [Google Scholar] [CrossRef]
- Chen, B.B.; Liu, M.L.; Li, C.M.; Huang, C.Z. Fluorescent carbon dots functionalization. Adv. Colloid Interface Sci. 2019, 270, 165–190. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.l.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, H.; Yang, D.; Meng, S.; Gu, H.; Xiao, C.; Li, Y.; Cheng, D.; Qu, S.; Zeng, H.; et al. Direct in Situ Fabrication of Multicolor Afterglow Carbon Dot Patterns with Transparent and Traceless Features via Laser Direct Writing. Nano Lett. 2024, 24, 3028–3035. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Y.; Niu, F.; Gooding, J.J.; Liu, J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 2016, 141, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Huang, Y.C. Low-energy-consumption rapid synthesis of carbon dots at room temperature from combusted food waste with versatile analytical applications. Food Chem. 2024, 446, 138908. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, W.; Wang, H.; Zhao, X.; Gong, X. Solid-state fluorescent carbon dots-based composite optical waveguide film enables transparent and high-performance luminescent solar concentrators. Appl. Energy 2024, 358, 122571. [Google Scholar] [CrossRef]
- Bao, L.; Liu, C.; Zhang, Z.; Pang, D. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667. [Google Scholar] [CrossRef]
- Chernyak, S.; Podgornova, A.; Dorofeev, S.; Maksimov, S.; Maslakov, K.; Savilov, S.; Lunin, V. Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation. Appl. Surf. Sci. 2020, 507, 145027. [Google Scholar] [CrossRef]
- Zhang, D.-H.; Yang, L.; Li, N.; Su, K.; Liu, L.; Li, C.-Y. Detection of ciprofloxacin and pH by carbon dots and rapid, visual sensing analysis. Food Chem. 2024, 459, 140313. [Google Scholar] [CrossRef]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Cao, L.p.; Jiang, Y.j.; Li, Y.f.; Zou, H.y.; Zhan, L.; Huang, C.z. Self-targeting carbon quantum dots for peroxynitrite detection and imaging in live cells. Anal. Chem. 2021, 93, 16466–16473. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liu, X.; Jiang, Y.; Li, Y.; Gao, G.; Zhu, Y.; Lin, F.; Wu, F. Rose bengal-derived ultrabright sulfur-doped carbon dots for fast discrimination between live and dead cells. Anal. Chem. 2022, 94, 4243–4251. [Google Scholar] [CrossRef]
- Zou, M.; Li, Q.; Ji, X.; Ding, C. Low biofouling strategy for simultaneous determination of two proteins related to one tumor in human serum. Sens. Actuators B Chem. 2024, 416, 136004. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Wen, J.; Peng, Y.; Tang, X.; Qiu, P. Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots. Sens. Actuators B Chem. 2022, 369, 132381. [Google Scholar] [CrossRef]
- Jaiswal, A.; Rani, S.; Singh, G.P.; Archana, T.; Hassan, M.; Nasrin, A.; Gomes, V.G.; Saxena, S.; Shukla, S. Rapid additive manufacturing of all-carbon, all-dielectric metastructures. Addit. Manuf. 2024, 84, 104091. [Google Scholar] [CrossRef]
- Liu, M.; Wei, S.; Xie, Y.; Su, K.; Yin, X.; Song, X.; Hu, K.; Sun, G.; Liu, Y. Ratiometric fluorescence sensor based on chiral europium-doped carbon dots for specific and portable detection of tetracycline. Sens. Actuators B Chem. 2025, 423, 136753. [Google Scholar] [CrossRef]
- Kim, S.E.; Yoon, J.C.; Muthurasu, A.; Kim, H.Y. Fluorescence immunoassay using triangular carbon dots for detection of the cardiac marker Troponin T in acute myocardial infarction. Sens. Actuators B Chem. 2024, 418, 136368. [Google Scholar] [CrossRef]
