Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors
Abstract
:1. Introduction
2. Results
2.1. GC MS Analysis
No. | RT/min | Compound | Formula | CAS No. | RI | Reference | Sim Score |
---|---|---|---|---|---|---|---|
1 | 10.56 | α-Pinene | C10H16 | 80-56-8 | 930 | [39] | 94.73 |
2 | 11.97 | Pseudolimonene | C10H16 | 499-97-8 | 975 | [40] | 95.35 |
3 | 12.36 | β-Pinene | C10H16 | 127-91-3 | 988 | [41] | 96.21 |
4 | 12.89 | α-Phellandrene | C10H16 | 99-83-2 | 1004 | [42] | 91.13 |
5 | 13.48 | m-Cymene | C10H14 | 535-77-3 | 1023 | [43] | 97.13 |
6 | 13.65 | D-Limonene | C10H16 | 5989-27-5 | 1029 | [44] | 98.35 |
7 | 14.15 | 3-Carene | C10H16 | 13466-78-9 | 1045 | [40] | 95.09 |
8 | 14.55 | β-Terpinene | C10H16 | 99-85-4 | 1058 | [45] | 97.75 |
9 | 14.93 | Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl) propan-2-yl carbonate | C13H22O4 | - | 1048 | [46] | 95.8 |
10 | 15.38 | α-Terpinene | C10H16 | 99-86-5 | 1084 | [45] | 95.51 |
11 | 15.43 | Linalool oxide | C10H18O2 | 1365-19-1 | 1086 | [47] | 92.93 |
12 | 15.82 | Linalyl acetate | C12H20O2 | 115-95-7 | 1093 | [48] | 80.05 |
13 | 18.29 | Terpinen-4-ol | C10H18O | 562-74-3 | 1178 | [42] | 93.14 |
14 | 18.72 | α-Terpineol | C10H18O | 10482-56-1 | 1191 | [49] | 94.51 |
15 | 22.68 | δ-EIemene | C15H24 | 20307-84-0 | 1410 | [39] | 95.33 |
16 | 23 | Cadina-3,5-diene | C15H24 | 267665-20-3 | 1416 | [46] | 94.22 |
17 | 23.23 | Humulene | C15H24 | 6753-98-6 | 1421 | [50] | 85.33 |
18 | 23.78 | Copaene | C15H24 | 3856-25-5 | 1433 | [41] | 96.18 |
19 | 24.12 | Guaia-10(14),11-diene | C15H24 | - | 1440 | - | 95.09 |
20 | 24.95 | 2-methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane | C15H24 | - | 1458 | - | 97.36 |
21 | 25.43 | Valencene | C15H24 | 4630-07-3 | 1469 | [51] | 94.78 |
22 | 25.86 | 1,5,9,9-Tetramethyl-1,4,7-cycloundecatriene | C15H24 | - | 1478 | [52] | 94.77 |
23 | 26.02 | Bicyclosesquiphellandrene | C15H24 | 54324-03-7 | 1481 | [53] | 94.8 |
24 | 26.32 | γ-Cadinene | C15H24 | 483-74-9 | 1488 | [50] | 96.69 |
25 | 26.52 | β-Copaene | C15H24 | 18252-44-3 | 1492 | [42] | 97.35 |
26 | 26.76 | γ-Muurolene | C15H24 | 30021-74-0 | 1497 | [48] | 95.3 |
27 | 26.86 | Bicyclogermacren | C15H24 | 67650-90-2 | 1499 | [54] | 95.28 |
28 | 27.01 | δ-Cadinene | C15H24 | 483-76-1 | 1502 | [50] | 92.8 |
29 | 27.37 | β-Cadinene | C15H24 | 523-47-7 | 1510 | [55] | 94.82 |
30 | 27.46 | Calamenene | C15H24 | 72937-55-4 | 1512 | [46] | 93.19 |
31 | 27.73 | 4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7-hexahydronaphthalene | C15H24 | 16728-99-7 | 1518 | [56] | 86.44 |
32 | 27.83 | α-Amorphene | C15H24 | 483-75-0 | 1520 | [57] | 94.92 |
33 | 28.4 | Germacrene B | C15H24 | 15423-57-1 | 1532 | [39] | 91.84 |
IS | 21.69 | n-Tridecane | C13H28 | 629-50-5 | 1300 | - | 96.59 |
2.2. Discrimination Between COREs and Non-COREs Based on Multivariate Analysis
2.3. Environmental Factors Analysis
2.4. Correlation Analysis of Climatic Factors and Soil Factors with Volatile Compounds
3. Discussion
4. Materials and Methods
4.1. Subsection
4.2. HS-SPME-GC-MS
4.3. Climatic Factors
4.4. Soil Elemental Analysis
