Synthesis of β-Cyclodextrin-Functionalized Silver Nanoparticles and Their Application for Loading Cytisine and Its Phosphorus Derivative
Abstract
:1. Introduction
2. Results and Discussion
2.1. Description of Synthesis and Characterization of the Structure of Cz(Czt)/β-CD-AgNP Nanocomposites
2.2. Characterization of the Structure of Cz(Czt)/β-CD-AgNP Nanocomposites
2.3. Thermogravimetric Analysis of Cz, CzP, Cz(CzP)-β-CD and Cz(CzP)-β-CD-AgNPs
2.4. Kinetic Analysis of Thermal Decomposition of Cz, CzP, Cz-β-CD and Cz(CzP)-β-CD-AgNPs
3. Materials and Methods
3.1. Preparation of β-CD-Cz and β-CD-CzP Inclusion Complexes
3.2. Preparation of Cz-β-CD-AgNPs and CzP-β-CD-AgNPs
3.3. Defining Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolker, N.; Howe, C.; Glover, M.; McRobbie, H.; Barnes, J. Cytisine versus nikotine for smoking cessation. N. Engl. J. Med. 2014, 371, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.J.; Das, S.; Benowitz, N.L. Cytisine, the world’s oldest smoking cessation aid. BMJ 2013, 347, f5198. [Google Scholar] [CrossRef] [PubMed]
- Tsypysheva, I.P.; Koval’skaya, A.; Petrova, P.; Lobov, A.; Borisevich, S.S.; Tsypyshev, D.; Fedorova, V.A. Diels-Alder adducts of N-substituted derivatives of (-)-Cytisine as influenza A/H1N1 Virus Inhibitors; Stereodifferentiation of antiviral Properties and Preliminary Assessment of Action Mechanism. Tetrahedron 2019, 75, 2933–2943. [Google Scholar] [CrossRef]
- Beard, E.; Shahab, L.; Cummings, D.M.; Michie, S.; West, R. New pharmacological agents to aid smoking cessation and tobacco harm reduction: What has been investigated, and what is in the pipeline? CNS Drugs 2016, 30, 951–983. [Google Scholar] [CrossRef]
- Fedorova, V.A.; Kadyrova, R.A.; Slita, A.V.; Muryleva, A.A.; Petrova, P.R. Antiviral activity of amides and carboxamides of quinolizidine alkaloid (−)-cytisine against human influenza virus A(H1N1) and parainfluenza virus type 3. Nat. Prod. Res. 2019, 35, 4256–4264. [Google Scholar] [CrossRef]
- Vakhitova, Y.V.; Farabontova, E.I.; Zainullina, L.F.; Vakhitov, V.A. Search for (−)-cytizine derivatives as potential inhibitors of NF-kR and STATI. Russ. J. Biorgan. Chem. 2015, 41, 297–304. [Google Scholar] [CrossRef]
- Nurkenov, O.A.; Kulakov, I.V.; Fazylov, S.D. Synthetic Transformations of the Cytisine Alkaloid; Karaganda: Glasir, Kazakhstan, 2012; pp. 138–141. [Google Scholar]
- Thomas, D.; Farrel, M.; Mcrobbie, H.; Tutka, P. The effectiveness, safety and cost-effectiveness of cytisine versus varenicline for smoking cessation in an Australian population: A study protocol for a randomised controlled non-inferiority trial. Soc. Study Addict. 2018, 114, 923–933. [Google Scholar] [CrossRef]
- Hong, L.; Luo, S.H.; Yu, C.H.; Xie, Y.; Xia, M.Y.; Chen, G.Y.; Peng, Q. Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy. Pharm. Nanotechnol. 2019, 7, 129–146. [Google Scholar] [CrossRef]
- Liu, L.; Ge, C.; Zhang, Y.; Ma, W.; Su, X.; Chen, L.; Li, S.; Wang, L.; Mu, X.; Xu, Y. Tannic acid-modified silver nanoparticles for enchancing anti-biofilm activities and modulating biofilm formation. Biomater. Sci. 2020, 8, 4852–4860. [Google Scholar] [CrossRef]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J. Synthesis, characterization and biomedical application of silver nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef]
