Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels
Abstract
:1. Introduction
2. Results
2.1. General Condition of Animals
2.2. Plasma Parameters
2.3. The Composition Ratios of Fatty Acids in Plasma
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. Blood Plasma Analysis
4.4. Plasma Fatty Acid Analysis by GC-MS
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Ciaula, A.; Garruti, G.; Baccetto, R.L.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.H.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L. Bile Acid Metabolism and Signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef]
- Pavlidis, P.; Powell, N.; Vincent, R.P.; Ehrlich, D.; Bjarnason, I.; Hayee, B. Systematic review: Bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence? Aliment. Pharmacol. Ther. 2015, 42, 802–817. [Google Scholar] [CrossRef]
- Larabi, A.B.; Masson, H.L.P.; Baumler, A.J. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef] [PubMed]
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal absorption of bile acids in health and disease. Compr. Physiol. 2019, 10, 21–56. [Google Scholar] [CrossRef]
- Williams, E.; Chu, C.; DeMorrow, S. A critical review of bile acids and their receptors in hepatic encephalopathy. Anal. Biochem. 2022, 643, 114436. [Google Scholar] [CrossRef]
- Berr, F.; Mayer, M.; Sackmann, M.F.; Sauerbruch, T.; Holl, J.; Paumgartner, G. Pathogenic factors in early recurrence of cholesterol gallstones. Gastroenterology 1994, 106, 215–224. [Google Scholar] [CrossRef]
- Ocvirk, S.; O’Keefe, S.J. Influence of Bile Acids on Colorectal Cancer Risk: Potential Mechanisms Mediated by Diet—Gut Microbiota Interactions. Curr. Nutr. Rep. 2017, 6, 315–322. [Google Scholar] [CrossRef]
- Fang, Y.; Yan, C.; Zhao, Q.; Xu, J.; Liu, Z.; Gao, J.; Zhu, H.; Dai, Z.; Wang, D.; Tang, D. The roles of microbial products in the development of colorectal cancer: A review. Bioengineered 2021, 12, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Killinger, B.A.; Ensink, E.; Beddows, I.; Yilmaz, A.; Lubben, N.; Lamp, J.; Schilthuis, M.; Vega, I.E.; Woltjer, R.; et al. Gut Microbiota Dysbiosis Is Associated with Elevated Bile Acids in Parkinson’s Disease. Metabolites 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, A.; Isakova, T.; Stubbs, J. Microbiome and Cardiovascular Disease in CKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, A.; Isakova, T.; Block, G.; Stubbs, J.; Smits, G.; Chonchol, M.; Miyazaki, M. Deoxycholic Acid, a Metabolite of Circulating Bile Acids, and Coronary Artery Vascular Calcification in CKD. Am. J. Kidney Dis. 2018, 71, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Haeusler, R.A.; Astiarraga, B.; Camastra, S.; Accili, D.; Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 2013, 62, 4184–4191. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhong, W.; Li, H.; Li, Q.; Qiu, Y.; Zheng, X.; Chen, H.; Zhao, X.; Zhang, S.; Zhou, Z.; et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J. 2013, 27, 3583–3593. [Google Scholar] [CrossRef] [PubMed]
- Yoshitsugu, R.; Kikuchi, K.; Iwaya, H.; Fujii, N.; Hori, S.; Lee, D.G.; Ishizuka, S. Alteration of Bile Acid Metabolism by a High-Fat Diet Is Associated with Plasma Transaminase Activities and Glucose Intolerance in Rats. J. Nutr. Sci. Vitaminol. 2019, 65, 45–51. [Google Scholar] [CrossRef]
- Haeusler, R.A.; Pratt-Hyatt, M.; Welch, C.L.; Klaassen, C.D.; Accili, D. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 2012, 15, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, T.; Shimizu, H.; Iwasaki, W.; Liu, H.; Kamo, Y.; Tada, K.; Hanai, T.; Hori, S.; Joe, G.H.; Tanaka, Y.; et al. A diet supplemented with cholic acid elevates blood pressure accompanied by albuminuria in rats. Biosci. Biotechnol. Biochem. 2023, 87, 434–441. [Google Scholar] [CrossRef]