- Miao, J.; Yu, J.; Zhao, X.; Chen, X.; Zhu, C.; Cao, X.; Huang, Y.; Li, B.; Wu, Y.; Chen, L.; et al. Molecular imprinting-based triple-emission ratiometric fluorescence sensor with aggregation-induced emission effect for visual detection of doxycycline. J. Hazard. Mater. 2024, 470, 134218. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, G.; Li, N.; Xu, Q.; Li, H.; Lu, J.; Chen, D. Self-Floating Photocatalytic System for Highly Efficient Hydrogen Peroxide Production and Organic Synthesis on Carbon Dots Decorated Conjugated Microporous Polymer. Adv. Funct. Mater. 2024, 34, 2316773. [Google Scholar] [CrossRef]
- Ai, L.; Xiang, W.; Li, Z.-W.; Liu, H.; Xiao, J.; Song, H.; Yu, J.; Song, Z.; Zhu, K.; Pan, Z.; et al. Hydrogen Bond-Induced Flexible and Twisted Self-Assembly of Functionalized Carbon Dots with Customized-Color Circularly Polarized Luminescence. Angew. Chem. Int. Ed. 2024, 63, e202410988. [Google Scholar] [CrossRef]
- Yuan, P.; Walt, D.R. Calculation for fluorescence modulation by absorbing species and its application to measurements using optical fibers. Anal. Chem. 1987, 59, 2391–2394. [Google Scholar] [CrossRef]
- Dai, R.; Hu, Y. Green/red dual emissive carbon dots for ratiometric fluorescence detection of acid red 18 in food. Sens. Actuators B Chem. 2022, 370, 132420. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Guo, G.; Xia, Y. Liver injury traceability: Spatiotemporally monitoring oxidative stress processes by unit-emitting carbon dots. Anal. Chem. 2023, 95, 2765–2773. [Google Scholar] [CrossRef]
- Su, W.; Tan, M.; Wang, Z.; Zhang, J.; Huang, W.; Song, H.; Wang, X.; Ran, H.; Gao, Y.; Nie, G.; et al. Targeted degradation of PD-L1 and activation of the STING pathway by carbon-dot-based PROTACs for cancer immunotherapy. Angew. Chem. Int. Ed. 2023, 135, e202218128. [Google Scholar] [CrossRef]
- Xu, J.; Yokota, Y.; Wong, R.A.; Kim, Y.; Einaga, Y. Unusual electrochemical properties of low-doped boron-doped diamond electrodes containing sp2 carbon. J. Am. Chem. Soc. 2020, 142, 2310–2316. [Google Scholar] [CrossRef]
- Picheau, E.; Impellizzeri, A.; Rybkovskiy, D.; Bayle, M.; Mevellec, J.Y.; Hof, F.; Saadaoui, H.; Noé, L.; Torres Dias, A.C.; Duvail, J.L.; et al. Intense Raman D band without sisorder in flattened carbon nanotubes. ACS Nano 2021, 15, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Das, P.; Bose, M.; Mondal, S.; Das, A.K.; Das, N.C. Strongly blue-luminescent N-doped carbogenic dots as a tracer metal sensing probe in aqueous medium and its potential activity towards in situ Ag-nanoparticle synthesis. Sens. Actuators B Chem. 2017, 252, 735–746. [Google Scholar] [CrossRef]
- Costa, A.I.; Barata, P.D.; Moraes, B.; Prata, J.V. Carbon dots from coffee grounds: Synthesis, characterization, and detection of noxious nitroanilin. Chemosensors 2022, 10, 113. [Google Scholar] [CrossRef]
- Sun, D.; Liu, T.; Wang, C.; Yang, L.; Yang, S.; Zhuo, K. Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118598. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Yu, S.; Wei, J.; Xiong, H. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Jin, X.; Sun, X.; Chen, G.; Ding, L.; Li, Y.; Liu, Z.; Wang, Z.; Pan, W.; Hu, C.; Wang, J. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon 2015, 81, 388–395. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Luo, H.; Li, N. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin. Chem. Comm. 2011, 47, 4676–4678. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Wang, J.; Dong, X.; Li, J.; Wang, K.; Guan, R. Fluorescent silicon nanoparticle–based quantitative hemin assay. Anal. Bioanal. Chem. 2022, 414, 8223–8232. [Google Scholar] [CrossRef]