- Qamer, S.; Romli, M.H.; Che-Hamzah, F.; Misni, N.; Joseph, N.M.S.; AL-Haj, N.A.; Amin-Nordin, S. Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules 2021, 26, 5057. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jun, B.H. Silver Nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Tehri, N.; Vashishth, A.; Gahlaut, A.; Hooda, V. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: Current progress and future prospects. Inorg. NanoMet. Chem. 2020, 52, 1–19. [Google Scholar] [CrossRef]
- Bamal, D.; Singh, A.; Chaudhary, G. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An Updated Review. Nanomaterials 2021, 11, 2086. [Google Scholar] [CrossRef]
- El-Rafie, H.; El-Rafie, M.; Zahran, M. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macroalgae. Carbohydr. Polym. 2013, 96, 403–410. [Google Scholar] [CrossRef]
- Gannimani, R.; Ramesh, M.; Mtambo, S.; Pillay, K.; Soliman, M.E.; Govender, P. γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol. J. Inorg. Biochem. 2016, 157, 15–24. [Google Scholar] [CrossRef]
- Cai, W.; Hofmeister, H.; Rainer, T.; Chen, W. Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica. J. Nanoparticle Res. 2001, 3, 441–451. [Google Scholar] [CrossRef]
- Abbasi, E.; Milani, M.; Aval, S.F.; Kouhi, M.; Akbarzadeh, A.; Nasrabadi, H.T.; Nikasa, P. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol. 2016, 42, 173–180. [Google Scholar] [CrossRef]
- George, C.; Kuriakose, S.; Prakashkumar, B.; Mathew, T. Synthesis, characterisation and antibacterial applications of water-soluble, silver nanoparticle encapsulated β-cyclodextrin. Supramol. Chem. 2010, 22, 511–516. [Google Scholar] [CrossRef]
- Adeli, M.; Hakimpour, F.; Sagvand, M.; Jaafari, M.R.; Kabiri, R.; Moshari, Z. Supramolecular hybrid nanomaterials as drug delivery systems. Supramol. Chem. 2011, 23, 411–418. [Google Scholar] [CrossRef]
- Jaiswal, S.; Duffy, B.; Jaiswal, A.K.; Stobie, N.; McHale, P. Enhancement of the antibacterial properties of silver nanoparticles using beta-cyclodextrin as a capping agent. Int. J. Antimicrob. Agents 2010, 36, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, S.; Ghoreyshi Kahangi, F.; Dorraj, M.; Heravi, M.M. Ag Nanoparticles Stabilized on Cyclodextrin Polymer Decorated with Multi-Nitrogen Atom Containing Polymer: An Efficient Catalyst for the Synthesis of Xanthenes. Molecules 2020, 25, 241. [Google Scholar] [CrossRef] [PubMed]
- Gasbarri, C.; Angelini, G. An overview on the role of cyclodextrins in the synthesis of silver nanoparticles by chemical reduction. Arch. Org. Chem. 2022, 3, 112–132. [Google Scholar] [CrossRef]
- Abou-Okeil, A.; Amr, A.; Abdel-Mohdy, F.A. Investigation of silver nanoparticles synthesis using aminated beta-cyclodextrin. Carbohydr. Polym. 2012, 89, 1–6. [Google Scholar] [CrossRef]
- Lakkakula, J.R.; Matshaya, T.; Krause, R.W.M. 5-Fu inclusion complex capped gold nanoparticles for breast cancer therapy. Mater. Sci. Eng. A 2017, 70, 169–177. [Google Scholar] [CrossRef]
- Smirnov, M.; George, G.; Zyubin, A.; Zozulya, A.; Lyatun, I. Interaction of gold and platinum nanoparticles with L-tyrosine in aqueous solution: Conformational and dynamic changes. J. Mol. Liq. 2024, 420, 19. [Google Scholar] [CrossRef]
- Garibyan, A.; Delyagina, E.; Agafonov, M.; Khodov, I.; Terechova, I.V. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J. Mol. Liq. 2022, 360, 119548. [Google Scholar] [CrossRef]
- Pandey, A. Cyclodextren-bazed nanoparticles for pharmaceutical applications: A review. Environ. Chem. Lett. 2021, 19, 4297–4310. [Google Scholar] [CrossRef]
- Cutrone, G.; Casas-Solvas, J.M.; Vargas-Berenguel, A. Cyclodextrin-Modified inorganic materials for the construction of nanocarriers. Int. J. Pharm. 2017, 531, 621–639. [Google Scholar] [CrossRef]
