Enhanced Electrocatalytic Performance of P-Doped MoS2/rGO Composites for Hydrogen Evolution Reactions
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials Synthesis
3.2. Material Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Wang, Z.; Yuan, H.; Wang, J.; Hu, H. Rapid hydrogen adsorption-desorption at sulfur sites via an interstitial carbon strategy for efficient HER on MoS2. Appl. Catal. B Environ. 2023, 332, 122750. [Google Scholar] [CrossRef]
- Guo, D.; Wan, Z.; Fang, G.; Zhu, M.; Xi, B. A tandem interfaced (Ni3S2-MoS2)@TiO2 composite fabricated by atomic layer deposition as efficient HER electrocatalyst. Small 2022, 18, 2201896. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, B.; Shu, Q. MXene Anchored with Platinum Cobalt Alloy as an Efficient and Stable Electrocatalyst for Hydrogen Evolution. Molecules 2024, 29, 5793. [Google Scholar] [CrossRef] [PubMed]
- Rhuy, D.; Lee, Y.; Kim, J.Y.; Kim, C.; Kwon, Y.; Preston, D.J.; Kim, I.S.; Odom, T.W.; Kang, K.; Lee, D. Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 2022, 22, 5742–5750. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Jiang, H.; Wang, X.; Xia, P.; Duan, Z.; Ren, Y.; Xiang, H.; Li, H.; Zeng, J. Enhanced HER Efficiency of Monolayer MoS2 via S Vacancies and Nano-Cones Array Induced Strain Engineering. Small 2024, 20, 2307293. [Google Scholar] [CrossRef]
- Li, T.; Chen, J.; Song, Z.; Zhong, S.; Feng, W. FeNi-Based Aerogels Containing FeNi3 Nanoclusters Embedded with a Crystalline–Amorphous Heterojunction as High-Efficiency Oxygen Evolution Catalysts. Molecules 2024, 29, 5429. [Google Scholar] [CrossRef]
- Venkateshwaran, S.; Devi, P.; Murugan, P.; Senthil Kumar, S.M. Simple immersion in polar solvents induces targeted 1T phase conversion of MoS2 for HER: A greener approach. ACS Appl. Energy Mater. 2023, 7, 1037–1050. [Google Scholar] [CrossRef]
- Fu, K.; Yuan, D.; Yu, T.; Lei, C.; Kou, Z.; Huang, B.; Lyu, S.; Zhang, F.; Wan, T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024, 29, 4304. [Google Scholar] [CrossRef]
- Xu, H.G.; Zhang, X.Y.; Ding, Y.; Fu, H.Q.; Wang, R.; Mao, F.; Liu, P.F.; Yang, H.G. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis. Small Struct. 2023, 4, 2200404. [Google Scholar] [CrossRef]
- Wang, N.; Song, S.; Wu, W.; Deng, Z.; Tang, C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers. Adv. Energy Mater. 2024, 14, 2303451. [Google Scholar] [CrossRef]
- Han, C.; Lyu, Y.; Wang, S.; Liu, B.; Zhang, Y.; Weigand, J.J.; Du, H.; Lu, J. Highly utilized active sites on Pt@ Cu/C for ethanol electrocatalytic oxidation in alkali metal hydroxide solutions. Adv. Funct. Mater. 2023, 33, 2305436. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, J.; Zhao, Y.; Zheng, Y.; Qiao, S.Z. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small 2019, 15, 1805511. [Google Scholar] [CrossRef] [PubMed]
- González-Anota, D.E.; Castañeda-Morales, E.; Paredes-Carrera, S.P.; Manzo-Robledo, A. Modulating the HER-overpotential at the interface of nanostructured MoS2 synthesized via hydrothermal route: An in-situ mass-spectroscopy approach. Int. J. Hydrog. Energy 2023, 48, 17852–17867. [Google Scholar] [CrossRef]
- Kim, J.; Park, A.; Kim, J.; Kwak, S.J.; Lee, J.Y.; Lee, D.; Kim, S.; Choi, B.K.; Kim, S.; Kwag, J. Observation of H2 evolution and electrolyte diffusion on MoS2 monolayer by in situ liquid-phase transmission electron microscopy. Adv. Mater. 2022, 34, 2206066. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Zhang, H.; Tian, J.; Cui, Y.; Zhu, W. Unveiling the Influences of In Situ Carbon Content on the Structure and Electrochemical Properties of MoS2/C Composites. Molecules 2024, 29, 4513. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Du, H.; Dong, W.; Ye, S.; Liu, H.; Sun, H.; Huang, K.; Li, H.; Tang, Y. Oxophilic Tm-sites in MoS2 trigger thermodynamic spontaneous water dissociation for enhanced hydrogen evolution. Adv. Energy Mater. 2024, 14, 2401716. [Google Scholar] [CrossRef]
- Chanda, K.; Bairi, P.; Maiti, S.; Tripathi, A.; Thapa, R.; Ghosh, S.; Panigrahi, K.; Roy, D.; Sarkar, R.; Chattopadhyay, K.K. Crystallinity and interfacial Mo–N–C bond engineered MoS2 embedded graphitic nitrogen doped carbon hollow sphere for enhanced HER activity. Int. J. Hydrog. Energy 2024, 56, 570–581. [Google Scholar] [CrossRef]
