Exploring the Structural Characteristics and Antioxidant Capacity of Pectins from Adenophora tetraphylla (Thunb.) Fisch.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction of Pectins from Adenophora tetraphylla
2.2. Evaluation of Purity, Molecular Homogeneity, and Weight Characteristics of WATP-A2b and WATP-A3b
2.3. Fourier-Transform Infrared (FT-IR) Spectroscopic Evaluation of WATP-A2b and WATP-A3b
2.4. NMR Analysis of WATP-A2b and WATP-A3b
2.4.1. NMR Analysis of WATP-A2b
2.4.2. NMR Analysis of WATP-A3b
2.5. Advanced Conformational Analysis of WATP-A2b and WATP-A3b
2.5.1. Congo Red Assay of WATP-A2b and WATP-A3b
2.5.2. Circular Dichroism (CD) Analysis of WATP-A2b and WATP-A3b
2.5.3. Scanning Electron Microscopy (SEM) Analysis of WATP-A2b and WATP-A3b
2.6. Enzymatic Analysis of WATP-A2b and WATP-A3b
2.6.1. Preparation of De-Esterified Pectin
2.6.2. Analysis of Enzymatic Hydrolysates
2.7. Assessment of Antioxidant Capacity
2.8. Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Pectin Preparation from Adenophora tetraphylla
3.3.1. Pectin Extraction Process
3.3.2. Pectin Fractionation
3.4. Chemical Characterization Analysis
3.5. FT-IR Analysis
3.6. NMR Analysis
3.7. Congo Red Analysis
3.8. CD Analysis
3.9. SEM Analysis
3.10. De-Esterification and Enzymatic Degradation
3.11. Evaluation of Antioxidant Activity
3.11.1. ABTS Radical Scavenging Assay
- Asample: This is the absorbance value measured for the sample solution.
- Acontrol: This is the absorbance value measured for the background solution.
- Ablank: This is the absorbance value measured for the blank control.
3.11.2. DPPH Radical Scavenging Assay
3.11.3. Hydroxyl Radical Scavenging Assay
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solís, M.T.; Berenguer, E.; Risueño, M.C.; Testillano, P.S. BnPME is progressively induced after microspore reprogramming to embryogenesis, correlating with pectin de-esterification and cell differentiation in Brassica napus. BMC Plant Biol. 2016, 16, 176. [Google Scholar] [CrossRef]
- Lionetti, V.; Cervone, F.; Bellincampi, D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. J. Plant Physiol. 2012, 169, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Li, F.; Zhao, J.; Wei, Y.; Zhang, L.; Yu, W.; Li, Q. The preparation and potential bioactivities of modified pectins: A review. Foods 2023, 12, 1016. [Google Scholar] [CrossRef]
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Goellner, E.M.; Utermoehlen, J.; Kramer, R.; Classen, B. Structure of arabinanogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinanogalactans. Carbohydr. Polym. 2011, 86, 1739–1744. [Google Scholar] [CrossRef]
- Wang, J.Q.; Hu, S.Z.; Nie, S.P.; Yu, Q.; Xie, M.Y. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N. Biological properties and biomedical applications of pectin and pectin-based composites: A review. Molecules 2023, 28, 7974. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Cui, J.F.; Zhao, C.Y.; Feng, L.P.; Han, Y.H.; Du, H.J.; Xiao, H.; Zheng, J.K. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci. Technol. 2021, 110, 39–54. [Google Scholar] [CrossRef]