- Lee, J.Y.; Shimizu, H.; Hagio, M.; Fukiya, S.; Watanabe, M.; Tanaka, Y.; Joe, G.H.; Iwaya, H.; Yoshitsugu, R.; Kikuchi, K.; et al. 12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158811. [Google Scholar] [CrossRef]
- Musuc, A.M. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules 2024, 29, 5319. [Google Scholar] [CrossRef] [PubMed]
- Matsui, Y. Molecular Mechanical Calculation on Cyclodextrin Inclusion Complexes. I. The Structures of α-Cyclodextrin Complexes Estimated by van der Waals Interaction Energy Calculation. Bull. Chem. Soc. Jpn. 1982, 55, 1246–1249. [Google Scholar] [CrossRef]
- Yoshida, N.; Harata, K.; Inoue, T.; Ito, N.; Ichikawa, K. Structure and Molecular Recognition of Chiral Amino-Cyclodextrin: One-dimensional Array by Self-assembly in Solid and Chiral Discrimination in Solution. Supramol. Chem. 1998, 10, 63–67. [Google Scholar] [CrossRef]
- Yoshikiyo, K.; Yoshioka, Y.; Narumiya, Y.; Oe, S.; Kawahara, H.; Kurata, K.; Shimizu, H.; Yamamoto, T. Thermal stability and bioavailability of inclusion complexes of perilla oil with γ-cyclodextrin. Food Chem. 2019, 294, 56–59. [Google Scholar] [CrossRef]
- Munro, I.C.; Newberne, P.M.; Young, V.R.; Bär, A. Safety assessment of γ-cyclodextrin. Regul. Toxicol. Pharmacol. 2004, 39, S3–S13. [Google Scholar] [CrossRef] [PubMed]
- Lina, B.A.; Bär, A. Subchronic oral toxicity studies with γ-cyclodextrin in rats. Regul. Toxicol. Pharmacol. 1998, 27, 178–188. [Google Scholar] [CrossRef]
- Yoshikiyo, K.; Takahashi, M.; Narumiya, Y.; Honda, M.; Iwasaki, K.; Ishigaki, M.; Nagato, E.G.; Noothalapati, H.; Shimizu, H.; Murota, K.; et al. Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil. Food Hydrocoll. Health 2023, 3, 100116. [Google Scholar] [CrossRef]
- Arima, H.; Motoyama, K.; Higashi, T. Potential Use of Cyclodextrins as Drug Carriers and Active Pharmaceutical Ingredients. Chem. Pharm. Bull. 2017, 65, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Vogensen, S.B.; Brewster, M.E.; Konrádsdóttir, F. Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci. 2007, 96, 2532–2546. [Google Scholar] [CrossRef] [PubMed]
- Uekama, K. Pharmaceutical application of cyclodextrins as multi-functional drug carriers. Yakugaku Zasshi 2004, 124, 909–935. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 2011, 63, 1119–1135. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.J.; Zhu, X.X.; Brown, G.R. Formation of Inclusion Complexes of Cyclodextrins with Bile Salt Anions as Determined by NMR Titration Studies. Langmuir 1994, 10, 1034–1039. [Google Scholar] [CrossRef]
- Salemans, J.M.; Nagengast, F.M.; Tangerman, A.; van Schaik, A.; Hopman, W.P.; de Haan, A.F.; Jansen, J.B. Effect of ageing on postprandial conjugated and unconjugated serum bile acid levels in healthy subjects. Eur. J. Clin. Investig. 1993, 23, 192–198. [Google Scholar] [CrossRef]
- Pawar, A.; Jump, D.B. Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor α activity in rat primary hepatocytes. J. Biol. Chem. 2003, 278, 35931–35939. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol. 2006, 98, 27i–33i. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, E.; Ishikawa, Y.; Li, Y.; Kagai, T.; Nobayashi, M.; Tanaka, N.; Kamijo, Y.; Yokoyama, S.; Hara, A.; Aoyama, T. Eicosapentaenoic acid lowers plasma and liver cholesterol levels in the presence of peroxisome proliferators-activated receptor α. Life Sci. 2008, 83, 19–28. [Google Scholar] [CrossRef]
- Liu, H.; Yokoyama, F.; Ishizuka, S. Metabolic alterations of the gut-liver axis induced by cholic acid contribute to hepatic steatosis in rats. Biochim. Biophys. Acta Mol. Cell Biol Lipids. 2023, 1868, 159319. [Google Scholar] [CrossRef]
- Ichi, I.; Kono, N.; Arita, Y.; Haga, S.; Arisawa, K.; Yamano, M.; Nagase, M.; Fujiwara, Y.; Arai, H. Identification of genes and pathways involved in the synthesis of Mead acid (20:3n-9), an indicator of essential fatty acid deficiency. Biochim. Biophys. Acta 2014, 1841, 204–213. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef]
