Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα-13CH3 Double-Quantum Solid-State NMR
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selective Excitation of DQ Coherence for the ( [U-13C,15N]fMLF Peptide
2.2. Design of Experiments to Measure Internuclear Distances and C–H Bond Orientations
2.3. Measurement of Internuclear Distances and C–H Bond Orientations in the ([U-13C,15N]fMLF Peptide
2.4. Conformational Restraints on the ( [U-13C,15N]fMLF Peptide
2.5. Comparison with X-Ray Crystallography
2.6. Limitations of the Approach
3. Methods and Materials
3.1. Preparation of fMLF for SSNMR
3.2. Preparation and Characterization of Med43-50 Fibrils
3.3. NMR Analysis
3.4. Computational Methods
4. Conclusions and Outlook
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Wang, N.X.; Zhang, W.P.; Cheng, X.R.; Yan, Z.B.; Shao, G.; Wang, X.; Wang, R.; Fu, C.Y. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Weers, J.G.; Miller, D.P. Formulation Design of Dry Powders for Inhalation. J. Pharm. Sci. 2015, 104, 3259–3288. [Google Scholar] [CrossRef] [PubMed]
- Malmsten, M. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. Curr. Top. Med. Chem. 2016, 16, 16–24. [Google Scholar] [CrossRef]
- Worm, D.J.; Els-Heindl, S.; Beck-Sickinger, A.G. Targeting of peptide-binding receptors on cancer cells with peptide-drug conjugates. Pept. Sci. 2020, 112, 1–22. [Google Scholar] [CrossRef]
- Lian, L.Y.; Middleton, D.A. Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2001, 39, 171–190. [Google Scholar] [CrossRef]
- Cady, S.D.; Schmidt-Rohr, K.; Wang, J.; Soto, C.S.; DeGrado, W.F.; Hong, M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 2010, 463, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.; Giller, K.; Hornig, S.; Martin-Eauclaire, M.F.; Pongs, O.; Becker, S.; Baldus, M. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 2006, 440, 959–962. [Google Scholar] [CrossRef]
- Wishart, D.S.; Case, D.A. Use of chemical shifts in macromolecular structure determination. Nucl. Magn. Reson. Biol. Macromol. 2001, 338 Pt A, 3–34. [Google Scholar]
- Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. TALOS plus: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 2009, 44, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.; Sarkar, S.; Quinn, C.M.; Polenova, T. Solid-state NMR spectroscopy of microcrystalline proteins. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 102, pp. 81–151. [Google Scholar]
- Franks, W.T.; Wylie, B.J.; Schmidt, H.L.F.; Nieuwkoop, A.J.; Mayrhofer, R.M.; Shah, G.J.; Graesser, D.T.; Rienstra, C.M. Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc. Natl. Acad. Sci. USA 2008, 105, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Hou, G.J.; Agarwal, V.; Su, Y.C.; Ramamoorthy, A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem. Rev. 2022, 123, 918–988. [Google Scholar] [CrossRef] [PubMed]
- Barbet-Massin, E.; Pell, A.J.; Retel, J.S.; Andreas, L.B.; Jaudzems, K.; Franks, W.T.; Nieuwkoop, A.J.; Hiller, M.; Higman, V.; Guerry, P.; et al. Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning. J. Am. Chem. Soc. 2014, 136, 12489–12497. [Google Scholar] [CrossRef] [PubMed]
- Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347. [Google Scholar] [CrossRef]
- Rienstra, C.M.; Tucker-Kellogg, L.; Jaroniec, C.P.; Hohwy, M.; Reif, B.; McMahon, M.T.; Tidor, B.; Lozano-Pérez, T.; Griffin, R.G. De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. USA 2002, 99, 10260–10265. [Google Scholar] [CrossRef]
- van der Wel, P.C.A. Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy. Front. Mol. Biosci. 2021, 8, 1–15. [Google Scholar] [CrossRef]
- Fung, B.M.; Khitrin, A.K.; Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 2000, 142, 97–101. [Google Scholar] [CrossRef]
- van Rossum, B.J.; Forster, H.; deGroot, H.J.M. High-field and high-speed CP-MAS 13C NMR heteronuclear dipolar-correlation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J. Magn. Reson. 1997, 124, 516–519. [Google Scholar] [CrossRef]
- Middleton, D.A.; Griffin, J.; Esmann, M.; Fedosova, N.U. Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane. RSC Adv. 2023, 13, 34836–34846. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, D.P.; Levitt, M.H.; Griffin, R.G. Rotational resonance in solid-state NMR. Chem. Phys. Lett. 1988, 146, 71–76. [Google Scholar] [CrossRef]
- Dusold, S.; Sebald, A. Dipolar recoupling under magic-angle spinning conditions. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 2000; Volume 41, pp. 185–264. [Google Scholar]
- Karlsson, T.; Edén, M.; Luthman, H.; Levitt, M.H. Efficient double-quantum excitation in rotational resonance NMR. J. Magn. Reson. 2000, 145, 95–107. [Google Scholar] [CrossRef]