- Ning, X.; Liu, Y.; Jia, M.; Wang, Q.; Sun, Z.; Ji, L.; Mayo, K.H.; Zhou, Y.; Sun, L. Pectic polysaccharides from Radix Sophorae tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 2021, 262, 117925. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, K.; Li, J.; Ye, X.; Chen, S. An optimize adaptable method for determining the monosaccharide composition of pectic polysaccharides. Int. J. Biol. Macromol. 2024, 277, 133591. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Liu, X.; Wang, Y.; Yang, X.; Bai, L.; Sun, L.; Zhou, Y.; Cui, S. Structural characterization and antioxidant activity of pectic polysaccharides from Veronica peregrina L. Front. Nutr. 2023, 10, 1217862. [Google Scholar] [CrossRef]
- Li, J.; Hsiung, S.Y.; Kao, M.R.; Xing, X.; Chang, S.C.; Wang, D.; Hsieh, P.Y.; Liang, P.H.; Zhu, Z.; Cheng, T.R.; et al. Structural compositions and biological activities of cell wall polysaccharides in the rhizome, stem, and leaf of Polygonatum odoratum (Mill.) Druce. Carbohydr. Res. 2022, 521, 108662. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, X.M.; Cai, Y.J.; Wang, F.; Li, Z.X. Isolation, purification and analysis of polysaccharides from Adenophora potanini Korsh. J. Chin. Med. Mater. 2002, 25, 25–26. [Google Scholar] [CrossRef]
- Roh, S.S.; Kim, S.H.; Lee, Y.C.; Seo, Y.B. Effects of radix adenophorae and cyclosporine A on an OVA-induced murine model of asthma by suppressing to T cells activity, eosinophilia, and bronchial hyperresponsiveness. Mediat. Inflamm. 2008, 2008, 781425. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, J.Y.; Mao, M.X.; Guo, H.Z.; Dai, Y.R. Extraction optimization of the polysaccharide from Adenophorae radix by central composite design. Int. J. Biol. Macromol. 2014, 67, 318–322. [Google Scholar] [CrossRef]
- Zhang, X.Q. Extraction and Degradation Optimization and the Analysis of Monosaccharide Composition of the Polysaccharide from Adenophorae radix. Master’s Thesis, Hebei University, Baoding, China, 2014. [Google Scholar]
- Li, J.W.; Liu, Y.; Li, B.H.; Wang, Y.Y.; Wang, H.; Zhou, C.L. A polysaccharide purified from Radix Adenophorae promotes cell activation and pro-inflammatory cytokine production in murine RAW264.7 macrophages. Chin. J. Nat. Med. 2016, 14, 370–376. [Google Scholar]
- Liang, L.; Wang, T.; Qiao, H.; Chang, W.; Li, D. Research progress on the pharmacological effects of Radix Adenophorae potanini Korsh polysaccharides. Northwest Pharm. J. 2008, 23, 334–335. [Google Scholar]
- Feng, Z.A.; Ma, H.Z.; Li, L.; Liao, M.Q.; Shao, T.J.; Liang, L.; Wang, T.; Qiao, H. Acute toxicity and protective effects of Radix Adenophorae potanini Korsh polysaccharides dispersible tablets on acute liver injury in mice. Chin. J. Exp. Tradit. Med. Formulae 2012, 18, 247–250. [Google Scholar] [CrossRef]
- Beratto-Ramos, A.; Agurto-Muñoz, C.; Pablo Vargas-Montalba, J.; Castillo, R.D.P. Fourier-transform infrared imaging and multivariate analysis for direct identification of principal polysaccharides in brown seaweeds. Carbohydr. Polym. 2020, 230, 115561. [Google Scholar] [CrossRef]
- Singthong, J.; Cui, S.W.S.; Ningsanond, H.; Goff, D. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydr. Polym. 2004, 58, 391–400. [Google Scholar] [CrossRef]