4.5. Data Analysis and Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, W.K.; Zhang, W.; Liu, D.H.; Yin, M.Q.; Wang, X.; Wang, S.C.; Shen, S.Q.; Liu, S.J.; Huang, Y.; Li, X.X.; et al. Evolution-guided multiomics provide insights into the strengthening of bioactive flavone biosynthesis in medicinal pummelo. Plant Biotechnol. J. 2023, 21, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Xian, L.; Sahu, S.K.; Huang, L.Y.; Fan, Y.N.; Lin, J.H.; Su, J.M.; Bai, M.; Chen, Y.W.; Wang, S.J.; Ye, P.; et al. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of ‘Tomentosa’. Plant Sci. 2022, 325, 111489. [Google Scholar] [CrossRef]
- Su, C.; Wong, K.-L.; But, P.P.-H.; Su, W.-W.; Shaw, P.-C. Molecular Authentication of the Chinese Herb Huajuhong and Related Medicinal Material by DNA Sequencing and ISSR Markers. J. Food Drug Anal. 2010, 18, 161–170. [Google Scholar] [CrossRef]
- Li, P.L.; Liu, M.H.; Hu, J.H.; Su, W.W. Systematic chemical profiling of Citrus grandis ‘Tomentosa’ by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2014, 90, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.Y.; Zhu, C.Y.; Qiu, D.Y.; Mao, G.L.; Mueller-Roeber, B.; Zeng, J.W. Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in ‘Tomentosa’ fruits. Plant Physiol. Bioch. 2023, 196, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, C.; Tu, H.; Zhou, J.; Liu, X.; Cheng, Y.; Luo, J.; Deng, X.; Zhang, H.; Xu, J. Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Sci. Rep. 2017, 7, 10549. [Google Scholar] [CrossRef]
- Jiang, K.; Song, Q.; Wang, L.; Xie, T.; Wu, X.; Wang, P.; Yin, G.; Ye, W.; Wang, T. Antitussive, expectorant and anti-inflammatory activities of different extracts from Exocarpium Citri grandis. J. Ethnopharmacol. 2014, 156, 97–101. [Google Scholar] [CrossRef]
- Valussi, M.; Antonelli, M.; Donelli, D.; Firenzuoli, F. Appropriate use of essential oils and their components in the management of upper respiratory tract symptoms in patients with COVID-19. J. Herb. Med. 2021, 28, 100451. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, A.; Ziaian, B.; Hessami, K.; Kashkooe, A.; Pasalar, M. An Evidence-Based Review of Antitussive Herbs Containing Essential Oils in Traditional Persian Medicine. Curr. Drug Discov. Technol. 2021, 18, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Santana, H.S.R.; de Carvalho, F.O.; dos Santos, D.M.; da Silva, E.A.P.; Silva, É.R.; Shanmugam, S.; Heimfarth, L.; Nunes, P.S.; e Silva, A.M.d.O.; de Souza Araújo, A.A. Inhaled D-Limonene minimizes acute lung injury and reduces oxidative stress induced by smoke in rats. Phytomedicine Plus 2022, 2, 100308. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; LD Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Baschieri, A.; Amorati, R.; Valgimigli, L. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem. 2021, 345, 128468. [Google Scholar] [CrossRef] [PubMed]
- Deen, J.I.; Zawad, A.S.; Uddin, M.; Chowdhury, M.A.H.; Al Araby, S.Q.; Rahman, M.A. Terpinen-4-ol, a volatile terpene molecule, extensively electrifies the biological systems against the oxidative stress-linked pathogenesis. Adv. Redox Res. 2023, 9, 100082. [Google Scholar] [CrossRef]