- Hong, Z.; Hong, W.; Wang, B.; Cai, Q.; He, X.; Liu, W. Stable 1T–2H MoS2 heterostructures for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 460, 141858. [Google Scholar] [CrossRef]
- Guruprasad, K.; Maiyalagan, T.; Shanmugam, S. Phosphorus doped MoS2 nanosheet promoted with nitrogen, sulfur dual doped reduced graphene oxide as an effective electrocatalyst for hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 6184–6194. [Google Scholar] [CrossRef]
- Huang, X.; Xu, H.; Cao, D.; Cheng, D. Interface construction of P-Substituted MoS2 as efficient and robust electrocatalyst for alkaline hydrogen evolution reaction. Nano Energy 2020, 78, 105253. [Google Scholar] [CrossRef]
- Peng, C.; Song, L.; Wang, L.; Yang, F.; Ding, J.; Huang, F.; Wang, Y. Effect of surface charge distribution of phosphorus-doped MoS2 on hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 4887–4896. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Li, J.; Zhang, Q.; Li, B.; Gao, M. Construction of Ru, O Co-doping MoS2 for hydrogen evolution reaction electrocatalyst and surface-enhanced Raman scattering substrate: High-performance, recyclable, and durability improvement. Adv. Funct. Mater. 2023, 33, 2210939. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Y.; Murphy, E.; Ly, A.; Xu, M.; Matanovic, I.; Pan, X.; Atanassov, P. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl. Catal. B Environ. 2022, 316, 121659. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, B.; Chen, T.; Shi, C.; Dong, X.; Tao, X. Structural regulation of 1T-MoS2/Graphene composite materials for high-performance lithium-ion capacitors. J. Energy Storage 2024, 102, 114178. [Google Scholar] [CrossRef]
- Fei, H.; Guo, T.; Xin, Y.; Wang, L.; Liu, R.; Wang, D.; Liu, F.; Wu, Z. Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Appl. Catal. B Environ. 2022, 300, 120733. [Google Scholar] [CrossRef]
- Xue, H.; Meng, A.; Chen, C.; Xue, H.; Li, Z.; Wang, C. Phosphorus-doped MoS2 with sulfur vacancy defects for enhanced electrochemical water splitting. Sci. China Mater. 2022, 65, 712–720. [Google Scholar] [CrossRef]
- Huang, J.; Chen, M.; Zhang, X.; Liu, W.; Liu, Y. P-doped 3D graphene network supporting uniformly vertical MoS2 nanosheets for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 4043–4053. [Google Scholar] [CrossRef]
- Li, S.; Luo, Z.; Wang, S.; Cheng, H. Atomic structure and HER performance of doped MoS2: A mini-review. Electrochem. Commun. 2023, 155, 107563. [Google Scholar] [CrossRef]
- Ma, G.; Zhou, Y.; Wang, Y.; Feng, Z.; Yang, J. N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Res. 2021, 14, 3523–3530. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, B.; Shi, C.; Cui, Y. 1T-MoS2/C composite as an efficient electrocatalyst for hydrogen evolution reaction under alkaline condition. J. Phys. Chem. Solids 2024, 185, 111796. [Google Scholar] [CrossRef]
- Zhan, W.; Zhang, X.; Yuan, Y.; Weng, Q.; Song, S.; Martínez-López, M.d.J.; Arauz-Lara, J.L.; Jia, F. Regulating chemisorption and electrosorption activity for efficient uptake of rare earth elements in low concentration on oxygen-doped molybdenum disulfide. ACS Nano 2024, 18, 7298–7310. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, Z.; Dong, L.; Zhao, W.; Jin, Y.; Fang, L.; Hu, B.; Dong, M. Activating MoS2 with super-high nitrogen-doping concentration as efficient catalyst for hydrogen evolution reaction. J. Phys. Chem. C 2019, 123, 10917–10925. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, L.; Yuan, M.; Yao, H.; Deng, Y.; Huang, B.; Li, H.; Sun, G.; Zhu, J. Mott–Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity. Nano Energy 2022, 101, 107563. [Google Scholar] [CrossRef]
- Sun, W.; Li, P.; Liu, X.; Shi, J.; Sun, H.; Tao, Z.; Li, F.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210–2222. [Google Scholar] [CrossRef]
- Fioravanti, F.; Martínez, S.; Delgado, S.; García, G.; Rodriguez, J.L.; Tejera, E.P.; Lacconi, G.I. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER. Electrochim. Acta 2023, 441, 141781. [Google Scholar] [CrossRef]