- Chen, X.; Qi, Y.; Zhu, C.; Wang, Q. Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin. Int. J. Biol. Macromol. 2019, 131, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Al-Amoudi, R.H.; Taylan, O.; Kutlu, G.; Can, A.M.; Sagdic, O.; Dertli, E.; Yilmaz, M.T. Characterization of chemical, molecular, thermal and rheological properties of medlar pectin extracted at optimum conditions as determined by Box-Behnken and ANFIS models. Food Chem. 2019, 271, 650–662. [Google Scholar] [CrossRef]
- York, W.S.; Darvill, A.G.; McNeil, M.; Albersheim, P. 3-deoxy-D-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants. Carbohydr. Res. 1985, 138, 109–126. [Google Scholar] [CrossRef]
- Chen, J.; Mei, M.S.; Xu, Y.; Xiong, S.; Zhao, Y.; Liu, R.; Shi, S.; Wang, H.; Wang, S. The impact of the methyl esters of homogalacturonan on cellular uptake dependent hypoglycemic activity in IR-HepG2 cells. Carbohydr. Polym. 2022, 293, 119741. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Q.; Bao, A.; Liu, X.; Zeng, J.; Yang, X.; Yao, J.; Zhang, J.; Lei, Z. Synthesis of selenium-containing Artemisia sphaerocephala polysaccharides: Solution conformation and anti-tumor activities in vitro. Carbohydr. Polym. 2016, 152, 70–78. [Google Scholar] [CrossRef]
- Morris, E.R.; Gidley, M.J.; Murray, E.J.; Powell, D.A.; Rees, D.A. Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties. Int. J. Biol. Macromol. 1980, 2, 327–330. [Google Scholar] [CrossRef]
- Qiu, W.Y.; Cai, W.D.; Wang, M.; Yan, J.K. Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing. Food Chem. 2019, 297, 125021. [Google Scholar] [CrossRef]
- Nitta, Y.; Kim, B.S.; Nishinari, K.; Shirakawa, M.; Yamatoya, K.; Oomoto, T.; Asai, I. Synergistic gel formation of xyloglucan/gellan mixtures as sudied by rheology, DSC, and circular dichroism. Biomacromolecules 2003, 4, 1654–1660. [Google Scholar] [CrossRef]
- Mutailifu, P.; Nuerxiati, R.; Lu, C.; Huojiaaihemaiti, H.; Abuduwaili, A.; Yili, A. Extraction, purification, and characterization of polysaccharides from Alhagi pseudoalhagi with antioxidant and hypoglycemic activities. Process Biochem. 2022, 121, 339–348. [Google Scholar] [CrossRef]
- Koutsakis, C.; Franchi, M.; Tavianatou, A.G.; Masola, V.; Karamanos, N.K. Studying the effects of glycosaminoglycans in cell morphological aspect with scanning electron microscopy. Methods Mol. Biol. 2023, 2619, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; An, F.P.; He, H.; Geng, F.; Song, H.; Huang, Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll. 2021, 114, 106555. [Google Scholar] [CrossRef]
- Wikiera, A.; Kozioł, A.; Mika, M.; Bozena, S. Structure and bioactivity of apple pectin isolated with arabinananase and mannanase. Food Chem. 2022, 388, 133020. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; He, Z.; Li, X.; Shen, W.; Wang, J.; Zhao, D.; Sun, H.; Xu, X.; Li, C.; Zha, X. Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. J. Mol. Struct. 2022, 1264, 133309. [Google Scholar] [CrossRef]
- Li, Y.; Lin, D.; Jiao, B.; Xu, C.; Qin, J.; Ye, G.; Su, G. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada Hayata. Int. J. Biol. Macromol. 2015, 77, 307–313. [Google Scholar] [CrossRef]
- Teng, C.; Qin, P.; Shi, Z.; Zhang, W.; Yang, X.; Yao, Y.; Ren, G. Structural characterization and antioxidant activity of alkali-extracted polysaccharides from quinoa. Food Hydrocoll. 2021, 113, 106392. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Ibrahim, S.A.; Gao, S.S.; Yang, H.; Huang, W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr. Polym. 2016, 145, 71–77. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Guo, Z.; Zhang, N.; Feng, Q.; Li, B. Polysaccharides from Pogostemon cablin (Blanco) Benth.: Characterization and antioxidant activities. Front. Pharmacol. 2022, 13, 933669. [Google Scholar] [CrossRef]