- Fan, R.Y.; Qiu, D.Y.; Mao, G.L.; Zeng, J.W. Combined analysis of GC-MS, RNA-seq and ATAC-seq elucidates the essential oils variation and terpenes biosynthesis in Citrus grandis ‘Tomentosa’. Ind. Crop Prod. 2024, 209, 117996. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, L.P.; Teng, Z.Q.; Zhan, Z.L.; Nan, T.G.; Zhou, A.X.; Guo, L.P. Comparison of volatile constituents in two types of mugwort leaves (produced in Qichun and Nanyang) using the headspace GC-MS. J. Acupunct. Tuina Sci. 2016, 14, 164–169. [Google Scholar] [CrossRef]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Zeng, X.; Peng, W.; Wu, Z.; Su, W.W. Study on the Discrimination between Citri Reticulatae Pericarpium Varieties Based on HS-SPME-GC-MS Combined with Multivariate Statistical Analyses. Molecules 2018, 23, 1235. [Google Scholar] [CrossRef]
- Fan, R.Y.; Zhu, C.Y.; Qiu, D.Y.; Zeng, J.W. Comparison of the bioactive chemical components and antioxidant activities in three tissues of six varieties of Citrus grandis ‘Tomentosa’ fruits. Int. J. Food Prop. 2019, 22, 1848–1862. [Google Scholar] [CrossRef]
- Gouinguené, S.; Turlings, T. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 2002, 129, 1296–1307. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Li, X. Moderate warming will expand the suitable habitat of Ophiocordyceps sinensis and expand the area of O. sinensis with high adenosine content. Sci. Total Environ. 2021, 787, 147605. [Google Scholar] [CrossRef]
- El-Guezzane, C.; El-Moudden, H.; Harhar, H.; Chahboun, N.; Zarrouk, A. A comparative study of the antioxidant activity of two Moroccan prickly pear cultivars collected in different regions. Chem. Data Collect. 2020, 31, 100637. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Chen, C.H.; Yuan, J.H.; Xue, J.; Chen, H.J.; Liu, X.H.; Cai, Z.C.; Wu, N.; Yang, W.; Cheng, J.M. A study for quality evaluation of Lysimachiae herba from different origins based on fingerprint-activity relationship modeling and multi-component content determination. J. Ethnopharmacol. 2024, 325, 118019. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, B.; Jia, X.; Chen, G. Differential Expression of Calycosin-7-O-β-D-glucoside Biosynthesis Genes and Accumulation of Related Metabolites in Different Organs of Astragalus membranaceus Bge.var. mongholicus (Bge.) Hsiao Under Drought Stress. Appl. Biochem. Biotechnol. 2021, 194, 3182–3195. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, H.; Li, P.; Jin, J.; Li, Z. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress. BMC Plant Biol. 2022, 22, 475. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Peng, H.S.; Shen, Y.; Zhao, R.; Huang, L.Q. The profiling of bioactive ingredients of differently aged Salvia miltiorrhiza roots. Microsc. Res. Techniq. 2013, 76, 947–954. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, Y.; Han, M.; Yang, L.M. Changes in the physiological characteristics of Panax ginseng embryogenic calli and molecular mechanism of ginsenoside biosynthesis under cold stress. Planta 2021, 253, 79. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.L.; Liu, J.; Quan, X.L.; Quan, L.H.; Wu, S.Q. Different chilling stresses stimulated the accumulation of different types of ginsenosides in Panax ginseng cells. Acta Physiol. Plant. 2016, 38, 210. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Zhang, J.; Li, C.; Xu, Y.H.; Zheng, H.; Zhou, J.H.; Zha, L.P.; Jiang, C.; Jin, Y.; et al. Ginsenosides regulate adventitious root formation in via a CLE45-WOX11 regulatory module. J. Exp. Bot. 2020, 71, 6396–6407. [Google Scholar] [CrossRef]