- Mozurkewich, E.L.; Greenwood, M.; Clinton, C.; Berman, D.; Romero, V.; Djuric, Z.; Qualls, C.; Gronert, K. Pathway Markers for Pro-resolving Lipid Mediators in Maternal and Umbilical Cord Blood: A Secondary Analysis of the Mothers, Omega-3, and Mental Health Study. Front. Pharmacol. 2016, 7, 274. [Google Scholar] [CrossRef]
- González-Périz, A.; Horrillo, R.; Ferré, N.; Gronert, K.; Dong, B.; Morán-Salvador, E.; Titos, E.; Martínez-Clemente, M.; López-Parra, M.; Arroyo, V.; et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: A role for resolvins and protectins. FASEB J. 2009, 23, 1946–1957. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, I.; Shimano, H.; Korn, B.S.; Bashmakov, Y.; Horton, J.D. Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J. Biol. Chem. 1998, 273, 35299–352306. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaka, T.; Shimano, H.; Yahagi, N.; Yoshikawa, T.; Amemiya-Kudo, M.; Hasty, A.H.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; et al. Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. J. Lipid Res. 2002, 43, 911–920. [Google Scholar] [CrossRef]
- Yoo, W.; Gjuka, D.; Stevenson, H.L.; Song, X.; Shen, H.; Yoo, S.Y.; Wang, J.; Fallon, M.; Ioannou, G.N.; Harrison, S.A.; et al. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS ONE 2017, 12, e0189965. [Google Scholar] [CrossRef]
Composition (Weight %) | CTRL | CA | CA+LP | CA+CD | CA+IC |
---|---|---|---|---|---|
Corn Starch | 39.75 | 39.75 | 39.75 | 39.75 | 39.75 |
Casein | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Maltodextrin | 13.20 | 13.20 | 13.20 | 13.20 | 13.20 |
Sucrose | 10.00 | 9.95 | 9.95 | 9.95 | 9.95 |
Soybean Oil | 7.00 | 7.00 | 6.12 | 7.00 | 6.12 |
Perilla Oil | – | – | 0.88 | – | – |
Cellulose | 5.00 | 5.00 | 5.00 | – | – |
γ-CD | – | – | – | 5.00 | – |
Inclusion Complex | – | – | – | – | 5.88 |
Mineral Mix | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 |
Vitamin Mix | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
L-Cystine | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Choline Bitartrate | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Cholic Acid | – | 0.05 | 0.05 | 0.05 | 0.05 |
Fatty Acids | CTRL | CA | CA+LP | CA+CD | CA+IC |
---|---|---|---|---|---|
Palmitic acid | 24.2 ± 0.4 | 23.2 ± 0.4 | 23.2 ± 0.3 | 23.3 ± 0.4 | 24.3 ± 0.2 |
Palmitoleic acid | 2.1 ± 0.4 b | 4.4 ± 0.3 a | 4.5 ± 0.2 a | 5.5 ± 0.4 a | 4.5 ± 0.3 a |
Stearic acid | 9.7 ± 0.3 a | 7.6 ± 0.2 b | 7.7 ± 0.2 b | 7.1 ± 0.2 b | 7.4 ± 0.2 b |
Oleic acid | 14.4 ± 0.5 c | 16.2 ± 0.3 ab | 14.8 ± 0.3 bc | 16.3 ± 0.3 ab | 16.3 ± 0.4 a |
Linoleic acid | 23.4 ± 1.0 | 25.0 ± 0.9 | 25.0 ± 0.8 | 24.3 ± 0.9 | 25.2 ± 0.6 |
α-Linolenic acid | 1.1 ± 0.1 b | 1.4 ± 0.1 b | 3.4 ± 0.3 a | 1.6 ± 0.1 b | 2.9 ± 0.2 a |
Arachidonic acid | 20.5 ± 1.2 a | 17.4 ± 1.0 ab | 15.2 ± 0.8 bc | 16.5 ± 0.9 bc | 13.5 ± 0.8 c |
Eicosapentaenoic acid | 0.8 ± 0.1 c | 0.7 ± 0.1 c | 2.2 ± 0.2 a | 0.9 ± 0.1 c | 1.7 ± 0.1 b |
Docosahexaenoic acid | 2.2 ± 0.2 | 1.7 ± 0.2 | 2.0 ± 0.1 | 2.1 ± 0.2 | 2.0 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshikiyo, K.; Shimizu, H.; Nagato, E.G.; Ishizuka, S.; Yamamoto, T. Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels. Molecules 2025, 30, 281. https://doi.org/10.3390/molecules30020281
Yoshikiyo K, Shimizu H, Nagato EG, Ishizuka S, Yamamoto T. Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels. Molecules. 2025; 30(2):281. https://doi.org/10.3390/molecules30020281
Chicago/Turabian StyleYoshikiyo, Keisuke, Hidehisa Shimizu, Edward G. Nagato, Satoshi Ishizuka, and Tatsuyuki Yamamoto. 2025. "Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels" Molecules 30, no. 2: 281. https://doi.org/10.3390/molecules30020281
APA StyleYoshikiyo, K., Shimizu, H., Nagato, E. G., Ishizuka, S., & Yamamoto, T. (2025). Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels. Molecules, 30(2), 281. https://doi.org/10.3390/molecules30020281