- Hu, Y.B.; Hong, H.L.; Liu, L.Y.; Zhou, J.N.; Wang, Y.; Li, Y.M.; Zhai, L.Y.; Shi, Z.H.; Zhao, J.; Liu, D. Analysis of structure and antioxidant activity of polysaccharides from Aralia continentalis. Pharmaceuticals 2022, 15, 1545. [Google Scholar] [CrossRef]
- Pak, U.; Cheng, H.; Liu, X.; Wang, Y.; Ho, C.; Ri, H.; Xu, J.; Qi, X.; Yu, H. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis. Int. J. Biol. Macromol. 2023, 248, 125896. [Google Scholar] [CrossRef]
- Zaitseva, O.; Khudyakov, A.; Sergushkina, M.; Solomina, O.; Polezhaeva, T. Pectins as a universal medicine. Fitoterapia 2020, 146, 104676. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Chang, R.; Liu, X.; Ma, X.; Chen, D.; Wang, Y.; Li, W.; Qin, J. Self-healing hydrogel based on polyphosphate-conjugated pectin with hemostatic property for wound healing applications. Biomater. Adv. 2022, 139, 212974. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Lin, Z.; Cui, K.; Zang, H.; Zhou, Y.; Zhang, L.; Liu, D. Investigation of the structural properties and antioxidant potency of pectic polysaccharides derived from Rohdea japonica (Thunb.) Roth. Molecules 2024, 29, 4135. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Wang, Q.; Lin, R.; He, P.; Lai, F.; Zhang, M.; Wu, H. Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit. Int. J. Biol. Macromol. 2020, 145, 1080–1090. [Google Scholar] [CrossRef]
- Liu, J.; Wu, S.Y.; Chen, L.; Li, Q.J.; Shen, Y.Z.; Jin, L.; Zhang, X.; Chen, P.C.; Wu, M.J.; Choi, J.I.; et al. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans. Int. J. Biol. Macromol. 2020, 155, 1385–1392. [Google Scholar] [CrossRef]
WATP | WATP-N | WATP-A | WATP-A2b | WATP-A3b | |
---|---|---|---|---|---|
Yield (w%) | 5.4 a | 43.1 b | 23.5 b | 16.1 c | 23.1 c |
Molecular weight (kDa) | ND | ND | 22.5 | 49.8 | |
Monosaccharide composition | |||||
GalA | 25.4 | 2.5 | 45.0 | 34.4 | 54.0 |
Rha | 6.5 | 1.1 | 8.1 | 12.4 | 15.8 |
Gal | 16.2 | 7.3 | 14.7 | 12.9 | 10.1 |
Ara | 23.2 | 19.0 | 18.8 | 23.9 | 11.7 |
Glc | 19.3 | 66.9 | 7.8 | 13.4 | 2.0 |
GlcA | 3.6 | 0.8 | 2.1 | 1.2 | 2.7 |
Xyl | 1.2 | 0.6 | 1.7 | NONE | 0.8 |
Man | 3.6 | 1.6 | 1.8 | 1.3 | 2.2 |
Residues | Glycosidic Linkage | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
A | α-Araf-(1→tI | H | 5.02 | 4.01 | 3.88 | 4.06 | 3.65 | |
C | 106.86 | 83.34 | 77.33 | 80.49 | 60.43 | |||
B | α-Araf-(1→tII | H | 5.11 | 4.01 | 3.88 | 4.06 | 3.75 | |
C | 106.47 | 83.34 | 77.328 | 80.49 | 60.38 | |||
C | →5)-α-Araf-(1→ | H | 5.16 | 4.23 | 4.10 | 4.23 | 3.74 | |
C | 108.62 | 84.28 | 76.47 | 80.76 | 65.80 | |||
D | →3,5)-α-Araf-(1→ | H | 5.08 | 4.21 | 4.06 | 3.96 | 3.82 | |
C | 106.45 | 78.52 | 80.45 | 83.29 | 65.76 | |||
E | →4)-α-GalAp-(1→ | H | 5.01 | 3.66 | 4.04 | 4.06 | 4.69 | |
C | 98.64 | 67.33 | 69.35 | 81.61 | 70.44 | 174.32 | ||
F | →4)-α-GalAp6Me-(1→ | H | 4.85 | 3.67 | 4.04 | 4.02 | 4.74 | |
C | 99.39 | 68.70 | 67.71 | 81.68 | 70.44 | 170.35 | ||
G | →2)-α-Rhap-(1→ | H | 5.18 | 4.35 | 3.94 | 3.29 | 3.58 | 1.17 |