- Su, J.M.; Wang, Y.Y.; Bai, M.; Peng, T.H.; Li, H.S.; Xu, H.J.; Guo, G.F.; Bai, H.Y.; Rong, N.; Sahu, S.K.; et al. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi ’. Microbiome 2023, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, S.S.; Yan, H.F.; Wang, L.B.; Li, J.L. Geo-herbalism research of Polygalae Radix based on element profiles and chemometrics. Spectrosc. Lett. 2017, 50, 352–357. [Google Scholar] [CrossRef]
- Cheng, L.; Han, M.; Yang, L.M.; Yang, L.; Sun, Z.; Zhang, T. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind. Crop. Prod. 2018, 122, 473–482. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.J.; Wu, C.; Chen, S.Q.; Wang, Z.Y.; Yang, Z.C.; Qin, S.S.; Huang, L.Q. Water Deficit Affected Flavonoid Accumulation by Regulating Hormone Metabolism in Georgi Roots. PLoS ONE 2012, 7, e42946. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Wu, D.K.; Lin, R.C.; Liu, X.H.; Hu, Q.P.; Kong, Q.Y. ICP-MS analytical studies on inorganic elements of Mineral Chinese Medicine Chloriti Lapis. Chin. J. Pharm. Anal. 2010, 30, 2067–2074. [Google Scholar]
- Ai, J. Headspace solid phase microextraction. Dynamics and quantitative analysis before reaching a partition equilibrium. J. Anal. Chem. 1997, 69, 3260–3266. [Google Scholar] [CrossRef]
- Ai, J. Solid phase microextraction for quantitative analysis in nonequilibrium situations. J Anal. Chem. 1997, 69, 1230–1236. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, P.; Pan, Z.; Xu, H.; Luo, Y.; Wang, X. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC–MS. J. Food Chem. 2013, 141, 259–265. [Google Scholar] [CrossRef]
- Siani, A.C.; Garrido, I.S.; Monteiro, S.S.; Carvalho, E.S.; Ramos, M.F.S. Protium icicariba as a source of volatile essences. Biochem. Syst. Ecol. 2004, 32, 477–489. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, W.; Hu, S.; Wu, H.; Dong, L.; Su, W. Dynamic change and activity analysis of volatile oil in the flowers of Citri grandis Exocarpium. Acta Sci. Nat. Univ. Sunyatseni 2024, 63, 88–95. [Google Scholar]
- Jalali-Heravi, M.; Zekavat, B.; Sereshti, H. Characterization of essential oil components of Iranian geranium oil using gas chromatography–mass spectrometry combined with chemometric resolution techniques. J. Chromatogr. A 2006, 1114, 154–163. [Google Scholar] [CrossRef]
- Asuming, W.A.; Beauchamp, P.S.; Descalzo, J.T.; Dev, B.C.; Dev, V.; Frost, S.; Ma, C.W.J.B.S. Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochem. Syst. Ecol. 2005, 33, 17–26. [Google Scholar] [CrossRef]
- Romanenko, E.; Tkachev, A. Identification by GC—MS of cymene isomers and 3, 7, 7-trimethylcyclohepta-1, 3, 5-triene in essential oils. Chem. Nat. Compd. 2006, 42, 699–701. [Google Scholar] [CrossRef]
- Harzallah-Skhiri, F.; Jannet, H.B.; Hammami, S.; Mighri, Z. Variation of volatile compounds in two Prosopis farcta (Banks et Sol.) Eig.(Fabales, Fabaceae= Leguminosae) populations. Flavour Fragr. J. 2006, 21, 484–487. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Faleiro, M.L.; Miguel, M.G. Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J. Agric. Food Chem. 2006, 54, 6314–6321. [Google Scholar] [CrossRef] [PubMed]
- Andriamaharavo, N.R. Retention Data; NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014.