- Ruiz, K.H.; Liu, J.; Tu, R.; Li, M.; Zhang, S.; Garcia, J.R.V.; Mu, S.; Li, H.; Goto, T.; Zhang, L. Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. J. Alloys Compd. 2018, 747, 100–108. [Google Scholar] [CrossRef]
- Chen, B.; Hu, P.; Yang, F.; Hua, X.; Yang, F.F.; Zhu, F.; Sun, R.; Hao, K.; Wang, K.; Yin, Z. In situ porousized MoS2 nano islands enhance HER/OER bifunctional electrocatalysis. Small 2023, 19, 2207177. [Google Scholar] [CrossRef]
- Joyner, J.; Oliveira, E.F.; Yamaguchi, H.; Kato, K.; Vinod, S.; Galvao, D.S.; Salpekar, D.; Roy, S.; Martinez, U.; Tiwary, C.S. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 12629–12638. [Google Scholar] [CrossRef]
- Wu, L.; Xu, X.; Zhao, Y.; Zhang, K.; Sun, Y.; Wang, T.; Wang, Y.; Zhong, W.; Du, Y. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution. Appl. Surf. Sci. 2017, 425, 470–477. [Google Scholar] [CrossRef]
- Teich, J.; Dvir, R.; Henning, A.; Hamo, E.R.; Moody, M.J.; Cohen, H.; Marks, T.J.; Rosen, B.A.; Lauhon, L.J.; Ismach, A. Light and complex 3D MoS2/graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. Nanoscale 2020, 12, 2715–2725. [Google Scholar] [CrossRef]
- Tahira, A.; Ibupoto, Z.H.; Mazzaro, R.; You, S.; Morandi, V.; Natile, M.M.; Vagin, M.; Vomiero, A. Advanced electrocatalysts for hydrogen evolution reaction based on core–shell MoS2/TiO2 nanostructures in acidic and alkaline media. ACS Appl. Energy Mater 2019, 2, 2053–2062. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Wang, H.; Zhang, Y.; Dionysiou, D.D. Synergistic effect of reduced graphene oxide and near-infrared light on MoS2-mediated electrocatalytic hydrogen evolution. Chem. Eng. J. 2021, 418, 129343. [Google Scholar] [CrossRef]
- Muthurasu, A.; Maruthapandian, V.; Kim, H.Y. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 248, 202–210. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, G.; Gong, S.; Liu, C.; Wu, C.; Lyu, P.; Maurin, G.; Zhang, N. Design of MoS2/graphene van der Waals heterostructure as highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. ACS Appl. Mater. Interfaces 2020, 12, 24777–24785. [Google Scholar] [CrossRef]
- Narasimman, R.; Waldiya, M.; Jalaja, K.; Vemuri, S.K.; Mukhopadhyay, I.; Ray, A. Self-standing, hybrid three-dimensional-porous MoS2/Ni3S2 foam electrocatalyst for hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy 2021, 46, 7759–7771. [Google Scholar] [CrossRef]
Materials | Electrolyte | η10 (mV) | Tafel Slope (mV dec−1) | Refs |
---|---|---|---|---|
MoS2/SN-rGO | 0.5 M H2SO4 | 650 | 184 | [35] |
MoS2-500 | 0.5 M H2SO4 | 355 | 84 | [36] |
M1S1 | 0.5 M H2SO4 | 248 | 84 | [37] |
rGO-MoS2 | 0.5 M H2SO4 | 207 | - | [38] |
Mn-MoS2/rGO | 0.5 M H2SO4 | 230 | 76 | [39] |
500-MoS2 | 0.5 M H2SO4 | 180 | 47 | [40] |
MoS2/TiO2 | 1 M KOH | 700 | 60 | [41] |
0.2 GO-MoS2 NIR | 1 M KOH | 314 | 80 | [42] |
Co3O4/MoS2 | 1 M KOH | 205 | 128 | [43] |
MoS2/G HS | 1 M KOH | 183 | 127 | [44] |
MoS2/Ni3S2 | 1 M KOH | 190 | 65.6 | [45] |
P-MoS2/rGO | 1 M KOH | 172.8 | 70.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Zhang, B.; Yang, Y.; Zhao, M.; Fang, Y.; Cui, Y.; Tian, J. Enhanced Electrocatalytic Performance of P-Doped MoS2/rGO Composites for Hydrogen Evolution Reactions. Molecules 2025, 30, 1205. https://doi.org/10.3390/molecules30061205
Zhu W, Zhang B, Yang Y, Zhao M, Fang Y, Cui Y, Tian J. Enhanced Electrocatalytic Performance of P-Doped MoS2/rGO Composites for Hydrogen Evolution Reactions. Molecules. 2025; 30(6):1205. https://doi.org/10.3390/molecules30061205
Chicago/Turabian StyleZhu, Wenjun, Bofeng Zhang, Yao Yang, Minghai Zhao, Yuwen Fang, Yang Cui, and Jian Tian. 2025. "Enhanced Electrocatalytic Performance of P-Doped MoS2/rGO Composites for Hydrogen Evolution Reactions" Molecules 30, no. 6: 1205. https://doi.org/10.3390/molecules30061205
APA StyleZhu, W., Zhang, B., Yang, Y., Zhao, M., Fang, Y., Cui, Y., & Tian, J. (2025). Enhanced Electrocatalytic Performance of P-Doped MoS2/rGO Composites for Hydrogen Evolution Reactions. Molecules, 30(6), 1205. https://doi.org/10.3390/molecules30061205