C | 98.22 | 75.91 | 68.04 | 72.42 | 69.27 | 15.88 | ||
H | →2,4)-α-Rhap-(1→ | H | 4.90 | 4.33 | 4.02 | 3.96 | 3.56 | 1.23 |
C | 98.09 | 75.91 | 73.44 | 76.07 | 70.87 | 16.08 | ||
I | →3)-β-Galp-(1→ | H | 4.41 | 3.61 | 4.01 | 4.07 | 3.63 | 3.75 |
C | 102.59 | 72.12 | 83.24 | 67.71 | 74.24 | 60.40 |
Residues | Glycosidic Linkage | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
A | α-Araf-(1→AtI | H | 5.00 | 4.01 | 3.88 | 4.06 | 3.65 | |
C | 106.92 | 83.40 | 75.97 | 80.50 | 60.38 | |||
B | α-Araf-(1→AtII | H | 5.11 | 4.01 | 3.88 | 4.06 | 3.74 | |
C | 106.34 | 83.34 | 75.97 | 80.50 | 60.44 | |||
C | →5)-α-Araf-(1→ | H | 5.16 | 4.23 | 4.03 | 4.22 | 3.72 | |
C | 105.85 | 84.28 | 75.62 | 80.85 | 67.06 | |||
D | →3,5)-α-Araf-(1→ | H | 5.07 | 4.21 | 4.05 | 3.96 | 3.82 | |
C | 106.49 | 78.50 | 80.50 | 83.30 | 67.06 | |||
E | →4)-α-GalAp-(1→ | H | 4.98 | 3.67 | 4.97 | 4.13 | 4.68 | |
C | 98.60 | 67.43 | 70.02 | 81.69 | 70.44 | 174.32 | ||
F | →4)-α-GalAp6Me-(1→ | H | 4.83 | 3.67 | 4.04 | 4.02 | 4.73 | |
C | 99.53 | 68.70 | 69.36 | 81.73 | 70.53 | 170.35 | ||
G | →2)-α-Rhap-(1→ | H | 5.16 | 4.34 | 3.92 | 3.27 | 3.58 | 1.16 |
C | 98.11 | 75.90 | 69.36 | 72.26 | 71.90 | 15.88 | ||
H | →2,4)-α-Rhap-(1→ | H | 4.93 | 4.34 | 4.01 | 3.95 | 3.54 | 1.23 |
C | 96.90 | 75.90 | 73.67 | 76.54 | 70.97 | 16.07 | ||
I | →3,6)-β-Galp-(1→ | H | 4.56 | 3.62 | 3.96 | 4.07 | 3.70 | 3.83 |
C | 103.23 | 74.80 | 83.40 | 67.88 | 75.09 | 68.32 |
Pectin | [θ]max/deg·cm2·dmol−1 |
---|---|
WATP-A2b | 8.26 |
WATP-A3b | 11.74 |
Fractions | Yield a (%) | TBA Test | Molecular Weight (kDa) | Monosaccahride Composition (mol%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GalA | Rha | Gal | Ara | Glc | GlcA | Man | Xyl | ||||
WATP-A2b-D-E1 | 50.5 | − | 31.1 | 16.6 | 16.8 | 22.6 | 37.3 | 2.1 | 1.8 | 2.8 | - |
WATP-A2b-D-E2 | 13.9 | + | 8.3, 5.2 | 28.8 | 17.3 | 11.6 | 15.1 | 20.4 | 5.3 | 1.5 | - |
WATP-A2b-D-E3 | 35.6 | − | <2.0 | 96.6 | - | 0.1 | 0.5 | 1.2 | 0.2 | 1.1 | 0.3 |
WATP-A3b-D-E1 | 39.7 | − | 45.3 | 28.3 | 27.7 | 17.3 | 11.4 | 5.9 | 4.8 | 4.6 | 1.0 |
WATP-A3b-D-E2 | 17.6 | + | 9.4, 5.7 | 33.5 | 19.3 | 12.6 | 14.7 | 7.2 | 8.6 | 2.4 | 1.7 |
WATP-A3b-D-E3 | 42.6 | − | <2.0 | 95.3 | - | 1.1 | 0.4 | 1.0 | 0.2 | 1.5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Zhang, S.; Liu, Y.; Zang, H.; Zhang, L.; Liu, D. Exploring the Structural Characteristics and Antioxidant Capacity of Pectins from Adenophora tetraphylla (Thunb.) Fisch. Molecules 2025, 30, 1301. https://doi.org/10.3390/molecules30061301
Yan S, Zhang S, Liu Y, Zang H, Zhang L, Liu D. Exploring the Structural Characteristics and Antioxidant Capacity of Pectins from Adenophora tetraphylla (Thunb.) Fisch. Molecules. 2025; 30(6):1301. https://doi.org/10.3390/molecules30061301
Chicago/Turabian StyleYan, Su, Shuo Zhang, Yuxuan Liu, Hao Zang, Lihui Zhang, and Duo Liu. 2025. "Exploring the Structural Characteristics and Antioxidant Capacity of Pectins from Adenophora tetraphylla (Thunb.) Fisch." Molecules 30, no. 6: 1301. https://doi.org/10.3390/molecules30061301
APA StyleYan, S., Zhang, S., Liu, Y., Zang, H., Zhang, L., & Liu, D. (2025). Exploring the Structural Characteristics and Antioxidant Capacity of Pectins from Adenophora tetraphylla (Thunb.) Fisch. Molecules, 30(6), 1301. https://doi.org/10.3390/molecules30061301