- Pripdeevech, P.; Chumpolsri, W.; Suttiarporn, P.; Wongpornchai, S. The chemical composition and antioxidant activities of basil from Thailand using retention indices and comprehensive two-dimensional gas chromatography. J. Serbian Chem. Soc. 2010, 75, 1503–1513. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Viškelis, P.; Dambrauskienė, E. Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). J. Agric. Food Chem. 2003, 51, 7751–7758. [Google Scholar] [CrossRef] [PubMed]
- Skaltsa, H.D.; Mavrommati, A.; Constantinidis, T. A chemotaxonomic investigation of volatile constituents in Stachys subsect. Swainsonianeae (Labiatae). Phytochemistry 2001, 57, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Couladis, M.; Chinou, I.; Tzakou, O.; Petrakis, P. Composition and antimicrobial activity of the essential oil of Hypericum rumeliacum subsp. apollinis (Boiss. & Heldr.). Phytother. Res. 2003, 17, 152–154. [Google Scholar]
- Siani, A.; Ramos, M.d.S.; Menezes-de-Lima Jr, O.; Ribeiro-dos-Santos, R.; Fernadez-Ferreira, E.; Soares, R.; Rosas, E.; Susunaga, G.; Guimarães, A.; Zoghbi, M.d.G. Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. J. Ethnopharmacol. 1999, 66, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Li, X.R.; Liang, Y.Z.; Zhou, T.; Zhang, L.X.; Hu, C.D. Comparative analysis of volatile constituents between recipe jingfangsan and its single herbs by GC-MS combined with alternative moving window factor analysis method. J. Sep. Sci. 2009, 32, 258–266. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Jaramillo, B.E.; Martínez, J.R. Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) NE Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. J. Chromatogr. A 2004, 1025, 93–103. [Google Scholar] [CrossRef]
- Radulović, N.; Đorđević, N.; Marković, M.; Palić, R. Volatile constituents of Glechoma hirsute Waldst. & Kit. and G. hederacea L. (Lamiaceae). Bull. Chem. Soc. Ethiop. 2010, 24, 67–76. [Google Scholar]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2007, 12, 43–65. [Google Scholar] [CrossRef]
- Marilena, I.; Davorin, K.; Josip, F. Differentiation of F1 hybrids P. nigra JF Arnold× P. sylvestris L., P. nigra JF Arnold× P. densiflora Siebold et Zucc., P. nigra JF Arnold× P. thunbergiana Franco and their parental species by needle volatile composition. Biochem. Syst. Ecol. 2005, 33, 427–439. [Google Scholar]
- Zarai, Z.; Kadri, A.; Ben Chobba, I.; Ben Mansour, R.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011, 10, 1–8. [Google Scholar] [CrossRef]
- Zraik, M.; Booth, T.; Piercey-Normore, M.D. Relationship between lichen species composition, secondary metabolites and soil pH, organic matter, and grain characteristics in Manitoba. Botany 2018, 96, 267–279. [Google Scholar] [CrossRef]
- Sun, X.; Pei, J.; Zhao, L.; Ahmad, B.; Huang, L.F. Fighting climate change: Soil bacteria communities and topography play a role in plant colonization of desert areas. Environ. Microbiol. 2021, 23, 6876–6894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, K.; Wang, Q.; Yang, X.; Meng, D. A multidimensional strategy for characterization, distinction, and quality control of two Clinopodium medicinal plants. J. Ethnopharmacol. 2024, 327, 118019. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, Z.; Sun, Y.; Zhang, Y.; Wang, S.; Zhang, Q.; Cai, T.; Xiang, W.; Zeng, C.; Tang, J. D-Limonene: Promising and Sustainable Natural Bioactive Compound. Appl. Sci. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Kang, G.-Q.; Duan, W.-G.; Lin, G.-S.; Yu, Y.-P.; Wang, X.-Y.; Lu, S.-Z.J.M. Synthesis of bioactive compounds from 3-carene (II): Synthesis, antifungal activity and 3D-QSAR study of (Z)-and (E)-3-caren-5-one oxime sulfonates. Molecules 2019, 24, 477. [Google Scholar] [CrossRef] [PubMed]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L.J.P. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wu, X.; Wang, Q.; Qi, P.; Zhang, Y.; Wang, L.; Sun, C. Characterization of γ-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases. ACS Omega 2022, 7, 7229–7239. [Google Scholar] [CrossRef] [PubMed]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- He, J.P.; Yao, L.; Pecoraro, L.; Liu, C.X.; Wang, J.; Huang, L.Q.; Gao, W.Y. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit. Rev. Biotechnol. 2023, 43, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Jeong, B.R. Night Temperature Affects the Growth, Metabolism, and Photosynthetic Gene Expression in Astragalus membranaceus and Codonopsis lanceolata Plug Seedlings. Plants 2019, 8, 407. [Google Scholar] [CrossRef]
- Kanno, K.; Mae, T.; Makino, A. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Sci. Plant Nutr. 2009, 55, 124–131. [Google Scholar] [CrossRef]
- Wang, B.; Guo, C.; Wan, Y.; Li, J.; Li, Y.E. Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. Sci. Total Environ. 2019, 706, 136063. [Google Scholar] [CrossRef]
- Naghiloo, S.; Movafeghi, A.; Delazar, A.; Nazemiyeh, H.; Dadpour, M.R. Ontogenetic Variation of Total Phenolics and Antioxidant Activity in Roots, Leaves and Flowers of Astragalus compactus Lam. (Fabaceae). Bioimpacts 2012, 2, 105. [Google Scholar]
- Zhang, W.J.; Bjorn, L.O. The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 2009, 80, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Bufler, U.; Wegmann, K. Diurnal variation of monoterpene concentrations in open-top chambers and in the welzheim forest air, F.R.G. Atmos. Environ. Part A Gen. Top. 1991, 25, 251–256. [Google Scholar] [CrossRef]
- Dement, W.A.; Tyson, B.J.; Mooney, H.A. Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry 1975, 12, 2555–2557. [Google Scholar] [CrossRef]
- Tingey, D.T.; Manning, M.; Grothaus, L.C.; Burns, W.F. Influence of Light and Temperature on Monoterpene Emission Rates from Slash Pine. Plant Physiol. 1980, 65, 797–801. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Loreto, F. Water stress, temperature, and light effects on isoprene emission and photosynthesis of Kudzu leaves. In Proceedings of the IEEE Topical Meeting on Electrical Performance of Electronic Packaging, Monterey, CA, USA, 20–22 October 1993. [Google Scholar]
- Zhang, G.G.; Kang, Y.M.; Han, G.D.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Change Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Saxena, A.K. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Yao, M.; Bai, X.; Wen, F.; Liu, K.; Yang, J.; Chen, H.; Yang, X. Accurate origin identification of Chinese white Chrysanthemi flos by analysis of C, N, O, H stable isotope ratios and mineral elements combined with chemometrics. J. Food Compos. Anal. 2023, 124, 105703. [Google Scholar] [CrossRef]
- Chen, J.Z.; Huang, X.L.; Tong, B.L.; Wang, D.; Liu, J.M.; Liao, X.F.; Sun, Q.W. Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiol. 2021, 21, 206. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Biswas, P.K.; Al Hasan, S.M.; Rahman, M.M.; Lee, S.H.; Kim, K.H.; Rahman, S.M.; Islam, M.R. The occurrences of heavy metals in farmland soils and their propagation into paddy plants. Environ. Monit. Assess. 2018, 190, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, H.; Zhao, Y.; Zheng, Y.; Jiang, J.; Gu, X. Responses of soil nutrients and rhizosphere microbial communities of a medicinal plant Pinelliaternatato vermicompost. 3 Biotech 2023, 13, 353. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Huang, H.C.; Hao, S.B.; Tang, W.C.; Gao, L.; Gao, H.; Zheng, Z.Y.; Zhang, Z.L. Characteristics of the Lapis chloriti analyzed by the terahertz time-domain technology. In Proceedings of the International Conference on Information Optics and Photonics, Beijing, China, 8–11 July 2018. [Google Scholar]