- Karlsson, T.; Hughes, C.E.; Günne, J.; Levitt, M.H. Double-quantum excitation in the NMR of spinning solids by pulse-assisted rotational resonance. J. Magn. Reson. 2001, 148, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Brinkmann, A.; Verdegem, P.J.E.; Lugtenburg, J.; Levitt, M.H. Multiple-quantum relaxation in the magic-angle-spinning NMR of 13C spin pairs. Solid State Nucl. Magn. Reson. 1999, 14, 43–58. [Google Scholar] [CrossRef]
- Feng, X.; Lee, Y.K.; Sandstrom, D.; Eden, M.; Maisel, H.; Sebald, A.; Levitt, M.H. Direct determination of a molecular torsional angle by solid-state NMR. Chem. Phys. Lett. 1996, 257, 314–320. [Google Scholar] [CrossRef]
- Hong, M.; Gross, J.D.; Rienstra, C.M.; Griffin, R.G.; Kumashiro, K.K.; Schmidt-Rohr, K. Coupling amplification in 2D MAS NMR and its application to torsion angle determination in peptides. J. Magn. Reson. 1997, 129, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Towse, C.L.; Rysavy, S.J.; Vulovic, I.M.; Daggett, V. New Dynamic Rotamer Libraries: Data-Driven Analysis of Side-Chain Conformational Propensities. Structure 2016, 24, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Gavuzzo, E.; Mazza, F.; Pochetti, G.; Scatturin, A. Crystal-structure, conformation and potential-energy calculations of the chemotactic peptide N-formyl-L-Met-L-Leu-L-Phe-OMe. Int. J. Pept. Protein Res. 1989, 34, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Tycko, R. Solid-State NMR Studies of Amyloid Fibril Structure. In Annual Review of Physical Chemistry; Leone, S.R., Cremer, P.S., Groves, J.T., Johnson, M.A., Eds.; Annual Reviews: Palo Alto, CA, USA, 2011; Volume 62, pp. 279–299. [Google Scholar]
- Dos, A.; Schimming, V.; Huot, M.C.; Limbach, H.H. Acid-Induced Amino Side-Chain Interactions and Secondary Structure of Solid Poly-L-lysine Probed by 15N and 13C Solid State NMR and ab Initio Model Calculations. J. Am. Chem. Soc. 2009, 131, 7641–7653. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.A. NMR studies of amyloid interactions. Prog. Nucl. Magn. Reson. Spectrosc. 2024, 144, 63–96. [Google Scholar] [CrossRef]
- Petkova, A.T.; Ishii, Y.; Balbach, J.J.; Antzutkin, O.N.; Leapman, R.D.; Delaglio, F.; Tycko, R. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 2002, 99, 16742–16747. [Google Scholar] [CrossRef] [PubMed]
- Madine, J.; Pandya, M.J.; Hicks, M.R.; Rodger, A.; Yates, E.A.; Radford, S.E.; Middleton, D.A. Site-Specific Identification of an Aß Fibril-Heparin Interaction Site by Using Solid-State NMR Spectroscopy. Angew. Chem. Int. Ed. 2012, 51, 13140–13143. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H.W.; Ryskeldi-Falcon, B.; Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023, 621, 701–710. [Google Scholar] [CrossRef]
- Makabe, K.; Blancalana, M.; Yan, S.; Tereshko, V.; Gawlak, G.; Miller-Auer, H.; Meredith, S.C.; Koide, S. High-resolution structure of a self-assembly-competent form of a hydrophobic peptide captured in a soluble β-sheet scaffold. J. Mol. Biol. 2008, 378, 459–467. [Google Scholar] [CrossRef]
- Griffin, B.T.; O’Driscoll, C.M. Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Ther. Deliv. 2011, 2, 1633–1653. [Google Scholar] [CrossRef]
CαH | CH3 | νR (Hz) | tmax (ms) | rCC (Å) |
---|---|---|---|---|
Met | Met | 6642 | 20 | 4.8 (0.2) |
Met | Leu | 5682 | 16 | >5.0 |
Leu | Met | 7551 | 30 | >6.5 |
Leu | Leu | 6533 | 10 | 3.0 (0.2) |
Phe | Met | 7078 | 20 | 5.6 (0.2) |
Phe | Leu | 6107 | 25 | >6.5 |
Torsional Angle a | Value (Degrees) | |||
---|---|---|---|---|
Conformer 1 b | Conformer 2 b | Previous SSNMR c | X-Ray d | |
1 | 69 | 169 | 87 | 77 |
2 | 182 | 62 | 157 | 173 |
3 | 178 | 77 | 153 | 180 |
4 | 265 | 227 | 282 | 243 |
5 | 180 | 181 | 177 | 175 |
6 | 158 | 177 | 145 | 167 |
7 | 289 | 294 | 302 | 300 |
8 | 312 | 317 | 305 | 302 |
9 | 301 | 311 | 316 | 310 |
10 | 179 | 179 | 180 | 176 |
11 | 211 | 172 | 195 | 204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Middleton, D. Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα-13CH3 Double-Quantum Solid-State NMR. Molecules 2025, 30, 739. https://doi.org/10.3390/molecules30030739
Middleton D. Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα-13CH3 Double-Quantum Solid-State NMR. Molecules. 2025; 30(3):739. https://doi.org/10.3390/molecules30030739
Chicago/Turabian StyleMiddleton, David. 2025. "Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα-13CH3 Double-Quantum Solid-State NMR" Molecules 30, no. 3: 739. https://doi.org/10.3390/molecules30030739
APA StyleMiddleton, D. (2025). Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα-13CH3 Double-Quantum Solid-State NMR. Molecules, 30(3), 739. https://doi.org/10.3390/molecules30030739