Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Huajuhong

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3740 KiB  
Article
Analysis of Volatile Compounds in Citri grandis from Different Regions in South China and the Response of Volatile Compounds to Ecological Factors
by Shuangfei Hu, Ao Zhang, Hao Wu, Wei Peng, Peibo Li and Weiwei Su
Molecules 2025, 30(3), 622; https://doi.org/10.3390/molecules30030622 - 31 Jan 2025
Cited by 2 | Viewed by 906
Abstract
Citri grandis Exocarpium (Chinese name Huajuhong, HJH) is a traditional Chinese medicinal herb widely used in traditional medicines and foods in China due to its efficacy in treating coughs and excessive phlegm. This study employed HS-SPME-GC-MS to analyze the volatile compounds in HJH [...] Read more.
Citri grandis Exocarpium (Chinese name Huajuhong, HJH) is a traditional Chinese medicinal herb widely used in traditional medicines and foods in China due to its efficacy in treating coughs and excessive phlegm. This study employed HS-SPME-GC-MS to analyze the volatile compounds in HJH samples from different regions, with the aim of distinguishing samples from Huazhou from those of other origins and exploring their potential relationship with ecological factors. A multidimensional strategy was utilized to analyze the relationships between volatile oils, climatic factors, and soil elements, examining how volatile compounds responded to ecological factors. From 47 batches of HJH samples across various regions, eight significantly different volatile compounds were identified, serving as chemical markers for HJH from Huazhou. The findings elucidate the impact of ecological factors on the volatile compounds of HJH, highlighting environmental factors relating to the authenticity of HJH from Huazhou. The results indicate that the authenticity of HJH is shaped by the unique climatic and soil environments of Huazhou. Full article
Show Figures

Figure 1

11 pages, 1813 KiB  
Article
Metabolic Profiling and Transcriptional Analysis of Carotenoid Accumulation in a Red-Fleshed Mutant of Pummelo (Citrus grandis)
by Congyi Zhu, Cheng Peng, Diyang Qiu and Jiwu Zeng
Molecules 2022, 27(14), 4595; https://doi.org/10.3390/molecules27144595 - 19 Jul 2022
Cited by 9 | Viewed by 2211
Abstract
Citrus grandis ‘Tomentosa’, commonly known as ‘Huajuhong’ pummelo (HJH), is used in traditional Chinese medicine and can moisten the lungs, resolve phlegm, and relieve coughs. A spontaneous bud mutant, named R-HJH, had a visually attractive phenotype with red albedo tissue and red juice [...] Read more.
Citrus grandis ‘Tomentosa’, commonly known as ‘Huajuhong’ pummelo (HJH), is used in traditional Chinese medicine and can moisten the lungs, resolve phlegm, and relieve coughs. A spontaneous bud mutant, named R-HJH, had a visually attractive phenotype with red albedo tissue and red juice sacs. In this study, the content and composition of carotenoids were investigated and compared between R-HJH and wild-type HJH using HPLC–MS analysis. The total carotenoids in the albedo tissue and juice sacs of R-HJH were 4.03- and 2.89-fold greater than those in HJH, respectively. The massive accumulation of carotenoids, including lycopene, β-carotene and phytoene, led to the attractive red color of R-HJH. However, the contents of flavones, coumarins and most volatile components (mainly D-limonene and γ-terpinene) were clearly reduced in R-HJH compared with wild-type HJH. To identify the molecular basis of carotenoid accumulation in R-HJH, RNA-Seq transcriptome sequencing was performed. Among 3948 differentially expressed genes (DEGs), the increased upstream synthesis genes (phytoene synthase gene, PSY) and decreased downstream genes (β-carotene hydroxylase gene, CHYB and carotenoid cleavage dioxygenase gene, CCD7) might be the key factors that account for the high level of carotenoids in R-HJH. These results will be beneficial for determining the molecular mechanism of carotenoid accumulation and metabolism in pummelo. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Phytochemicals in Fruits and Vegetables)
Show Figures

Figure 1

14 pages, 2957 KiB  
Article
Comprehensive Analysis of N6-Methyladenosine Regulatory Genes from Citrus grandis and Expression Profilings in the Fruits of “Huajuhong” (C. grandis “Tomentosa”) during Various Development Stages
by Yuzhen Tian, Jiwu Zeng and Ruiyi Fan
Horticulturae 2022, 8(5), 462; https://doi.org/10.3390/horticulturae8050462 - 20 May 2022
Cited by 3 | Viewed by 2844
Abstract
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous traditional Chinese medicine. The aim of the present study is to provide a comprehensive characterization of the m6A regulatory genes from C. grandis, and examine their expression patterns in fruits of C. grandis [...] Read more.
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous traditional Chinese medicine. The aim of the present study is to provide a comprehensive characterization of the m6A regulatory genes from C. grandis, and examine their expression patterns in fruits of C. grandis “Tomentosa” during various developmental stages. A total of 26 N6-methyladenosine (m6A) regulatory proteins were identified from the genome of C. grandis, which were distributed across nine chromosomes in C. grandis. Phylogenetic relationships revealed that all m6A regulatory genes were divided into groups of m6A writers, erasers, and readers. The m6A writer groups included CgMTA, CgMTB, and CgMTC three MTs (methyltransferases), one CgVIR (virilizer), one CgHAKAI (E3 ubiquitin ligase HAKAI), and one CgFIP37 (FKBP interacting protein 37). Moreover, 10 CgALKBH (α-ketoglutarate-dependent dioxygenase homolog) members (numbered from CgALKBH1 to CgALKBH10) and 10 CgECT (C-terminal region) members (numbered from CgECT1 to CgECT10) in C. grandis were identified as m6A erasers and readers, respectively. The domain structures and motif architectures among the groups of m6A writers, erasers, and readers were diverse. Cis-acting elements in the promoters of the 26 m6A regulatory genes predicted that the abscisic acid-responsive (ABA) element (ABRE) was present on the promoters of 19 genes. In addition, the expression profiles of all m6A regulatory genes were examined in the fruits of two varieties of C. grandis “Tomentosa” during different growth stages to give basic hints for further investigation of the function of the N6-methyladenosine regulatory genes in C. grandis “Tomentosa”. Full article
Show Figures

Figure 1

13 pages, 4032 KiB  
Article
Comprehensive Analysis of Jumonji Domain C Family from Citrus grandis and Expression Profilings in the Exocarps of “Huajuhong” (Citrus grandis “Tomentosa”) during Various Development Stages
by Yuzhen Tian, Ruiyi Fan and Jiwu Zeng
Horticulturae 2021, 7(12), 592; https://doi.org/10.3390/horticulturae7120592 - 20 Dec 2021
Cited by 6 | Viewed by 3461
Abstract
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic [...] Read more.
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic analysis revealed that they could be classified into five groups, namely KDM3, KDM4, KDM5, JMJC, and JMJD6. The domain structures and motif architectures in the five groups were diversified. Cis-acting elements on the promoters of 18 CgJMJC genes were also investigated, and the abscisic acid-responsive element (ABRE) was distributed on 15 CgJMJC genes. Furthermore, the expression profiles of 18 CgJMJCs members in the exocarps of three varieties of “Huajuhong”, for different developmental stages, were examined. The results were validated by quantitative real-time PCR (qRT-PCR). The present study provides a comprehensive characterization of JMJC domain-containing proteins in C. grandis and their expression patterns in the exocarps of C. grandis “Tomentosa” for three varieties with various development stages. Full article
Show Figures

Figure 1

Back to TopTop