- Tripathi, A.; Pandey, V.; Ranjan, M.R. Climate Change and Its Impact on Soil Properties. In Climate Change and the Microbiome; Springer: Cham, Switzerland, 2021; pp. 139–153. [Google Scholar]
- Su, W.; Zhang, H.; Li, X.; Ou, X. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition. Chin. Tradit. Herb. Drugs 2005, 36, 1415–1418. [Google Scholar]
- Melton, E.D.; Swanner, E.D.; Behrens, S.; Schmidt, C.; Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 2014, 12, 797–808. [Google Scholar] [CrossRef]
- Li, P.; Peng, W.; Wu, H.; Wang, Y.; Li, P.; Zhang, M.; Su, W. Suggestions for the quality standard in Chinese pharmacopoeia of Citri grandis Exocarpium and the establishment of its grade standard. Acta Sci. Nat. Univ. Sunyatseni 2019, 58, 1–13. [Google Scholar]
- Zhang, B.Y.; Chen, B.R.; Zhou, X.Y.; Zou, H.; Duan, D.T.; Zhang, X.Y.; Zhang, X.X. Distribution and protection of Thesium chinense Turcz. under climate and land use change. Sci. Rep. 2024, 14, 6475. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Zuo, Z.T.; Xu, F.R.; Wang, Y.Z. Study of the suitable climate factors and geographical origins traceability of Panax notoginseng based on correlation analysis and spectral images combined with machine learning. Front. Plant Sci. 2023, 13, 1009727. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, O.; Akkemik, U.; Dogan, O.; Yilmaz, H.; Sevgi, O.; Sevgi, E. The missing part of the past, current, and future distribution model of Quercus ilex L.: The eastern edge. Iforest—Biogeosciences For. 2024, 17, 90–99. [Google Scholar] [CrossRef]
No. a | RT/min | Compound | Relative Area b | |
---|---|---|---|---|
COREs (n = 25) | Non-COREs (n = 22) | |||
1 | 11.97 | Pseudolimonene | 0.49 ± 0.34 | 0.09 ± 0.27 |
2 | 12.36 | β-Pinene | 5.27 ± 3.07 | 0.27 ± 0.18 |
3 | 13.65 | D-Limonene | 25.55 ± 12.94 | 7.80 ± 8.85 |
4 | 14.15 | 3-Carene | 0.14 ± 0.18 | 0.25 ± 0.52 |
5 | 14.55 | γ-Terpinene | 5.54 ± 5.75 | 0.30 ± 0.97 |
6 | 14.93 | Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl) propan-2-yl carbonate | 0.56 ± 0.74 | 0.20 ± 0.18 |
7 | 15.43 | Linalool oxide | 0.28 ± 0.27 | 0.10 ± 0.08 |
8 | 15.82 | Linalyl acetate | 0.09 ± 0.05 | 0.02 ± 0.04 |
9 | 18.29 | Terpinen-4-ol | 0.20 ± 0.08 | 0.04 ± 0.06 |
10 | 18.72 | α-Terpineol | 0.19 ± 0.08 | 0.04 ± 0.05 |
11 | 24.95 | 2-methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane | 2.22 ± 0.82 | 0.71 ± 1.14 |
12 | 25.86 | 1,5,9,9-Tetramethyl-1,4,7-cycloundecatriene | 0.27 ± 0.07 | 0.10 ± 0.13 |
13 | 26.32 | γ-Cadinene | 1.09 ± 0.29 | 0.23 ± 0.25 |
14 | 26.52 | β-Copaene | 15.16 ± 4.28 | 3.61 ± 4.51 |
15 | 26.76 | γ-Muurolene | 0.68 ± 0.16 | 0.18 ± 0.19 |
16 | 26.86 | Bicyclogermacren | 1.73 ± 0.45 | 0.46 ± 0.53 |
17 | 27.37 | β-Cadinene | 1.43 ± 0.36 | 0.37 ± 0.39 |
Types | No. | Description |
---|---|---|
Temperature | BIO1 | Annual Mean Temperature |
BIO5 | Max Temperature of Warmest Month | |
BIO6 | Min Temperature of Coldest Month * | |
BIO8 | Mean Temperature of Wettest Quarter | |
BIO9 | Mean Temperature of Driest Quarter | |
BIO10 | Mean Temperature of Warmest Quarter | |
BIO11 | Mean Temperature of Coldest Quarter | |
Temperature variation | BIO2 | Mean Diurnal Range |
BIO3 | Isothermality | |
BIO4 | Temperature Seasonality | |
BIO7 | Temperature Annual Range * | |
Precipitation | BIO12 | Annual Precipitation |
BIO13 | Precipitation of Wettest Month | |
BIO14 | Precipitation of Driest Month | |
BIO16 | Precipitation of Wettest Quarter | |
BIO17 | Precipitation of Driest Quarter | |