- Muldakhmetov, Z.; Fazylov, S.; Gazaliev, A.; Nurkenov, O.; Seilkhanov, O. The synthesis of new inclusion compounds complexes cytisine: β-cyclodextrin. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Chem. Technol. 2022, 2, 112–120. [Google Scholar]
- Nurkenov, O.; Seilkhanov, O.; Fazylov, S.; Isaeva, A. Synthesis and Studies of Supramolecular Inclusion Complexes of Cytisine with β-cyclodextrin by NMR Spectroscopy. Int. J. Appl. Fundam. Res. 2015, 7, 223–227. [Google Scholar]
- Murugesan, K.; Koroth, J.; Srinivasan, P.P.; Singh, A.; Mukundan, S.; Karki, S.S.; Choudhary, B.; Gupta, C.M. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Int. J. Nanomed. 2019, 14, 5257–5270. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Junfeng, L.; Laichun, L.; Meilin, L.; Tanfang, X.; Junfen, Z. Synthesis of cationic b-cyclodextrin functionalized silver nanoparticles and their drug-loading applications. RSC Adv. 2023, 13, 7250–7256. [Google Scholar]
- Ze, H.; Jing, Y.; Zhang, J.; Li, X.; Zhang, H.; Shakoor, A.; Guo, J. UV-irradiation synthesis of cyclodextrin-silver nanocluster decorated TiO2-nanoparticles for photocatalytic enchanced anticancer effect on Hela cancer cells. Front. Chem. 2022, 10, 99261. [Google Scholar]
- Pencheva, D.; Bryaskova, R.; Kantardjiev, T. Polyvinil alcohol/silver nanoparticles (PVA/AgNPs) as a model for testing the biological activity of hydrid mateials with included silver nanoparticles. Mater. Sci. Eng. C. 2012, 32, 2048–2051. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Jazayeri, S.D. Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem. Cent. J. 2012, 73, 1–10. [Google Scholar] [CrossRef]
- Philip, D. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta A 2010, 75, 1078–1081. [Google Scholar] [CrossRef]
- Antonya, J.J.; Sivalingamb, S.; Sivaa, D. Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids Surf. 2011, 88, 134–140. [Google Scholar] [CrossRef]
- Almjasheva, O.; Popkov, V.; Proskurina, O.; Gusarov, V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosyst. Phys. Chem. Math. 2022, 13, 164–180. [Google Scholar] [CrossRef]
- Brown, M.E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R.; Sempere, J.; Burnham, A. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochim. Acta 2000, 355, 125–143. [Google Scholar] [CrossRef]
- Zargar, M.; Hamid, A.A.; Bakar, F.A.; Shamsudin, M.N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green Synthesis and Antibacterial Effect of Silver Nanoparticles Using Vitex negundo L. Molecules 2011, 16, 6667–6676. [Google Scholar] [CrossRef] [PubMed]
- Aihhua, Z.; Xiaotong, A.U.; Handge, V.; Garamus, R.; WillumeitRomer, Y. Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enchanced solubility and anti-tumor efficiency of bufalin. Mater. Sci. Eng. 2017, 78, 609–618. [Google Scholar]
- Ouyang, L.; Zhu, L.; Ruan, Y.; Tang, H. Preparation of a native β-cyclodextrin modified plasmonic hydrogel substrate and its use as a surface-enhanced Raman scattering scaffold for antibiotics identification. J. Mater. Chem. 2015, 3, 7575–7582. [Google Scholar] [CrossRef]
- Celebioglu, A.; Topuz, F.; Yildiz, Z.I.; Uyar, T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr. Polym. 2019, 207, 471–479. [Google Scholar] [CrossRef]
- Serra, R.; Nomen, R.; Sempere, J. The non-parametric kinetics a new method for the kinetic study of thermoanalytical data. J. Therm. Anal. Calorim. 1998, 52, 933–943. [Google Scholar] [CrossRef]
- Friedman, H.I. New methods for evaluating kinetic parameters from thermal analysis data. J. Polym. Sci. 1969, 7, 41–46. [Google Scholar] [CrossRef]