- Gao, W.; Wang, C.; Muzyka, K.; Kitte, S.A.; Li, J.; Zhang, W.; Xu, G. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector. Anal. Chem. 2017, 89, 6160–6165. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.E.; Araujo, L.S.; Ciccarelli, A.B.; Batlle, A. A spectrophotometric method for estimating hemin in biological systems. Anal. Biochem. 2005, 341, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Michels, L.; Gorelova, V.; Harnvanichvech, Y.; Borst, J.W.; Albada, B.; Weijers, D.; Sprakel, J. Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proc. Natl. Acad. Sci. USA 2020, 117, 18110–18118. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, X.; Qiao, J.; Liu, J.; Qin, W. Mechanoresponsive spin via spin–lattice coupling in organic cocrystals. Nano Lett. 2022, 22, 5481–5486. [Google Scholar] [CrossRef]
- Chung, C.W.; Stephens, A.D.; Ward, E.; Feng, Y.; Davis, M.J.; Kaminski, C.F.; Kaminski Schierle, G.S. Label-free characterization of amyloids and alpha-synuclein polymorphs by exploiting their intrinsic fluorescence property. Anal. Chem. 2022, 94, 5367–5374. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.; Wang, J. Inner filter effect-based fluorescent sensing systems: A review. Anal. Chim. Acta. 2018, 999, 13–26. [Google Scholar] [CrossRef]
Methods | Detection System | Linear Range | Detection Limit | Reference |
---|---|---|---|---|
Fluorescence | fluorescent signal reporter molecule | 0.31–2.5 μM | 9.84 nM | [15] |
Fluorescence | AO-PS2.M/rGO | 2.81–4.37 μM | 50 nM | [69] |
Fluorescence | Si-NPs | 0.05–125 μM | 29.5 nM | [70] |
Chemiluminescence | artemisinin-luminol | 0.2–10 μM | 200 nM | [71] |
Spectrophotometry | extraction | 1.15–9.2 μM | 72 nM | [72] |
Fluorescence | CDs | 0.01–1 μM | 9 nM | This work |
Group | Labeled Amount (g/Piece) | Determined Amount (g/Piece) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|
1 | 0.6 | 0.587 | 97.9 | 1.6 |
2 | 0.6 | 0.592 | 98.7 | 2.8 |
3 | 0.6 | 0.633 | 105.5 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, L.; He, J.; Huang, C.; Zhan, L.; Li, C. One-Step Solvothermal Synthesis of Carbon Dots for Rapid and Accurate Determination of Hemin Content. Molecules 2025, 30, 1343. https://doi.org/10.3390/molecules30061343
Zhang Y, Liu L, He J, Huang C, Zhan L, Li C. One-Step Solvothermal Synthesis of Carbon Dots for Rapid and Accurate Determination of Hemin Content. Molecules. 2025; 30(6):1343. https://doi.org/10.3390/molecules30061343
Chicago/Turabian StyleZhang, Yiaobo, Lin Liu, Jiahui He, Chengzhi Huang, Lei Zhan, and Chunmei Li. 2025. "One-Step Solvothermal Synthesis of Carbon Dots for Rapid and Accurate Determination of Hemin Content" Molecules 30, no. 6: 1343. https://doi.org/10.3390/molecules30061343
APA StyleZhang, Y., Liu, L., He, J., Huang, C., Zhan, L., & Li, C. (2025). One-Step Solvothermal Synthesis of Carbon Dots for Rapid and Accurate Determination of Hemin Content. Molecules, 30(6), 1343. https://doi.org/10.3390/molecules30061343