BIO18 | Precipitation of Warmest Quarter * | |
BIO19 | Precipitation of Coldest Quarter | |
Precipitation variation | BIO15 | Precipitation Seasonality * |
Soil | 1 | Al * |
2 | B * | |
3 | Ca * | |
4 | Cu * | |
5 | Fe * | |
6 | K * | |
7 | Mg * | |
8 | Mn * | |
9 | Na * | |
10 | P | |
11 | S | |
12 | Zn * |
Province | Samples | Longitude (°) | Latitude (°) | Altitude (m) |
---|---|---|---|---|
Guangdong | Non-CORE 1 | 110.417773 | 21.821382 | 64.0 |
Guangdong | Non-CORE 2 | 114.005000 | 25.004000 | 156.0 |
Hunan | Non-CORE 3 | 109.706450 | 28.135200 | 308.0 |
Guangxi | Non-CORE 4 | 110.613407 | 22.847995 | 119.0 |
Jiangxi | Non-CORE 5 | 115.311141 | 27.167075 | 80.0 |
Guangdong | Non-CORE 6 | 116.331538 | 24.550424 | 187.9 |
Guangdong | Non-CORE 7 | 116.328331 | 24.549561 | 194.0 |
Guangdong | Non-CORE 8 | 116.329475 | 24.551128 | 183.9 |
Jiangxi | Non-CORE 9 | 116.314680 | 29.556333 | 52.0 |
Hunan | Non-CORE 10 | 110.986500 | 27.170280 | 292.0 |
Jiangxi | Non-CORE 11 | 113.966709 | 26.748899 | 230.3 |
Jiangxi | Non-CORE 12 | 113.966291 | 26.748526 | 229.4 |
Zhejiang | Non-CORE 13 | 120.757162 | 30.126701 | 24.5 |
Hunan | Non-CORE 14 | 111.625134 | 29.717790 | 52.6 |
Jiangxi | Non-CORE 15 | 116.296923 | 29.513210 | 34.0 |
Sichuan | Non-CORE 16 | 104.726995 | 30.369177 | 403.0 |
Sichuan | Non-CORE 17 | 104.726995 | 30.369177 | 403.0 |
Sichuan | Non-CORE 18 | 104.726995 | 30.369177 | 403.0 |
Guizhou | Non-CORE 19 | 108.220000 | 28.110000 | 581.0 |
Jiangxi | Non-CORE 20 | 114.686367 | 25.650904 | 157.7 |
Jiangxi | Non-CORE 21 | 114.690331 | 25.647292 | 160.0 |
Jiangxi | Non-CORE 22 | 114.693850 | 25.681852 | 145.2 |
Huazhou | CORE 1 | 110.404632 | 21.997887 | 40.1 |
Huazhou | CORE 2 | 110.355038 | 22.016040 | 42.2 |
Huazhou | CORE 3 | 110.412663 | 22.043070 | 39.3 |
Huazhou | CORE 4 | 110.419240 | 22.015369 | 41.1 |
Huazhou | CORE 5 | 110.402059 | 21.980484 | 55.6 |
Huazhou | CORE 6 | 110.354744 | 22.016749 | 45.0 |
Huazhou | CORE 7 | 110.418387 | 22.003365 | 94.1 |
Huazhou | CORE 8 | 110.413502 | 22.005701 | 49.1 |
Huazhou | CORE 9 | 110.408349 | 22.103947 | 81.7 |
Huazhou | CORE 10 | 110.425757 | 22.177994 | 77.8 |
Huazhou | CORE 11 | 110.388222 | 22.092638 | 52.3 |
Huazhou | CORE 12 | 110.568212 | 21.983016 | 27.6 |
Huazhou | CORE 13 | 110.552141 | 22.114187 | 77.2 |
Huazhou | CORE 14 | 110.660837 | 22.140085 | 43.6 |
Huazhou | CORE 15 | 110.417253 | 21.820815 | 55.4 |
Huazhou | CORE 16 | 110.414948 | 21.989426 | 56.0 |
Huazhou | CORE 17 | 110.478683 | 21.693335 | 22.1 |
Huazhou | CORE 18 | 110.481566 | 21.693754 | 31.6 |
Huazhou | CORE 19 | 110.458909 | 21.696219 | 54.1 |
Huazhou | CORE 20 | 110.659785 | 21.752218 | 15.4 |
Huazhou | CORE 21 | 110.659428 | 21.751407 | 22.7 |
Huazhou | CORE 22 | 110.577771 | 21.786409 | 32.5 |
Huazhou | CORE 23 | 110.518970 | 21.939292 | 19.8 |
Huazhou | CORE 24 | 110.573151 | 21.665990 | 6.8 |
Huazhou | CORE 25 | 110.622842 | 21.854864 | 39.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Zhang, A.; Wu, H.; Peng, W.; Li, P.; Su, W. Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors. Molecules 2025, 30, 622. https://doi.org/10.3390/molecules30030622
Hu S, Zhang A, Wu H, Peng W, Li P, Su W. Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors. Molecules. 2025; 30(3):622. https://doi.org/10.3390/molecules30030622
Chicago/Turabian StyleHu, Shuangfei, Ao Zhang, Hao Wu, Wei Peng, Peibo Li, and Weiwei Su. 2025. "Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors" Molecules 30, no. 3: 622. https://doi.org/10.3390/molecules30030622
APA StyleHu, S., Zhang, A., Wu, H., Peng, W., Li, P., & Su, W. (2025). Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors. Molecules, 30(3), 622. https://doi.org/10.3390/molecules30030622