- Burkeev, M.Z.; Fazylov, S.D.; Bakirova, R.; Iskineyeva, A. Thermal decomposition of β-cyclodextrin and its inclusion complex with vitamin E. Mendeleev Commun. 2021, 31, 76–78. [Google Scholar] [CrossRef]
- Muldakmetov, Z.M.; Fazylov, S.D.M.; Nurkenov, O.A.; Burkeev, M.Z. Comparative analysis of the thermal decomposition kinetics of 13-cyclodextrin inclusion complexes with anabasine at different heating rates. Mendeleev Commun. 2022, 32, 816–819. [Google Scholar] [CrossRef]
- Vlase, T.; Vlase, G.; Doca, N.; Bolcu, C. Processing of non-isothermal TG data. Comparativ kinetic analysis with NPK method. J. Therm. Anal. Calorim. 2005, 80, 59–64. [Google Scholar] [CrossRef]
- Shin, S.; Im, S.I.; Nho, N.S.; Lee, K.B. Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue. J. Therm. Anal. Calorim. 2016, 126, 933–941. [Google Scholar] [CrossRef]
- Šesták, J.; Kratochvíl, J. Rational approach to thermodynamic processes and constitutive equations in isothermal and non-isothermal kinetics. J. Therm. Anal. Calorim. 1973, 5, 193–201. [Google Scholar]
- Šesták, J. Errors of kinetic data obtained from thermogravimetric curves at increasing temperature. Talanta 1966, 13, 567–579. [Google Scholar] [CrossRef] [PubMed]
Sample | , kJmol−1 | , c−1 | Šesták–Berggren | , kJmol−1 | , c−1 | , kJmol−1 | , c−1 | |
---|---|---|---|---|---|---|---|---|
αm(1 − α)n | ||||||||
m | n | |||||||
β-CD | 83.94 | 1.56 × 1015 | 0.47 | 0.53 | 84.60 | 4.01 × 1016 | 83.41 | 2.72 × 1015 |
Cz | 89.05 | 1.46 × 105 | 0.65 | 0.34 | 89.05 | 2.02 × 106 | 89.05 | 1.46 × 105 |
CzP | 90.12 | 1.54 × 1018 | 0.51 | 0.75 | 91.09 | 2.05 × 1019 | 90.01 | 2.14 × 1018 |
Cz-β-CD | 93.73 | 1.25 × 1018 | 0.35 | 0.64 | 93.59 | 1.00 × 1019 | 91.23 | 1.76 × 1011 |
Cz-β-CD-AgNPs | 85.62 | 2.04 × 1010 | 0.53 | 0.47 | 85.09 | 7.82 × 1010 | 85.62 | 2.10 × 1010 |
CzP-β-CD-AgNPs | 93.03 | 2.89 × 1018 | 0.66 | 1.34 | 94.32 | 1.05 × 1012 | 90.94 | 1.01 × 1012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazylov, S.D.; Nurkenov, O.A.; Nurmaganbetov, Z.S.; Sarsenbekova, A.Z.; Bakirova, R.Y.; Seilkhanov, O.T.; Sviderskiy, A.K.; Syzdykov, A.K.; Mendibayeva, A.Z. Synthesis of β-Cyclodextrin-Functionalized Silver Nanoparticles and Their Application for Loading Cytisine and Its Phosphorus Derivative. Molecules 2025, 30, 1337. https://doi.org/10.3390/molecules30061337
Fazylov SD, Nurkenov OA, Nurmaganbetov ZS, Sarsenbekova AZ, Bakirova RY, Seilkhanov OT, Sviderskiy AK, Syzdykov AK, Mendibayeva AZ. Synthesis of β-Cyclodextrin-Functionalized Silver Nanoparticles and Their Application for Loading Cytisine and Its Phosphorus Derivative. Molecules. 2025; 30(6):1337. https://doi.org/10.3390/molecules30061337
Chicago/Turabian StyleFazylov, Serik D., Oralgazy A. Nurkenov, Zhangeldy S. Nurmaganbetov, Akmaral Zh. Sarsenbekova, Ryszhan Ye. Bakirova, Olzhas T. Seilkhanov, Alexandr K. Sviderskiy, Ardak K. Syzdykov, and Anel Zh. Mendibayeva. 2025. "Synthesis of β-Cyclodextrin-Functionalized Silver Nanoparticles and Their Application for Loading Cytisine and Its Phosphorus Derivative" Molecules 30, no. 6: 1337. https://doi.org/10.3390/molecules30061337
APA StyleFazylov, S. D., Nurkenov, O. A., Nurmaganbetov, Z. S., Sarsenbekova, A. Z., Bakirova, R. Y., Seilkhanov, O. T., Sviderskiy, A. K., Syzdykov, A. K., & Mendibayeva, A. Z. (2025). Synthesis of β-Cyclodextrin-Functionalized Silver Nanoparticles and Their Application for Loading Cytisine and Its Phosphorus Derivative. Molecules, 30(6), 1337. https://doi.org/10.3390/molecules30061337